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It is shown that under certain conditions, viz., 1 ) in a strong magnetic field which compensates 
the intrinsic longitudinal field at the nucleus or 2) under the action of a transverse alternating 
magnetic field with a frequency equal to the Larmor spin precession frequency, a first-order phase 
transition to the magnetically ordered state takes place in the nuclear spin system of ferromagnets 
or antiferromagnets (in the second case, the ordering occurs in a rotating coordinate system). 
Long-range order in the lattice is due to the Suhl-Nakamura interaction which, under various 
conditions, constitutes different examples of the XYmodel with long-range exchange integrals. 
The magnetization and spectra of the nuclear spin waves in the new phase are calculated. The 
parameters for which the phenomenon can be observed are estimated. The feasibility of its 
experimental realization is discussed. 

1. INTRODUCTION 

The indirect Suhl-Nakamura interaction,',* which de- 
scribes the coupling of transverse components of nuclear 
spins by means of virtual magnon exchange, plays an impor- 
tant role in the theory of nuclear magnetic resonance 
(NMR) in magnetic dielectrics. NMR line-shape mo- 
m e n t ~ ~ - ~  as well as more subtle effects associated with corre- 
lations in the motion of nuclear spins at distances of the or- 
der of the interaction range (nuclear spin waves5-') are 
calculated in a relatively simple fashion on the basis of these 
interactions. We show below that under certain conditions 
the Suhl-Nakamura interaction in nuclear spin sytems may 
result in still another interesting effect: phase transition to a 
magnetically ordered state. 

Consider the Hamiltonian for a system of nuclear spins 
in a ferromagnet5: 

A is the constant of the hyperfine interaction between the 
nuclear spin I and the electron-shell spin S; His  the external 
magnetic field; Uy is the amplitude of the indirect interac- 
tion; w ,  = p, H + a k  is the frequency of a magnon with 
wave vector k; R, are the spin coordinates; Nis  the number 
of unit cells in the crystal; p ,  and p ,  are the gyromagnetic 
ratios for electron and nuclear spins. It follows from ( 1 ) that 
for A > 0 there exists a compensation point H, = A S / p ,  
where the internal longitudinal field at the nuclei (which 
usually determines their ground state) vanishes and the 
Suhl-Nakamura Hamiltonian, which is an example of an 
XY-model with a particular exchange integral, becomes 
dominant. At sufficiently low temperatures this indirect 
spin-spin interaction produces in the nuclear-spin system a 
cooperative effect, consisting of ferromagnetic ordering in 
the xy-plane. A similar, but somewhat more complicated 
situation takes place in antiferromagnetic nuclear systems. 

The Hamiltonian ( 1 ) describes also a magnetic sublat- 
tice formed by electron spins of rare-earth ions interacting 
with an ordered spin sublattice of iron ions, as in, for exam- 

ple, gadolinium iron garnets.' Thus, the results obtained be- 
low can be applied to this case as well. 

The problem can be reformulated in such a way that 
instead of a large compensating field, it may be sufficient to 
apply a transverse alternating magnetic field or small ampli- 
tude with a frequency equal to the frequency of Larmor 
precession of the nuclear spins. The phase transition to the 
ordered state of nuclear spins coupled by the Suhl-Naka- 
mura interaction takes place then in a rotating coordinate 
system." Ordering of nuclear spins in a weakly anisotropic 
antiferromagnet, in which the Suhl-Nakamura interaction is 
strengthen by the interplanar exchange, is of greatest inter- 
est in this case. 

It should be mentioned that the possibility of a transi- 
tion to a new nuclear spin state in magnetic materials near 
the region of internal magnetic field compensation was first 
pointed out by Tsifrinovich and Ignatchenko". In their ap- 
proach the problem was effectively reduced to calculating 
equilibrium configurations of nuclear and electron spins at 
the same site. This technique, naturally, excludes the possi- 
bility of analysis of collective effects in the system. A micro- 
scopic approach based on the indirect Suhl-Nakamura inter- 
action allows one to describe the complete picture of the 
transition of a system of nuclear spins into a new phase. 

2. EQUILIBRIUM CONFIGURATION OF NUCLEAR SPINS IN A 
FERROMAGNET 

Assume that all nuclear spins are in the xz plane and 
make an angle $ with the z axis. Then 

Ir=IjL sin $+rill cos $, Ijz=IjL cos $-I,' sin $, ( 2 )  

where < and r] are the quantization axes. Substituting this 
expression in the Hamiltonian ( 1 ) one can easily calculate 
an effective field acting on an individual spin. We set the 
transverse component of the field equal to zero and from that 
derive the equation for $: 

where Us,,, = Zf Ufl and ( I : )  = (I ) is the average spin po- 
larization determined by the field Hc.  Equation (3)  has the 
following solutions: 

1) sin +=0, (4a) 
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It is clear that when IAS - p,, H I > ( I  ) UsN only the first 
solution is valid. In this case tC, = 0 for H < H, and +h = a for 
H > Hc , while the polarization is 

where 

is the Brillouin function. 
In the parameter range where both solutions (4a) and 

(4b) exist, the energy minimum is achieved for the second 
solution, and then 

The phase transition temperature TsN is determined from 
Eq. (6) .  It is approximately equal to 

I ( I + l )  
k,TsN-fi----- U B N - f i  

I  ( I f  I )  A'S 
3 30" 

Note that this formula with allowance for wo-p,Hc coin- 
cides with a similar expression from Ref. 11. This is due to 
the fact that the exchange field HE does not enter in the 
amplitude UsN and therefore does not introduce the specific 
features of ferromagnetic ordering of electron spins. Never- 
theless expression (7)  describes the characteristic tempera- 
ture of the cooperative effect in a system of nuclear spins 
with large interaction radius rsN -a(H,/H, ) ' I2  (a is the 
linear dimension of the cell) .5 

Let us estimate TsN for the typical ferromagnet EuO 
(HE ~ 4 0 8  kOe) which contains 100% of either I5'Eu or 
' 5 3 E ~ ( I =  5/2). For typical values of parameters AS/ 
2n- 14 1 MHz, S = 7/2, ,ui5'/2a - 1.05 MHz/kOe and 
py3/2az0.465 MHz/kOe (Ref. 12) we get 
T s N ~ 2 . 2 ~ 1 0 - 6  K for Hc -134 kOe (Is'Eu) and 
TsN z K for Hc =: 303 kOe ( "3Eu). For comparison, 
the characteristic temperature for 15'Eu nuclear ordering by 
dipole-dipole interaction in the same lattice (a- 5.15 A )  is 
equal to TD zI(I + 1 )@pf /3a3k, ~ 0 . 7 5  X 10W8 K (Ref. 
9).  It must be noted that an infralow temperature in a nu- 
clear system can be achieved by means of adiabatic (i.e., fast 
in comparison with the nuclear spin-lattice relaxation time) 
switching-on of Hc . In this case nuclear spins can be consid- 
ered isolated from the lattice, and their temperature de- 
creases by comparison with the initial temperature by 
pa Hc/UsN -p, /p, - lo3 times. 

We derive the spectrum of the nuclear spin waves from 
the Hamiltonian ( 1 ) by expansion of the spin deflections 
using the Holstein-Primakoff approach. The part quadratic 
in the Bose operators has the following form: 

The procedure for diagonalization of this quadratic form is 
well known (see for example Ref. 13). In particular, the 
frequency of the normal oscillations is calculated from the 
formula 

Substituting the coefficients dk and a,, corresponding to 
the phase (4a), we obtain the known expression for the nu- 
clear-spin-wave spectrum (see Ref. 5). The excitation spec- 
trum in the new phase (4b) becomes 

A'S ( ;)"[ ( A S - ~ H ) ' ; ~ ] ' L  
Qk 5 - ( I >  I - -  1 -  - 

A'S ( I )  0 0  

It is clear that this is a gapless spectrum. In the compensa- 
tion point f lk a k, while when lcos $1  = 1 one has f lk a k 2.  

Note also that the upper point of the spectrum 
= A 'S (I )/m0lies in the region of relatively low frequen- 

cies ( - 100 kHz for EuO) . 
3. NUCLEAR-SPIN STATE NEAR THE COMPENSATION FIELD 
IN AN ANTIFERROMAGNET 

Let us consider a system of nuclear spins of a two-sub- 
lattice antiferromagnet in a magnetic field that almost can- 
cels the internal field at the nucleus. We assume that 
Hc > 2HE when the system of ordered electron spins of the 
sublattices {S,) and {Sf) are in a spin-flip phase in which 
the soft branch of spin waves is a spin flip (sf) mode with 
spectrum msf(k) = p, (H - 2HE ) + a k  (see for example 
Ref. 14). The effective Hamiltonian Xe, for nuclear system 
can be derived from the antiferromagnetic Hamiltonian 

by taking into account the indirect nuclear spin-spin interac- 
tion caused by exchange of virtual sf magnons only. As the 
result we have2': 

where q, = 1 if the indices j and j' refer to spins on the same 
sublattice and q, = - 1 in the opposite case. It is clear from 
( 11 ) that the Suhl-Nakamura interaction is the Hamilto- 
nian of a two-sublattice XY model with exchange integrals 
that contribute to ferromagnetic ordering of nuclear spins 
belonging to the same sublattice and to antiferromagnetic 
ordering of spins from different sublattices. 

Let us assume that all nuclear spins make an angle $ 
with the z axis in one sublattice and - $ in the other. Then 
the equilibrium condition in the mean-field approximation 
is: 

( S f )  

(AS-p,,H) sin $ - ( I > U s ,  sill $ CoS $=0, 

This equation is fully analogous to Eq. ( 3 )  for nuclear spins 
in ferromagnets, therefore formulas (4)-(6) are valid also 
in this case upon substitution of UgG for UsN. The phase- 
transition temperature is equal to 
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For the antiferromagnet MnSeO, ( TN z 20 K, HE - 200 
kOe) with 55Mn nuclei (I= 5/2, AS/~P-600 kHz, and 
H, -600 kOe) we get T$$? - lop4 K. 

The small-oscillation spectrum of a nuclear system in 
an antiferromagnet is determined by the following quadratic 
form: 

where a:, a, and b : , b, are the Bose operators of the spin 
deviations in the .(g} and if} sublattices, respectively. 

After the canonical transformation 

expression ( 14) separates into two independent parts 

a(;) = h z ( d k + @ k ) d k +  d k ,  

k 

from which the nuclear spin-wave spectra are easily found.,' 
The explicit form of these spectra for the new phase is: 

AZS ( I ) .  QZk = 2 -- 
u s ,  ( 0 )  

Just as in the ferromagnetic case, the low-frequency branch 
is not activated and at the compensation point we have 
nlk cc k. 

4. PHASE TRANSITION IN A ROTATING COORDINATE 
SYSTEM 

Let us consider nuclear spins in a ferromagnet interact- 
ing with an external magnetic field within a time much 
shorter than the spin-lattice relaxation time. The Hamilto- 
nian is then determined by the expression ( 1 ) and by the 
interaction energy 

where 20, =p, hq, q=AS/p,H is the gain,5 and h is the 
field amplitude. It is convenient to describe the nuclear spin 
system in a coordinate system that rotates around the mag- 
netic field direction with a frequency w. The transformation 
to such a representation is accomplished through the unitary 
operator U = exp( - iwt ZjIf) (see Ref. 9).  As a result the 
nuclear spin Hamiltonian in a rotating coordinate system 
does not depend explicitly on time and takes the form": 

It is clear that the longitudinal component vanishes when 
w = w, =AS - p,H. The field w,/p, then aligns the nu- 
clear spins along the x axis. The average polarization is de- 
termined by the equation 

Here T, is the spin temperature in the rotating coordinate 
system and depends on the initial conditions and on the man- 
ner in which S Z  ( 18 ) is applied. 

From (20), under the condition that w, 4 Urn ( I  ), 
which is equivalent top, h 4 A ( I  ), we get an expression simi- 
lar to (7)  for the nuclear-spin ordering temperature. An esti- 
mate of this temperature for EuO in a field H- 10 kOe gives 
TsN - 10W5 K, which is an order of magnitude larger than 
the estimate of the phase transition temperature in a strong 
compensating field. An additional decrease of the nuclear 
spin temperature by - (w, - w, )/UsN times compared 
with the lattice temperature can be accomplished by means 
of an adiabatic change of field frequency from initial value of 
mi to w,. 

The feasibility of experimental observation of the phase 
transition in a system of nuclear spins in a rotating coordi- 
nate system in weakly anisotropic antiferromagnets (e.g., 
RbMnF,,CsMnF,) or antiferromagnets with an easy plane 
anisotropy (MnCO,, etc.) is probably of greatest interest. In 
moderate magnetic fields the Suhl-Nakamura interaction in 
these systems is enhanced W, /wF ) 1 times compared with a 
ferromagnetic s ~ s t e m . ~ . ~  Here w, =p, HE and 

is the quasiferromagnetic spin-wave frequency, HD is the 
Dzyaloshinskii field, and H is the hyperfine-interaction 
parameter. If a constant magnetic field is directed along x in 
the crystal basal planexz, then, accurate to - 6 and (p, H / 
AS) (where 6~ ( H  + HD )/2HE is the electronic spin sub- 
lattice magnetization cant angle), the effective Hamiltonian 
of a nuclear system can be expressed as (see Ref. 18): 

where q, = 1 forj and j' belonging to the same sublattice, and 
q, = - 1 otherwise; 

The effective energy of interaction of nuclear spins with 
an alternating field h cos wt (hll2) can be expressed as 

ASu,  
8%=2hpef fh  cos ot (x g I; - f I f x ) ,  pef,=p.O -. 01: 
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Transforming the system described by the Hamiltonian 
(21 ) and (22) to a rotating coordinate system by means of 
the unitary operator 

we get the following effective Hamiltonian: 

It is easily seen that when w = w, -AS  and pe,h 4 osN (I ), 
where 

the antiferromagnetic-ordering temperature of the nuclear 
spins is 

The nuclear-spin-wave spectra in the new phase are 

It should be noted that a phase transition of a nuclear 
system must be accompanied by a sharp drop in the elec- 
tronic-magnon activation energy of,, in which the contribu- 
tion Hi proportional to the longitudinal magnetization of 
the nuclear spins vanishes. This results in a temperature hys- 
teresis typical of a first order phase tran~ition.~' 

Let us estimate "r,, for MnCO, (HE = 320 kOe, 
H ,  = 4.4 kOe, AS/2r  = 640 MHz, S = I = 5/2, pe H 
= 2HEA (Iz) ). For H = 0.5 kOe we get FsN =:30 mK. By 

comparison, the temperature of the reverse phase transition 
is about 100 mK. This temperature range can be achieved 
experimentally (see Ref. 19). The temperature of the nu- 
clear system can be lowered (as in the ferromagnetic case) 
by pulses of duration r ( T , < r g  TI, where T2 and T, are the 
nuclear spin-spin and spin-lattice relaxation times) at a fre- 
quency scan from w i  to w, . The rise time AT of these pulses 
must be short enough ( A r g  T2) to prevent heating of the 
nuclei. 

5. CONCLUSION 

In the earlier studies (Ref. 3-7,15,16,18 ) only the states 
of nuclear spins determined by the longitudinal field were 
considered, while the Suhl-Nakamura interaction played 
only the secondary role of establishing the correlations in the 
spin oscillations. This situation is, to a certain extent, analo- 
gous to a paramagnetic system with exchange interaction, 
located in a strong magnetic field. Naturally, there are no 
temperature anomalies in such a system: as temperature is 
lowered, spin polarization gradually increases, the thermal 

fluctuations subside, and the spin-wave region expands from 
the long wavelength spectral region. 

Conditions under whioh the behavior of nuclear spins is 
determined by the indirect Suhl-Nakamura interaction, 
leading to a phase transition into a magnetically ordered 
state, were investigated in the present work. The nuclear 
systems discussed are examples of a three-dimensional XY- 
model with long range (rsN )a)  exchange interaction. The 
long range of the interaction allows the utilization of the 
mean-field approximation, with results accurate of up to - (a/rsN ) 3 .  The nuclear spin-wave spectra in the new phase 
usually have frequencies much lower than the characteristic 
precession frequency of nuclear spins in a hyperfine field, 
and this allows study of these excitations in rf range. An 
important factor is the possibility of studying the discussed 
phase transition in a rotating coordinate systems by means of 
pulsed NMR methods. 

The author thanks A. V. Andrienko, V. I. Ozhogin and 
A. Yu. ~akubovski for helpful discussions. 

"See Refs. 9 and 10, where the theory of phase transitions in a rotating 
coordinate system was developed for a lattice of nuclear spins with di- 
pole-dipole interaction. In the laboratory coordinate system this effect 
constitutes a collective resonance of a nuclear spin system. 

"It is assumed that AS+, (H, - 2H, ) <p, H,. 
3)The nuclear spin-wave spectrum in a phase with sin $ = 0 was calculat- 

ed in Refs. 15 and 16. 
4)A similar effect should also be observed in cases considered above, but 

the hysteresis in them is small because of the small contribution of the 
hyperfine interaction to the electronic-magnon spectrum. 
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