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A quantum kinetic equation that describes inelastic collisions without the use of the Born 
approximation is derived for the particle density matrix, for scattering by an individual atom or 
nucleus in a crystal. The problem of spin incoherent scattering and depolarization of neutrons in a 
thick crystal is solved. Analytic expressions are.obtained for the intensity distribution in the 
Kossel patterns produced upon diffraction of particles emitted from the crystal. Resonance 
singularities are observed in the backscattering angular spectrum and are similar to those known 
in the problem of weak localization of waves in a randomly inhomogeneous medium. 

1. INTRODUCTION 

A quantum-mechanical description of inelastic scatter- 
ing of a particle in matter, under conditions when the time of 
collision with an individual atom is many times shorter than 
the free path time between successive collisions, yields a ki- 
netic equation for the density matrix. The first to formulate a 
quantum kinetic equation for a particle in a medium with 
random disposition of the scatterers was Migdal. ' His deri- 
vation of the kinetic equation is based on the use of the Born 
approximation in the problem of particle scattering by an 
atom. A generalization of the approach proposed in Ref. 1 
permits the collision integral in this equation to be expressed 
in term of the exact one-center scattering amp l i t~de ,~  and 
allows account to be taken of the short-range correlations in 
the disposition of the  atom^.^'^ 

A quantum kinetic equation that describes the motion 
of a fast charged particle in a crystal was derived by Kagan 
and Kononetss-' in an approximation quadratic in the in- 
elastic-interaction operator. This equation made possible, 
for the first time, a consistent explanation of a large group of 
phenomena observed in experiments on the scattering of fast 
nonrelativistic protons6,' and electrons8 in crystals thicker 
than the particle mean free path for excitation of the electron 
and phonon subsystems. At the same time, a number of 
workers9-l3 pointed out the limitations of the Born approxi- 
mation for the description of the scattering of nonrelativistic 
electrons in matter, and particularly that the Born series 
does not converge for atoms of heavy elements (Z k 40). 
The possibility of a simple replacement of the Born scatter- 
ing amplitude by its exact value in the problem of dynamic 
diffraction of particles in a crystal was pointed out by 
H ~ e r n i . ~  Kagan and Afanas'evI4 have shown that the effec- 
tive potential of the interaction of resonant neutrons with 
crystal nuclei is proportional to the renormalized scattering 
amplitude in which the elastic part is excluded from the reso- 
nance width. Under conditions of strong incoherent spin and 
thermal scattering, the resonance width is restored to a value 
corresponding to a disordered disposition of the resonant 
nuclei.15 The authors of the cited papers confined themselves 
to consideration of the equation for the wave function of the 
coherent field, in the framework of which the influence of 
the inelastic scattering reduces to effective absorption of the 
particles. This makes it impossible to use the methods devel- 
oped in Refs. 14 and 15 for the analysis of recently observed 
diffraction singularities in the angular distribution of ther- 

mal neutrons inelastically scattered in thick single crys- 
ta l~. '" '~  

Thus, to solve a number of problems of particle scatter- 
ing in crystals, it is of interest to develop a method of simul- 
taneously taking into account diffraction and inelastic colli- 
sions under conditions when there is no convergent series for 
the potential of the interaction between the particle and an 
individual scattering center. It is shown below that in certain 
cases the effective elastic-interaction potential and the in- 
elastic-collision integral in the quantum kinetic equation can 
be calculated by using the pair-collision approximation. 19320 

In this approximation the expansion parameter is not the 
interaction potential but the matrix for scattering by an indi- 
vidual center. The resultant series, which differs in structure 
from the Born series, makes it possible to carry out summa- 
tion in the case of uncorrelated excitations and to obtain an 
equation in closed form. In the problem of scattering of ther- 
mal neutrons, the smallness of the amplitude f compared 
with the particle wavelength A makes it possible to confine 
oneself in the inelastic-collision integral to an approximation 
linear in f /A and to take into account the correlations of the 
motions of the crystalatom nuclei. For fast charged parti- 
cles, an expansion in a Born series reduces the obtained ki- 
netic equation to a known The use of a quantum 
kinetic equation in the problem of spin incoherent scattering 
of thermal neutrons in a single crystal explains the mecha- 
nism whereby the Kossel patterns are produced in the angu- 
lar distribution of the scatterd particles and makes it possible 
to analyze the ensuing polarization phenomena. Under Laue 
diffraction conditions, resonant backscattering-amplifica- 
tion is observed, similar to the one known in weak-localiza- 
tion t h e ~ r y ~ ' , ~ ~  

2. KINETIC EQUATION FOR INELASTIC COLLISIONS OF 
PARTICLES IN CRYSTALS 

A formally exact solution of the Schrodinger equation 
for particle scattering by Nbound centers is provided by the 
two-equation systemZo 

where x is the wave functio2 of 5 e  particle system prior to 
the collision, Yo = (Eo - K - H + i0)-', is the free-mo- 

h 

tion Green's function, Kis the particle kinetic-energy opera- 
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tor, 2 is the crystal Hamiltonian, and E, is the sum of the 
particle energies in the crystal. The summation in ( 1 ) is over 
all the scattering centers a = 1 . . . N. If the quasifree scat- 
tering condition 

is met, where 7, is the collision time and a,, is the character- 
istic frequency of the oscillations of the nucleus in the bind- 
i2g potential about the equilibrium condition, the operator 
7, coincides with the matrix for scattering by a free parti- 
cle. For resonance interaction, condition (2)  is equivalent to 
the case of a broad resonance line I? p w,, . l5 

A kinetic equation for the density matrix of a particle 
can be obtained by summing the bilinear combination of the 
wave functions YY + from ( 1 ) over the quantum numbers of 
the internal degrees of freedom of the crystal698: 

Before we proceed to derive the relation satisfied by the den- 
sity matrix ( 3  ), we obtain the wave function q, of the elasti- 
cally scattering particle (the coherent wave field). In the 
substance, the function q, satisfies the homogeneous equa- 
tion 

A 

where G = Sp, (p, 9 ) [ S p r  Tr]  denotes the Green's func- 
tion of the elastic-scattering problem, andp, is the equilibri- 
um thermodynamic density matrix of the crystal. The func- 
tion Y is the solution of the system of equations [cf. ( 1 ) ] 

b t n  

To continue2he analysis, it is convenient to separate from 
the matrix 7, the averaged part which is diagonal in the 
quantum numbers of the internal degrees of freedom of the 
crystal 

and the fluctuation term that describes inelastic scattering 
by the center a: 

Substitution of (6)  and (7)  in (5)  makes it .possible to ex- 
press the Green's function by the series 

a b t n  

where Go = (E - 2 + iO) -' and E is the particle energy. It 
must be emphasized that the structure of the series in pair 
collisions (8) differs from the structure of the usual Born 
expansion in the potential, since the number of the preceding 
scatterer is excluded from the sum over the atoms in each 
term of the series ( 8). 

If the excitations in the system of scattering centers are 
independent for a # b (an example is the Einstein model of 
thermal motion of the Atoms or the subsystem of nuclear 
spins), we have 

and the following estimate holds 

where G, is the sum of those terms of the s ~ i e s  (8)  which 
contain only the elastic-scattering operator T. The result of 
the summation, which is in fact the fortf?al solution of the 
backscattering problem for the operator T, is23 

A h h 

where V, = T, ( 1 + GOTa ) - I .  The ratio of the second term 
in the right-hand side of (9) to the first is of the order of 
6 = max C R , A )  /I& 1, where R is the effective radius of the 
scattering-center potential, A is the particle wavelength, and 
1 is the characteristic scale, connected with the scattering, of 
the change of the particle wave function in the medium. 

The Green's function G in ( 10) describes particle mo- 
%on in ân effective non-Hermitian (see below) potential 
V = 2, V,. In the aisence of inelastic excitations, when t ,  
= 0, the operato2 V, coincides with the usual ~a t te r ing-  
center potential U, connected with the matrix 7, by the 
relation (Ref. 20, p. 76 of Russian translation) 

In the case of a rand$m disposition of the atoms, +e 
elasticscattering operator T, is obtained by averagingh7, 
over the volume occupied by the scattering medium. T, is 
then indepe%dent of the atom number a and is ma%roscopi- 
cally small, T, - l / n .  Substitution of this value of Tin ( 10) 
leads, acprateio terms of order l / n ,  to the known expres- 
sion for V = NT for the optical potential.24 

In-tke presence of collective excitations in the crystal, 
~ ~ , ~ , t , t , )  = 0 the effective potential V can be calculated 
by expanding ( 10) in a series and comparing term-by-term 
with (8). Accurate to terms quadratic in the scattering am- 
plitude, we obtain easily 

a b t o  

In the particular case of resonance interaction with the scat- 
tering center, Eq. ( 12) coincides with Eq. (3.16) of the pa- 
per by Afanas'ev and KaganI5 (see Appendix l ). 

We conside~two examples of the calculation of the ef- 
fective potential Vin ( lo) ,  using the known elastic-collision 
operator (6) .  

I. In the case of s-scattering, the element of elastic tran- 
sition between states with momenta p, and p, in a rigid lat- 
tice takes the form (here and below, R = 1 ) 
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The calculation of the corresponding potential ^V, of ( 10) 
reduces to summation of a geometric progression 

The calculation result can be written in the form 

where 

Note that the parameter of the expansion in ( 13) is the ratio 
of the scattering amplitude to the particle wavelength, 
f /A ( 1. Substitution in ( 13) of the resonance scattering am- 
plitude 

transforms this equation into 

The width of the resonance singularity in the effective poten- 
tial (14) and its position on the energy scale do not agree 
with the corresponding parameters of the cross section for 
scattering by an isolated center. In crystals, the cause of the 
narrowing and shift of the resonance is the periodic charac- 
ter of the atom disposition, which excludes an elastic chan- 
nel for scattering by an individual center. l4 

11. If the condition R /A) 1 is met, the matrix ( 11) for 
scattering of a fast electron by an atom can be calculated in 
the eikonal approximationZ0 

x esp [lip (z-z') I6 (p-p') U,(p, z) 

where p = (x,y ), and the z axis is directed along the momen- 
tum p = mv of the incident particles. The matrix element 
( 6 )  with zero longitudinal-momentum transfer is in this 
case 

Here ( . . . ) denotes averaging over the ground state of the 
electronic subsystem and over the thermal motion of the 
atomic nucleus. Comparison of ( 16) with ( 10) yields for the 
matrix element of the effective potential 

This relation has a simple meaning: the phase advance of the 
wave function on passage of the particle through the poten- 
tial V, (p,c) coincides with the phase advance for elastic 
scattering ( 16). 

In the theory of the channeling effect, frequent use is 
made of the concept of an atomic-plane or atomic-axis po- 
tential U directed along the particle-motion direction. 2 5 T h i ~  
quantity is connected with the potential ( 17) by the relation 

1 ' u, (p) = - Eva (P) , 
Cll a 

where a,, is the crystal-lattice period along p, and the sum- 
mation is over the atoms in a plane paerpendicular to the 
particle-motion direction. In the Born limit, series expan- 
sion of the exponential and of the logarithm in ( 17) leads to a 
known The use of the parabolic model 

where u is the transverse thermal displacement, permits an 
analytic calculation of the integral ( 17) and we can write for 
the channel potential 

kp2 1 u 
Re U,(p)=-- + - arctg r., 

2all I+ x2  all 

kp2 x u 
(19) 

Im U,(p)= 1n( l+x2) ,  
2all 1+x2 2all 

where x = k (u2)/v. The imaginary part of the effective po- 
tential is the result of thermal inelastic scattering of the elec- 
trons. In accord with the law that the wave function of a 
coherent field decreases with the depth in the crystal, the 
imaginary part of the channel potential ( 19) is negative. 

We proceed now to derive a kinetic equation for the 
particle density matrix (3) .  It is easiest to obtain this equa- 
tion in the case (9 ) ,  ( 10) of uncorrelated excitations. To this 
end, each of the wave functions \I/ and \I/ + under the trace 
symbol in ( 3  ) must be represented by the series ( 1 ) in the 
collisions. A graphic illustration of the subsequent summa- 
tion over the quantum numbers of the internal degrees of 
freedom of the crystal is shown in Fig. 1. The solid lines in 

FIG. 1 
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this figure correspond to the free Green's functions Go, the 
points to the elastic-scattering operators T, and the crosses 
to the inelastic-collision operators. Joining the crosses by 
wavy lines means equality of the numbers of atoms from 
which inelastic scattering takes place. In accordance with 
the estimate (9), diagrams combining joinings of operators t 
located on one (upper or lower) straight line have the small- 
ness 64 1. The sum of all the diagrams without inelastic col- 
lision is equal to the density matrix p, = pg, + of the coher- 
ent field, where g, is the solution of Eq. (4) .  Allowance for all 
the diagrams without intersecting wavy lines yields the 
sought kinetic equation 

in which account is taken of the connection of the wave 
paa = Sp,(\V,Y,+ ) incident on the center a with the exact 
solution ( 3 )  : 

and Ga =:Gat large distances from the scatterer a. The colli- 
sion integral of the kinetic equation (20) iszonnected with 
the imaginary part of the effective potential Vof ( 10) by the 
optical theorem and satisfies the total-probability conserva- 
tion condition (Appendix 2).  

In the derivation of the collision integral in the case of 
correlated excitations the required ( - 9) accuracy is en- 
sured even by the first nonvanishing approximation with re- 
spect to the inelastic-scattering operator: 

The ex~ression corresponding to (2 1 ) for the effective po- 
tential V in the Green's function ( 10) has the form ( 12). 

Equation (20) under the condition max { R , i l ) / l g  1, 
Eq. (9),  and Eq. (21 ) provide under the condition f /A  4 1 a 
complete description of a quantum particle in a crystal under 
conditions of strong elastic and inelastic scattering by atoms 
or atomic nuclei. Using these equations, we obtain below a 
solution of the problem of spin incoherent scattering of ther- 
mal neutrons in a single crystal in a geometry with back- 
scattering a semi-infinite sample. Many regularities ob- 
served in the analysis of this solution can be of interest also 
for inelastic scattering of x-ray photons and electrons in 
crystals, or of light in layered structures. 

3. KOSSEL-PATTERN FORMATION IN SPIN INCOHERENT 
NEUTRON SCATTERING IN A SINGLE CRYSTAL 

Neutron diffraction by the effective periodic potential 
( 12) leads to singularities in the angular distribution of ine- 
lastically scattered particles near the Bragg directions. 
These singularities are sometimes called Kossel patterns. 
The intensity distributions in these patterns were analysed in 
Refs 16 and 17 by using the single inelastic (incoherent) 
scattering approximation which is valid for thin crystals 
with L < (no,,, ) - I .  The results of Refs. 16 and 17 are not 
valid in thick crystals or in strongly absorbing substances, 
and it is necessary to use a more general approach based on a 
solution of the kinetic equation (2 1 ) . 

Incoherent scattering of thermal neutrons in crystals at 
low temperatures is known to be the result of a random dis- 
tribution of nuclei of different isotopes in the lattice (isoto- 
pic incoherence) and of the absence of correlations in the 
orientations of the nuclear spins (spin incoherence) .26,27 We 
consider below the physically more interesting case of isoto- 
pic incoherent scattering accompanied simultaneously by 
depolarization of the particles. A generalization of the resul- 
tant equation to include the case of isotopic incoherence en- 
tails no difficulties (see, e.g., Ref. 27, p.334). 

The matrix for neutron scattering by a nucleus bound at 
a point R, and having a spin I is (Ref. 27, p. 12) 

where s is the neutron spin. Averaging in (22) over the quan- 
tum numbers of the internal degrees of freedom reduces to 
summation over the projections of the nuclear spin 

L J L  

(r 1 F e  1 r') = - A 6  (r-r') 6 (r-Re), 
m 

231 
(r 1 fa 1 r') = - B (s1) 6 (r-r') 6 (r-Ra). 

m 

The imaginary part of the scattering length A is connected 
with the total nuclear collision cross section by the optical 
theorem 

where a,,, = 4rlA 1 2 ,  a,, = r l B  121(1 + I ) ,  and a, is the 
nuclear cross section for neutron absorption. In accord with 
Eq. (24), the imaginary part of the effective potential ( 13) 

2n 
(rl p.1 r') = -(A+ m ip,A2) 6 (r-r') 6 (r-R,) 

23t = -(A+ipo I A I ') d (r-r') 6 (r-R,) 
m 

(25) 

is proportional to the sum of the cross sections for incoher- 
ent scattering and absorption. Substitution of expressions 
(23) in (2 1 ) leads to a system of equations for the coordinate 
dependences of the neutron spin density-matrix elements 
(the subscripts + and - pertain to the signs of the particle 
spin projection) : 

P++ (r, r') = p:? (r, r l )  qz G (r, RG) G* (rr,  Ra) 
a 

( C )  noin (r, rr )  = p-- (r, r') Y -x G (r ,  R") 
m2 a 

( C )  5'IOifi p+- (r, r') = p+- (r? r') + - 
3mL 

X G (r, R)  ~ ' ( r ' ,  R ~ )  p+- (R.. RQ). (28) 

An equation in closed form for the spin-independent 
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neutron density matrix 

p (r, r') =p++ (r, r') +P-- (r, r') (29) 

is obtained by adding (26) and (27): 

p (r, r') = (r, rf ) + ? z G (r, Ra) G* (r', R.) p (R,. R.) . 
m- a 

(30) 

The difference of the same equations describes the de- 
polarization in incoherent scattering: 

where P(r,rl) = p +  + (r,rl) - p -  - (r,rl). 
The scalar form of the Green's function G(r, R )  in 

(26)-(28) is due to the a b ~ n c e  of a spin dependence of the 
elastic scattering operator T, of (23).  For the same reason, 
the coherent-field polarization is independent of the coordi- 
nates: 

The wave function e, (r)  from (32) satisfies a Schrodinger 
equation with an effective potential (25): 

(33) 

The boundary condition for ( 33 ) is 

where p, is the momentum of the neutrons incident on the 
crystal. TheGreen'sfunction G(r, R )  in (26)-(28) is a solu- 
tion, which attenuates at infinity, of the inhomogeneous 
equation (33) 

The weakness of the effective neutron-crystal interac- 
tion potential (the characteristic scale of the potential in 
(33) ,  averaged over the volume of the unit cell, is lo-' eV) 
makes it possible to solve Eqs. (33) and (35) by using the 
two-wave approximation of the dynamic theory of diffrac- 
t i ~ n . ~ '  This approximation corresponds to replacement of 
the exact expression for the effective potential in (33) and 
(35) by 

where G is the reciprocal lattice vector closest to the Bragg 
condition. The theta function introduced in (36) means that 
the crystal atoms occupy the half-space z > 0. The choice of 
the phase of the potential (36) corresponds to the case of a 
simple cubic lattice one atom of which is located at the ori- 
gin. Comparison of (36) with (33) yields for the Fourier 
component of the effective polarization ( 36) 

where n is the number of atoms per unit volume. In accor- 
dance with (24) ,  the imaginary part of (37) is 

where v =p,/m is the particle velocity. Note that the in- 
equality I?< 1A1 usually holds for thermal neutrons.29 

Depending on the orientation of the reciprocal-lattice 
vector G relative to the crystal surface z = 0, a distinction is 
made betwen two diffraction geometries: the Laue case for 
(p, + G ) ,  = 0 and the Bragg case for (p, + G),  <O. The 
solution of Eqs. (26)-(28) is obtained below for the Laue 
case if the vector G is parallel to the crystal surface and for 
the Bragg case if G is directed opposite to the z axis. In both 
cases the solution of (33) with the potential (36) is 

cp (r) =a (2) eiPo'+p (z)  e ' ( * ~ + ~ ) ~ ,  (39) 

where the characteristic spatial scale of variation of the func- 
tions a ( z )  and fl (z)  is many times larger than the lattice 
constant 277/G. Before solving the equations that follow for 
a ( z )  and fl(z) from (33) ,  we note an important feature of 
relations (30) and ( 3  1 ) . According to these equations, the 
density matrixp(r, r') for all values of r and r' can be deter- 
mined from the known values of the neutron density 
p(R, )  =p(R, ,R,)  at the crystal lattice sites this is valid 
also for the P(r  r') 1. It is easy to obtain from (30) for the 
coordinate density of the particles the closed expression 

Since diffraction effects in the distribution of neutrons 
scattered from the weak potential (36) are manifested only 
in a narrow region of solid angle of width A$-m(Al/ 
Gp,< 1 near the Bragg directions (for a discussion of an 
analogous situation for electrons see Ref. 8) ,  we can solve 
(40) by using as the squared Green's function the expression 
obtained without allowance for the Fourier coefficient of the 
potential with G # 0: 

This approximation has a simple meaning: when the inequal- 
ity m I A I/Gp, < 1 holds, only a small fraction of the possible 
wave-propagation trajectories from the nucleus a to the nu- 
cleus b satisfy the Bragg condition. Substituting (41 ) in (40) 
and taking into account the homogeneity of the boundary 
condition (34) with respect to x and y, we can obtain for the 
z-dependent density of the particles at the lattice sites the 
relation 

m 

in which, in view of the slow variation of the functions p(z, ) 
and la(z, ) + fl( z, ) 1 2 ,  the summation over the lattice sites is 
replaced by integration, and E, is the integral exponential 
function. 30 

The squared modulus of the wave function of the coher- 
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ent field at the crystal lattice sites takes in the Laue-diffrac- crystal-lattice sites. Substitution of the Green's function 
tion case the form (see, e.g., Ref. 31) g, (z, z') in the form (39) in Eq. (35) allows us to writein the 

~ i u e  case 
I a (z) +p  (z) 1 '= (D~"' ) exp (--pdo'z) + ( ~ i ' " )  exp (-y,'O'z) 

p:O)+pl(0) 
+~D:"D:O) cos (w(O)z) exp (- - z ) ,  (43) 

C1 

where 

p;,"l ' - A 
nor {I * - 

COS 00 

Solution of (33) in the Bragg geometry yields 

the two equations above cos 8, = (p,),/p, is the cosine 
the angle of neutron diffraction by the crystal surface. 

Of interest to us is the angular distribution S(B, ,  p, ) of 
the neutrons emitted from the crystal, where 9, is the angle 
betwen the direction of particle motion and the inward nor- 
mal to the surface. Since all neutrons have in our problem 
one and the same energy E = p, '/2m, to calculate the angu- 
lar distribution it suffices to know the Fourier transform of 
the density matrix 

p (q, q; z, 2') = J dt d y e - ' q ( ~ - ~ ~ ~ ) p  (r, r l )  

In the Bragg case the calculation result is 

The notation in (47) and (48) is the same as in (43) and 
(44), apart from replacement of the momentum p, in all the 
equations by the momentum p, of the emitted particles, tak- 
en with a minus sign. (In this case cos 9, must be replaced by 
lcos a l l . )  The similarity of (47) and (48) to (43) and (44) 
is an obvious consequence of the reciprocity theorem. 

Equations (42) and (46) can be solved by using the 
known result of radiation according to which 
the solution of the equation 

no p0 (z) = e 7 m 2 z 1 h  + 2 j dz1E1 ( n ~  I z-zf 1 ) po (z') (49) 
0 

satisfies the integral equation 

near the crystal surface as z+O and zl+O (Ref. 24): (50) 

1 flq in which R e p  >O, Rep, > 0; u,/u2< 1, and 
S(t)l, q1) s in  13, d*, d q ~  - p (q, q; O,0) 7 

(2n) 
(45) 

a 
0 

where P is the surface area. Integration of (30) with respect H ( P I  ~ ) = 1  +T Pln( l  
to x and y yields for p(q, q, 0 )  the expression 

0 

(46) is the Chandrasekhar function.32234 Comparison of (49) and 
(50) with (42) and (46) yields directly a result for the flux 

in which gq (z, z') is the Fourier component of the Green's density of the backscattered particles J(S1,p,)  
function (35), and the integration, just as in (42), is over the = lcos 9, IS(9,,pl).  In the Laue case 

G t n  YoYi (sec 6,f I sec 61 1 ) +- 
4no, ( l+yO2)  (l+yi2) (sec 6,+ 1sec6,I )2+(4.1'/r7 [[sec 6 0 ( ~ y , 2 ) ' h - -  I sec6,l ( l+y12) 'h]2 

(52) 

where 
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and account is taken of the smallness of the ratio r/l A I ( 1. In the Bragg case 

Equations (52) and (53) solve completely the problem of 
calculating the angular distribution of neutrons reflected 
from a single crystal in spin incoherent scattering, for arbi- 
trary direction of particle entry into and exit from the sub- 
stance. The angular dependence ( 3 1 ) of the polarization of 
the scattered particles agrees with (52) and (53) apart from 
replacement of a;, by - a,, /3. 

4. DISCUSSION OF RESULTS 

It is simplest to begin the analysis of the above equations 
with the dependence of the neutron backscattering coeffi- 
cient, integrated over the emission angles, 

R,.,= j de, dq, sin t),J(Bi, ql) +Rc, (54) 
cos 6,<0 

on the orientation of the flux of the incident particles relative 
to the atomic planes of the crystal. In the integration of (52) 
and (53) over the angles and it is convenient to use the equa- 

In the Laue case (52) there is no wave coherently reflected in 
the half-space z < 0, and the only nonzero term in the sum 
( 54) is the first: 

In the Bragg case (Fig. 2b) the intensity of the coher- 
ently scattered wave is appreciable 

and the total backscattering coefficient (54) is 

If a,, = 0, Eq. (58) coincides with (57). (Note that in the 
Laue case (56) the backscattering coefficient for a,, = 0 is 
exactly zero.) As seen from Fig. 2b, in the "total" reflection 
region - 2<y0,<0 the main contribution to (58) is made by 
the coherent wave. Far from the Bragg condition 
(po + G)' = pi the backscattering flux consists almost 
completely of the incoherent component. 

We turn now to the analysis of the differential angular 
distrbution and to the polarization of the scattered neutrons. 
We assume the incident particles (32) to be totally polar- 
ized:pY'+ = 1 andp?'- = 0. In the Bragg case it is easy to 

(56) 

The dependence calculated with Eq. (56) is shown in 
Fig.2a. The sign of A < O  and the cross-section ratio ai,/a, 
agree with the corresponding values for vanadium.'' In the 
plot we have used for the Chandrasekhar function the ap- 
proximate expression b 

4+3'"p 
O<p<m, mG4, H ( ~ ' m )  = 4+[3(~-0)]Ilsp' 

which is accurate to 5% in the region O<w< l,O<p< 1 (Ref. 
24), and which yields the correct limit asp-  co (Ref.34). 

The minimum of the coefficient R,,, at yo - 0.5 is due to ------_ - 
\ 

I 
the anomalous passage of the neutrons. In particular, at yo \ I 
= 0 one of the components of the wave field (43) is not 

I I I I I ~ ~ J I I I I I I  

yo 
5 '7 1 0 - 7  -3 -5 -7 

scattered by nuclei, phO' = 0, and makes no contribution to 
(56). Under real conditions the thermal motion disturbs the FIG. 2. Thermal-neutron backscattering coefficient, integrated over the 

strict periodicity of the arrangement of the nuclei and de- emission angles, vs the angle between the incident particle flux and the 
atomic planes of the crystal ( A  < 0, ui, /u, = 0.47; /cos 9,1 = 0.707 ): a- 

creases the the effect in Fig. Laue case; b--Bragg case, the dashed line shows the incoherent-scattering 
2a. coefficient. 
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obtain for the degree of polarization 

J++ (61, cpl) -J-- (61, cpl) 
J(61, 91) 

1 H (cos Re (l+4V/eo)'"; -oi,/30,) 
3-- 

3 H (cos tho Re (1+4V/eo) "; ot,/o,) 
x H ( I cos 6, I Re (1+4V/el) "; -a(,/30,) 
x H (I cos 61 1 Re(l+4V/e1) "; ac,/o,) 

' (59) 

In the single incoherent scattering case, Eq. (59) goes over 
into the known result (Ref. 27, p. 334): 

The difference between the degree of polarization of the neu- 
trons emitted from the crystal and - 1/3 is the result of 
multiple depolarizing collisions, the contribution of which 
corresponds to the succeeding expansion terms in (5 1 ) . 

The differential angular distribution and the degree of 
particle polarization, calculated using Eqs. (53 ) and (59) 
for two different orientations of the neutron flux incident on 
the crystal, are shown in Fig. 3b. It can be seen that the 
number of particles scattered in a solid-angle element do, in 
the region - 2<y, (0 of the variation of the relative-energy- 
deviation parameter is very insignificant. By comparison 
with Fig. 2b, this phenomenon can be interpreted as a conse- 
quence of the reciprocity theorem. In fact, in this range ofy, 
the incident wave undergoes almost total Bragg reflection 
and penetrates into the crystal to a depth many times smaller 
thin the mean free path (nu,)-'. The almost exclusively 
incoherent single scattering character of the neutrons from 
that entering the reflected flux in the region - 2 <y ,  < 0 is 
also attested to by the behavior of the degree of polarization 
of the emitted particles, which is close to - 1/3 in the indi- 
cated range of y, . 

The equation for the degree of particle polarization in 
the Laue geometry, obtained by replacing a,, in (52) by 
- (1/3)a,,, is very unwieldy. It is convenient therefore to 

confine oneself to the graphic illustration of this diffraction 
case, shown in Fig. 3a. 

As seen from Figs. 3a and 3b, the particle angular distri- 
butions obtained in different diffraction geometries are char- 
acterized by a number of common peculiarities. In particu- 
lar, the number of particles backscattered into the angle 
region y, 5 - 1 is as a rule larger than the number corre- 

FIG. 3. Dependence of the differential backscattering co- 
efficient (1, 1') and of the degree of polarization (2,2') 
P(Y') = (J++(Y, )  -J--(yI)/J(y,) ,  on the angle of 
neutron emission from a single crystal ( / A < O ;  
u,,/u, = 0.47, lcos 90 = cos 9, = 0.707); a) Laue case; 
solid line-yo = 0, dashed-yo = 1; b) Bragg case, solid 
line-yo = - 2, dashed-yo = 1 .  

sponding toy, > 0. These peculiarities are due to the spatial 
structure of the neutron wave field produced by dynamic 
diffraction in a crystal.35 The region y ,  5 - 1 (recall that 
A < 0 )  corresponds to periodic modulation of the squared 
modulus of the wave function, under which the neutron den- 
sity reaches a maximum in the vicinity of the atomic nuclei. 
This leads to an overall enhancement of the incoherent back- 
scattering (Fig. 2)  and to an increase of the amplitude of the 
diffraction effect (Fig. 3) .  Corresponding to the opposite 
sign of the parameter characterizing the deviation from the 
Bragg condition y, 20 ,  on the contrary, is a pattern of a 
wave field localized in the space between the nuclei. In par- 
ticular, the value y,  = 0 in the Bragg geometry corresponds 
to zero neutron density in the crystal lattice sites Eq. (44) 1. 
Under these conditions the intensity of the incoherent scat- 
tering weakens and the amplitude of the diffraction effects 
decreases in the angular distribution of the particles emitted 
from the crystal. 

Noteworthy in the analysis of the angular distribution 
of neutrons backscattered in Laue geometry is the presence 
of resonance anomalies in this distribution [second term of 
Eq. (52) 1. In view of their small angular width and of the 
integrated intensity of these resonances, they cannot be 
drawn to required scale in Fig. 3a. The resonances in the 
distribution (52) are caused by oscillatory terms in expres- 
sions (43) and (47). It must be emphasized that in the angu- 
lar spectrum of the emitted particles these resonances are 
shifted relative to the diffraction anomalies shown in Fig. 3 
and are not conected with the direction of the incident parti- 
cles by some Bragg reflection. The resonances are the result 
of the equality of the oscillation periods of the coherent-field 
density at the lattice sites (43) and of the squared modulus 
of the Green's function (47) that describes the particle prop- 
agation from the scattering center to the crystal surface. The 
analog of these resonances in a disordered medium is the 
enhancement of the scattering "backward," an effect thor- 
oughly investigated in the theory of wave propagation in 
randomly inhomogeneous media36 and in the weak-localiza- 
tion p r ~ b l e m . ~ ~ . ~ ~  It is interesting to note that in the contrast 
to the case of random disposition of the atoms, the cause of 
the resonances here is diffraction by the periodic potential 
(25), which can lead not only to amplification (ify,y, > 0)  
but also to resonant attenuation (if y,y, < 0)  of the back- 
scattering. It appears that these effects can be observed not 
only in the distribution of the scattered neutrons, but also in 
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experiments on electron diffraction in crystals or of optical 
photons in layered structures. 

5. CONCLUSIONS 

A kinetic equation was formulated above for the parti- 
cle density in a crystal; the equation describes inelastic colli- 
sions without using the Born approximation in the problem 
of scattering by an individual atom or nucleus. The analytic 
solution obtained for the problem of spin incoherent scatter- 
ing and depolarization of neutrons in a thick crystal points to 
the possibility of using this equation to describe collisions of 
strongly interacting particles whose scattering is not easily 
analyzed by the known 

The author is indebted to E. E. Gorodnichev, D. B. Ro- 
gozkin, and M. I. Ryazanov for a discussion of the work and 
for helpful remarks. 

APPENDIX 1 

To prove the equivalence of expression (12) and Eq. 
(3.16) of Ref. 15, we rewrite the latter in our notation: 

where the prime in the second term denotes that it is neces- 
sary to exclude from the sum over the intermediate momenta 
in 9, all the vectors that differ from the incident-particle 
momentum p, by one of the reciprocal-lattice vectors. Con- 
sider the second term of (A. 1.1 ) : 

-SPO {po ( l f u + f a )  90 ( P a s f a )  } - (A. 1.2) 

h 

Since the operator 2, T, has nonzero matrix elements only 
with a momentum shift equal to the reciprocal lattice vector, 
and Sp, (p,?,) = 0, we readily obtain from (A. 1.2) 

Since most momenta that differ from p, by the reciprocal- 
lattice vector in all of mFmenJum space have zero measure, 
and the operator Sp,G,t, 9,t,) is not singular at the points 
of this set, the prime of the last sum in (A. 1.3) can be omit- 
ted). Substitution of the resultant expression in (A. 1.1 ) re- 
duces it to the form ( 12). 

APPENDIX 2 

To prove the validity of the total-probability conserva- 
tion law, we rewrite the kinetic equation in differential form. 
To this end we apply to the left and right sides of this equa- 
tion the operators G -' and (G -') + and subtract the ob- 
tained relations from one another: 

We sum the diagonal elements of this equation over the mo- 
mentum and spin projection of the particle: 

The use of cyclic permutation under the trace sign, and also 
of the estimate ( 9 ) ,  shows that the sufficient condition for 
satisfying (A.2.2) is 

1 f a + - f a -  
i f f  ,+Go+ l + G o F a  

Substitution of the definitions (6)  in ( 7 )  reduces (A.2.3) to 
the form 

It is easy to verify the validity of the last relation by compar- 
ing (A.2.4) with the unitarity condition for the scattering 
matrix (Ref. 20, p. 199 of the Russian translation): 

4 n  equation similar to (A.2.2), accurate to terms of order 
P, holds also for Eq. (21 ) . 
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