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It is established that magnetization solitons can exist in thin ferromagnetic films, where account 
must be taken of the magnetodipole interaction. A nonlinear integro-differential equation is 
obtained for the description of the magnetization dynamics in the film. A solution for low- 
amplitude magnetic solitons is obtained for frequencies close to homogeneous resonance. It is 
shown that allowance for the magnetodipole interaction leads to a decrease of the degree of 
localization of the degree of excitation in the soliton produced only if the number of magnons 
bound in it exceeds a finite critical value. Soliton dynamics at low magnetization precession 
frequencies is investigated within the framework of the adiabatic approximation. Soliton 
properties in film samples and in bulk magnets are compared. 

Attempts are made at present in a number of laborato- 
ries to observe experimentally specific localized excitations 
of magnetically ordered media-magnetic solitons. In 
contrast to other well known localized excitations in mag- 
nets, such as domain walls, the existence and stability of 
magnetic solitons is determined by their internal dynamics 
and by the precession of the magnetization vector in them.4 
No general qualitative theory of such excitation has been 
fully developed to this day.4v5 The theoretically obtained so- 
liton properties that admit in principle of comparison with 
experiment are the dynamic structure f a ~ t o r , ~ "  absorption 
of a high-frequency field,' and the contribution of solitons to 
the thermodynamics of magnets.6r9 The greater part of the 
theoretical results, however, was obtained for the one-di- 
mensional case and without allowance for the magnetodi- 
pole interaction. Experiments, on the other hand, are per- 
formed mainly on high-Q iron-garnet film samples,'210 or on 
yttrium iron garnet (YIG) slabs, in which soliton dynamics 
in domain walls is ~tudied.~." In such a geometry, allowance 
for the demagnetizing fields becomes important, and in a 
number of cases decisive. This calls for the development of a 
theory of magnetic solitons in samples of finite size, particu- 
larly in magnetic films. 

Consider an easy-axis magnet film of thickness h, with 
the z axis normal to the film. We confine ourselves to the case 
when the magnetization distribution depends only on one 
coordinate and varies along the x axis. This geometry corre- 
sponds to the experimental conditions of Refs. 1, 2, and 11, 
and also to many studies of spin-wave generation by strip 
antennas in magnetic films (see, e.g., Ref. 10). To be specif- 
ic, we assume that the anisotropy axis lies in the film plane 
(this simulates the situation in a YIG) and is directed along 
they axis. We shall show below how the characteristics of 
low-amplitude solitons are changed by a different choice of 
anisotropy direction: along the x axis (corresponding to the 
experimental conditions in Refs. 2 and 1 1 ), or perpendicular 
to the film (as in magnetic bubble domains). The geometry 
of the problem and the orientations of the axes are shown in 
Fig. 1. 

The ferromagnet energy was chosen in the simplest 
form 

P - M," 
2 

where a and fl are the exchange and anisotropy constants 
(fl> 0 for the easy-axis case), M is the magnetization, and 
H'"' is the intrinsic magnetic field. 

We choose the boundary condition on the film surface 
in the form 

which admits of a magnetization distribution that is homo- 
geneous over the film thickness. The dependence of the mag- 
netization on the coordinatez can be neglected if the charac- 
teristic dimension A of the inhomogeneity distribution of M 
along the x axis is much larger than the film thickness h. It 
can be easily shown that the magnetization distribution over 
the film thickness is of the form M(z) mz2k33h, where 
k = l/A, which leads to the inequality kh< 1. For domain 
walls of width A on the order of the magnetic length I, = (a/ 
0) 'I2, the foregoing inequality reduces to h 4 I,. So strong an 
inequality is difficult to attain in contemporary magnetic 
films with low damping, although the relation h 5 1, can be 
satisfied in submicron magnetic-bubble films. 

Homogeneity of the magnetization over the film thick- 
ness is easier to achieve for dynamic solitons. It will be 
shown below that this condition reduces to satisfaction of 
the inequality h ( 1 - @/a,) ' I 2  4 I,. We have introduced here 
the symbol w, = Z( 1 + Q) ' I2  for the homogeneous ferro- 
magnetic resonance frequency. Without allowance for the 
magnetodipole interaction, the corresponding frequency is 
i3 = 2BM&,/CI. To facilitate a comparison of the results 
with the equations of Ref. 19, we use the notation Q = 4 ~ / f l .  
(To avoid misunderstadings, we note that Q usually denotes 

FIG. 1 
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the reciprocal quantity, called the quantity P /4r, called the 
quality factor of the magnetic film.) 

The inequality h ( 1 - w/w,) ' I 2  -4 I, can be satisfied even 
for thick films with h > I, if the precession frequency w,  of 
the vector M in the soliton is close to the resonance frequen- 
cy- 

Neglecting damping, the system of dynamic equations 
includes the Landau-Lifshitz equations and the magnetosta- 
tics equations: 

rot H("'=O, div (H("'+4nM) =0, ( 3  

where n,, is a unit vector along the anisotropy axis y. 
Account is taken in Eq. ( 2 )  of the fact that in the princi- 

pal approximation the vector M depends only on the coordi- 
nate x. Using the Green's function of Eqs. ( 3 ), it is easy to 
express the intrinsic magnetic fields H,,, in terms of the 
distribution of the magnetization M .  If the magnetization 
field gradients are small, kh  ( 1, the solution of the magne- 
tostatic problem takes the form 

where the standard notation is introduced for the Hilbert 
transform 

Measuring the time in units of l / Z  and the coordinates 
in units of I ,  we obtain for the magnetization unit vector 
m = M / M o  the integro-differential equation 

where y = Qh /21,. 
Let us find the dispersion law for linear spin waves in a 

film ferromagnet. Introducing the complex function 
Y = m, + im,, we linearize Eq. ( 6 )  in terms of the small 
deviations m, and m, of the magnetization from its ground 
state m = (0,1,0) 

In view of the simplicity of Hilbert transforms of geo- 
metric functions, it is easy to obtain the spin-wave dispersion 
law: 

m2=(l+k2+ylkl)(ao2+kz-ylkl). ( 8 )  

This expression coincides with the dispersion law ob- 
tained for ferromagnetic films in Refs. 12 and 13 in the limit 
k h  ( I , .  Allowance for the magnetodipole interaction and for 
the finite film thickness leads to linearity of w = w ( k )  for 
long waves: w2 = 0,' + y Q ( k )  in contrast to the dispersion 

FIG. 2. 

law for magnons in an unbounded  ample.^ At the ferromag- 
netic-resonance frequency the w = w, the spin-wave group 
velocity is V, = yQ /2 w,. The finite group velocity for k = 0 
is a consequence of neglecting retardation effects in the mag- 
netostatics equations ( 3  ). The obtained dispersion law ( 8 ) is 
plotted in Fig. 2a. Note that the function w = w ( k )  is linear 
in the interval kh  5 ( h  /10)210, and therefore the inequality 
kh  <Io used by us for thin films with h ( I ,  is valid both in the 
linearity region o - o,- I k I and in the region where the dis- 
persion law is essentially nonlinear. 

It is convenient to represent the obtained dispersion law 
in a coordinate frame moving at the spin-wave group veloc- 
ity V = dw/dk. Introducing the magnetization-vector 
precession frequency in a coordinate frame moving with 
group velocity = w - k V, the = ( V) dependence 
takes the form shown in Fig. 2b. The spin waves correspond 
to the parabolas AA, and the shaded region under these pa- 
rabolas corresponds to two-parameter magnetic solitons, 
i.e., localized magnet excitations that propagate with veloc- 
ity Vand are characterized by a magnetization precession of 
frequency a. It is interesting to note that the soliton exis- 
tence region is bounded not only by the spin-wave disper- 
sion-law lines, but also by a horizontal segment ( w  = w,, 
I V I < V,).  This distinguishes the case considered here from 
all the hertofore known situations, and we do not know the 
character of the corresponding solutions. The velocity-axis 
segment I V I < V ,  in Fig. 2b corresponds to the domain walls. 
Their dynamics is the subject of an extensive literatureI4and 
will not be considered here. 

We confine ourselves to immobile soliton excitations 
( V = 0 )  with positive magnetization-vector precession fre- 
quency ( w  > 0 ) .  Corresponding to such solitons is the fre- 
quency-axis segment O(w<w, in Fig. 2b. Unfortunately, Eq. 
( 6 )  can be solved only approximately in particular cases of 
low precession frequencies ( w  ( w ,  ) and of a small differ- 
ence between w and the frequency w,  of the homogeneous 
ferromagnetic resonance. 

In the limit w, - w ( a ,  the soliton amplitude is small, 
and an asymptotic solution procedureI5 can be used, choos- 
ing as the small expansion parameter the quantity 
E = ( 1 - d m o )  ' I 2  ( 1.  The magnetization components m, 
and m, can then be represented by the following double se- 
ries 

OD 

n,= 2 A, sin not, 
n=l 

ea = 2 en+zs, (9 
m, = J;1,' B, cos not, s=o 
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where 8' denotes summation over odd numbers. 
Accurate to c3, the coefficients in the temporal funda- 

mental yield equations for the functions A = A ,  and 
BE = B  1 : 

(10) 
Substituting in ( 10) the expansions of the functions A 

and B in powers of the small parameter E and expressing the 
frequency w in terms of ~ ( w  = wo - m , ~ ~ ) ,  we obtain equa- 
tionsfor a,, and b,, . Owing to the two-component character 
of the considered system, the asymptotic procedure of ob- 
taining the solution differs somewhat from that described in 
Ref. 15. The equations of first order in specify the connection 
between the functions a , ,  and b,, , viz., a, ,  = mobl,. The 
equations of third order in E contain besides the functions a , ,  
and b,, the coefficients a,, and b,, . The condition for the 
compatibility of the resultant two equations is set by the 
relation a,, = wob12 + F {b,,) and by the equation for the 
function b = b, , : 

Comparing the first terms of ( 1 1 ), two different cases 
can be discerned: db /dx 4 byQ / (2 + Q) and db /dx - byQ / 
(2 + Q). In the first case the term with the second derivative 
in ( 1 1 ) can be discarded; this corresponds to the so-called 
exchange-free interaction 

2 2002 
b (x) = f(b)l ba-- e2x, 

(1+oo2) Q Y 

and the function f ( 5 )  satisfies the equation 

d 
f-f" --gf=O. 

d t  

This equation plays apparently an important role not 
only in the considered magnetic problem, but also in the 
solution of a large group of nonlinear problems with planar 
geometry and volume interaction (see, e.g., Ref. 16). It is 
known that for local interaction, in the one-dimensional 
case, study of low-amplitude excitations leads frequently to 
the Korteweg-de Vries (KdV) equation or- to a modified 
KdV equation," depending on the degree of nonlinearity. 
For quadratic nonlinearity in planar problems with volume 
interaction, the KdV equation is replaced by the Benjamin- 
Ono nonlinear integrodifferential equation, which is com- 
pletely integrable. For self-similar solutions, the Benjamin- 
Ono equation reduces to Eq. ( 13) in which the term f is 
replaced by f '. In the case of a more symmetric, cubic non- 
linearity, low-amplitude waves on a plane can be considered 
within the framework of Eq. ( 13 ) . In particular, Eq. ( 13 ) is 
arrived at by consideration of magnetic solitons even for a 
different choice of the anisotropy-axis direction, and only 
the definition ( 12) of the function f and of the coordinate 6 
changes somewhat. If the anisotropy axis is perpendicular to 
the film plane (along the z axis), then 

FIG. 3. 

and if the axis is directed along x we have 

The soliton solution of ( 13) was obtained by a numeri- 
cal method. A plot off = f (6) is shown for it in Fig 3 
(curve 1 ) . For comparison, the same figure shows a self- 
similar solution of the Benjamin-Ono equation, correspond- 
ing to the substitution f 3+ f 2  in Eq. ( 13) (curve 2). Curves 
3 and 4 show the solutions of the corresponding local equa- 
tion for the one-dimensional problems 

with n = 3 (curve 3) and n = 2 (curve 4). 
The main feature of the considered soliton is the nonex- 

ponential (power-law) behavior of the asymptote of this so- 
lution at large distances ( f (%) a % -' as %+ f oc ) and the 
unusual, for low-amplitude solitons, dependence of the lo- 
calization-region size A on the amplitude &. In our case 
A -&c2, i.e., the soliton is more weakly localized than in the 
one-dimensional magnetic problems, where A - E -  ' (Ref. 
4). At the same time, comparison of curves 1 and 3 of Fig. 3 
shows that in a film soliton-one can distinguish between two 
regions: slowly decreasing asymptotes and a compact soliton 
core (more compact than in magnetic solitons without 
allowance for magnetodipole interaction). Note that a nar- 
row core is separated also in domain walls in ferromagnetic 
fiims.14 

If a magnetic soliton is regarded as a bound state of a 
large number of magnons, a weak localization of solitons in a 
film attests to a weaker coupling between them. It is interest- 
ing to note that in one-dimensional problems one encounters 
sometimes also solitons with power-law asymptotes (alge- 
braic  soliton^),^,^ but only at selected values of the soliton 
parameters. In these limiting situations the quasiparticle 
binding energy in the soliton is zero in any case. 

The final expression for the principal approximation of 
the solution for a magnetic soliton in a film can be rewritten 
in the form 

2e oo sin ot 

cos ot 

It follows from ( 14) that the inequality A >  h is satisfied 
for 1 - w/w0 4 ( Q /2wo) ', and the inequality db /dx (bey/ 
(2  + Q) for 1 - w/w0((h /10)2Q4/8w02(2 + Q). Whichof 
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these inequalities is stronger is determined by the parameter 
hQ /lo (2 + Q), the ratio of which to unity can in principle be 
arbitrary. If, however, the frequency w is close enough tow, 
it is possible to satisfy both inequalities, which ensure cor- 
rectness of our approximations. 

Let us find the number Nof magnons bound in a soliton. 
To this end it is necessary to calculate in the semiclassical 
approximation the adiabatic integral I = N/fi (Refs. 4 and 
5) : 

T 

d Mz 
d t  (Mo-Mu)- arctg - . ( 15) 

d t  Mz 

Substitution of ( 14) in ( 15) shows readily that as the 
soliton amplitude tends to zero ( a  -a,) its adiabatic invar- 
iant, and hence also the number of bound magnons, remains 
finite:. 

Computer calculations yielded .f f 'dl=: 2.49. Thus, the 
final expression for the number of bound magnons per unit 
length along they axis takes the form 

The presence of a limiting value of N as w - w, is remi- 
niscent of the situation for two-dimensional dynamic soli- 
t o n ~ . ~ . ~  In our case, however, expression ( 17) contains a fac- 
tor @, therefore the difference between the limiting value of 
Nand zero is due exclusively to allowance for the magneto- 
dipole interaction. Moreover, as seen from ( 17), the role of 
the characteristic volume occupied by the magnons in a soli- 
ton is assumed by h2. (In two-dimensional solitons, for 
which N(w,) ~ 5 . 8  (Mo/po)I$, an analogous role is as- 
sumed4 by lo2. 

The existence of a threshold value N(w,) seems to com- 
plicate the task of exciting magnetic solitons in films. 

To assess the stablity of the obtained solitons we must 
know the sign of the derivative dN/dw as w - w,. It can be 
determined if a solution exists for a low-amplitude soliton 
for one more frequency close to w,. 

Equation ( 11 ) was found to have an exact solution at 
the frequency 

It is easy to verify that for w = w, (i.e., for E = Qy/ 
[6( 1 + Q) (2 + Q) 1 ' I 2 )  this solution leads to the following 
expression for the magnetization in the soliton: 

47Q/L3(2+Q) (i+Q)"l {ao sin o.t } . ( 19) 
{ =  1+[yQz/3(2+Q)l2 cos o.t 

Of course, this solution is meaningful only if the in- 
equality 1 - w, /a, ( 1 is satisfied, i.e., for &( 1 (the condi- 
tion that expansion in terms of a small parameter be valid). 
This leads to the requirement y( 1 or h /I, ( 1/Q2. For films 
that are not too thin, this relation can be satisfied only in the 
case of strong anisotropy 0%4?r (Q( 1 ). If the condition h / 
I,( l/Q is simultaneously met, we arrive at the inequality 

A)h which was assumed by us initially (the latter can be 
easily verified by recognizing that the soliton width is 
A-I$/hQ2). 

Quasiclassical quantization of the solution ( 19) leads 
to the value of the number of magnons bound in the soliton: 

Comparng (20) with ( 17) we get N(o,) =: 0.6N(w, ) 
and hence dN /dw < 0 near the frequency a,. Although the 
proof of soliton stability requires a separate analysis in each 
specific case, in all the previously considered problems4s5 
such an inequality sign attested (for positive precession fre- 
quency) to stability of the dynamic solitons. 

We consider now the inverse limiting case-immobile 
low-frequency solitons. If w (w,, dynamic solitons in mag- 
nets can be regarded as bound states of two domain walls of 
opposite ~ i g n . ~ . ~  In a magnetic film, even in the case of uniax- 
ial anisotropy, allowance for the magnetodipole interaction 
leads to effective biaxiality of the crystal. It is known4 that 
domain walls bound in a biaxial ferromagnet into a dynamic 
soliton oscillate relative to each other. At low soliton fre- 
quency the distance between the domain walls exceeds for 
the greater part of the time the magnetic length, and individ- 
ual domain walls preserve their individuality in the course of 
the interaction. At w (w,, therefore, the problem of a soliton 
in a magnetic film can be solved in the adiabatic limit. It was 
indicated at the beginning of the article that the dependence 
of the domain-wall magnetization on the film thickness can 
be neglected only for extremely thin films with h (I,, a con- 
dition not yet met for YIG films. At low frequencies, how- 
ever, the damping becomes less significant, and when deal- 
ing with such solitons one can consider only films made of a 
material with large damping. In particular, the inequality 
h(1, is fully attainable for permalloy films,20 in which 
bound states of domain walls were observed in experi- 
ment.20'2' 

In the case of thin ferromagnetic films with h (I, we can 
use the smallness of the parameter y and regard the terms in 
Eq. (6)  which are proportional to y as a perturbation. We 
rewrite this equation in the form 

where 

Equation (21 ) describes, in the limit y = 0, the dynam- 
ics of magnetization in a biaxial unbounded ferromagnet. In 
this limit, the solution corresponding to a moving domain 
wall, using the angle variables ( $ 4 3 )  

m= (sin @.sin cp, cos 0, sin 0 .cos cp) (22) 

can be represented in the f ~ r m ~ . ~  
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where p, = const and 

(S is the topological charge of the domain wall). A domain- 
wall center with coordinatex, = V(p,) t + S moves with ve- 
locity 

dz, -- - V (cp,) = -sQ cos cp, sin cp,lx. 
at 

(25) 

The solution (23)-(25) is characterized by two arbi- 
trary parameters, p, and S. Allowance for the magnetodi- 
pole interaction (i.e., of the right-hand side of Eq. (21)) 
leads to a change of the structure and dynamics of the do- 
main walls. For a small perturbation ( y 4 1 ) this change can 
be taken into account in the adiabatic approximation. It re- 
duces to the assumption that in response to a small perturba- 
tion the solution (23 )-(25 ) retains its functional form, but 
p and 6 become slowly varying functions of time. In this case 
the role of the perturbation is played by the action exerted on 
the given domain wall by the second wall bound with the 
given one into a soliton pair. Inasmuch as in the domain wall 
(23)-(25) the deflection of the magnetization vector from 
its basic state decreases exponentially as the distance from its 
center increases, we can regard, in the principal approxima- 
tion, two domain walls with centers separated by a distance 
L that exceeds greatly the width A - l /x- 1 of each of them 
(in dimensional units L )  I,), as practically noninteracting. 
At large distances the weak interaction between the walls is 
determined mainly by a nonlocal magnetodipole interaction 
with a power-law decrease. It will be shown below that this 
interaction is decisive up to distances L - I, ln(Qh /Io). The 
interaction between the domain walls leads to formation of a 
weakly bound state of two walls with topological charges 
s = 1 (low-frequency soliton), in which the walls retain 
their individuality and oscillate about the common centroid 
at a frequency w 40,. 

Let us examine the simplest case of a low-frequency 
soliton with an immobile centroid. The magnetization in this 
soliton precesses in phase at all points of the sample, i.e., p is 
independent of coordinate.4s5 If the center of the soliton is at 
the origin (x = O), the soliton solution takes in the adiabatic 
approximation the form of two domain walls of type (23)- 
(25) with s = 1, symmetric about the origin at the points 
f x,, i.e., the soliton size is L = 2x0): 

In Eq. (26), x,(t) = ~ { p ( t ) ) t  + S( t )  and 

V {  y )=-sQ sin cp cos ylx (9) .  (27) 

The slowly varying functions S(t)  and p ( t )  are deter- 
mined from the so-called adiabatic equations. To find them, 
we consider small increments to the adiabatic approxima- 
tion: m = ma, + Sm. The function Sm is small to the extent 
that the parameter y is small and satisfies the linearized 
equation 

in which the smallness of the right-hand side is due to y and 
to the slow evolution of the adiabatic parameters p and S. 

The evolution equations for them are obtained from the con- 
dition that the right-hand side of the inhomogeneous equa- 
tion (28) be ortkogonal to the eigenfunctions of the homoge- 
neous equation Lp = 0 (Ref. 22). 

We rewrite Eq. (21) in terms of the angle variables 
(22) : 

where the nonlocal term Wis given by 

1 ax' W=--Jdzf-{!??@ m* (x') - - am,(x) 
2n x'-x a5 dx 

m,(x/)}. 

Since the distance between the domain walls L is as- 
sumed to be large (L % A), the overlap of the fields of the 
individual walls is exponentially small in the principal ap- 
proximation. We can then consider in Eqs. (29) separately 
the solutions for each of the domain walls, taking the pres- 
ence of the other wall into account only in the nonlocal term 
(30). 

We seek the solution for each of the walls in the form 

Substituting these equations in (29) and linearizing them in 
the small increments 8, and p,,  we obtain a system of two 
linear differential equations. It is convenient to rewrite them 
in the form of one vector equation 

for the column vector @ = col (8,p, ). In Eq. (32) the row 
vector r is of the form 

6W a 
sin 0,.6, y - - sin 0, - 

69 0 5 
b ) ,  (33) 

h 

and L is a linear differential operator whose elements are 
functions of 0, and p,: 

Liz = sin 8. (Q cos 0, sin 29. + - 
(34) 

Q cos 0, sin 2rp0 - - 

Lz2=Q sinZ Oa cos 2qo. 
A 

The homogeneous equation L@ = 0 has the following 
two linearly independent solutions: @, = col(d8,/dx, 0)  
and @, = col (dO,/dp, 0).  The physical meaning of these so- 
lutions is clear. The first (@,) corresponds to a small shift of 
the domain-wall center (i.e., to a shear mode) and the sec- 
ond (a,) to a small change of the azimuthal angle (i.e., of 
the domain-wall velocity). It follows from the solution 
(23)-(25) that d8,/dx = x sech x (x  - x,) and doo/ 
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d p =  (Vx+Qcos2pt)  sechx(x-x,). 
In the case of an immobile soliton centroid, p is inde- 

pendent of the coordinate and we have for a domain wall 
with center at the point x = x, 

6 W  
-iP 

a 
68 

cos 2cp cos Or - g sin 8, 
ax 

6 W  
-= 

d 
-sin 2cp sin 8 ,  - g sin 8,  

6~ ax 

where 0, = OO(x - x,) is the solution (23), (24) for a wall 
at the point x = x,, while 0,(x - x,) + B,(x + x,) is the 
adiabatic approximation (26), (27) of the solution for two 
domain walls with coordinates x, and x,. The orthogonality 
conditions ( a , .  T )  = (a,. T)  = 0 yield adiabatic equations 

for p and S. Taking the obvious relation sin B,(dB,,/ II. 
dx)dx = 2 into account, they can be represented in the form 

We confine ourselves to the simplest case of a strongly aniso- 
tropic magnet with Q( 1. In this limit we have x z  1 and 
V- Q 4  1. The second term in the right-hand side of (37) can 
therefore be omitted. We introduce the variable 5 = x - x,, 
reckoned from the center of one of the domain walls. If the 
latter is chosen to be a wall with topological charges = f 1, 
i.e., the left-hand side in the soliton, we have for it x, < 0. In 
this case the soliton dimension is L = - 2xo = - 2 Vt - 26. 
We take into account the symmetry of the function 0,(5) 
and rewrite Eqs. (36) and (37) in the form 

w 

dL d 
-- - a sin 2q+y sin 2 9  1 sin O0 ( 6 )  - 8 sin [ H o  (c- L) 1. 

d t  - - 36 

where 
m m 

7 a sech 4' Q=Q+- d4sechq-5 dql--. 
d q  -rn 4'-4 

(39) 
-m 

The renormalization of the constant Q takes into ac- 
count the weak change of the domain-wall structure by self- 
action via the magnetic field. 

To estimate the integrals in (38) for L ) 1 (L)  1, in 
dimensional units) we can replace approximately 
sin{B,(g - L ) )  = sech x (g  - L )  by d ( 5  - L )  and obtain 
a final expression for the adiabatic equations: 

@ -= 
1 

-ny - cos 2v, 
dt  L3 

d~ a - = (?+nr -) sin 2.. 
dt  tz 

To investigate the dynamics of a magnetic soliton there 
is no need to solve this system of equations. It is easy to verify 

that (40) and (41) are Euler equations for the following 
effective Lagrangian (written in the initial dimensional 
units) : 

The effective Lagrangian (42) can be obtained also directly 
from the exact Lagrangian of the initial system (see Ref. 4): 

with an energy Egiven by Eq. ( 1 ). The transition from (43) 
to (42) corresponds to the known Slonczewski procedure.23 
The individual terms in the effective Lagrangian (42) have a 
clear physical meaning. The "kinetic" term is proportional 
to L (dp  /at) and is obtained from the first term of (43) if it is 
recognized that the length of the remagnetized region, in 
which the difference M, - My z2Mo differs from zero is 
equal to L. Thequantity hM:(&) '/'o cos 2p describes the 
energy change of the two domain walls in a biaxial ferromag- 
net when the azimuthal angle p is varied (i.e., when the 
Bloch domain walls change into N6el walls). In this case the 
additional magnetic anisotropy in the xz plane, character- 
ized by the parameter 0, is induced by the magnetodipole 
interaction. The "difficult" axis is z, as is customary for thin 
films with h ( I , ,  in which the minimum energy is possessed 
by a Ntel wall with the magnetization rotated in the plane of 
the film.14 Finally, thelast term in (42), proportional to ( I o /  
L)*, describes domain-wall interaction via their intrinsic 
magnetic fields. Owing to the long-range character of this 
interaction, the dynamics of the domain walls bound in the 
soliton differs from that in an unlimited biaxial ferromag- 
net.4 

Since the system is conservative, its total energy is con- 
stant, being an integral of the motion. An expression for the 
energy is easily obtained by the usual rules from the effective 
Lagrangian (42 ) : 

E=2E0(cp) h+MoZ(ap)"2 h cos 2cp.ny (1,lL)' 

where E, = a( 1 + COS' p) is the domain-wall energy in 
the biaxial ferromagnet and a = 2MO2(afl)"'. Equation 
(44) differs substantially from the expression for the energy 
of a magnetic soliton in a biaxial-ferromagnet slab of thick- 
nesss h, without allowance for the magnetodipole interac- 
tion4: 

E=2E0 ( 9 )  h-ho exp (-LIZo). (45) 

It is seen from a comparison of (44) and (45) that the 
domain wall interaction via the magnetic fields, which de- 
creases following a power law, becomes comparable with 
their interaction via overlap of the exponential asymptotes 
(without allowance for the magnetodipole term) at dis- 
tances L - L, = l,,~ln( oh  / I , )  1. If the magnet has strong ani- 
sotropy (04 1 ) and its thickness is small (h (lo) this dimen- 
sion exceeds substantially the magnetic length lo. It is seen 
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from (44) that the magnetodipole interaction of domain 
walls depends strongly on the angle p. For in-phase rotation 
of the magnetization, Bloch walls with p = 0 repel one an- 
other, while NCel walls (with p = + n-/2) attract. Corre- 
sponding to low-frequency solitons are coupled domain 
walls that are separated in the course of the oscillations by 
large distances. The total energy of such solitons differs 
therefore little from the energy of two solitary NCel walls: 
0 < 2uh - EEg. In place of the energy E it is convenient to 
parametrize the degree of soliton excitation by the values L, 
of the maximum distance between the oscillating domain 
walls. This parameter is connected with the energy by the 
relation E = 2ah ( 1 - yn-lO2/4L, 2).  From (44) follows also 
a connection betwen L and p: 

where A = n-yl$/Z) = (A /2)hlo. In the case of thin films 
with h <lo, the resultant characteristic parameter with the 
dimension of length is A <  I,. For large distances between the 
walls, L)Io, Eq. (46) simplifies to L /L, z [ 1 + 2Lm2. (n-/ 
2 - p)'/A2] -'I2. Thus, when L changes from L, to the val- 
ue L, up to which an analysis within the framework of Eqs. 
(40) and (41 ) is valid, the angle p changes little near p = n-/ 
2, and deviates from n-/2 by an amount - (h /I,) -'I2/ln(Qh / 
I,) 4 1. At smaller distances L < L, the rotation of the mag- 
netization continues and reaches the angle p = 0 at the clos- 
est distance L = L, between the domain walls, at which both 
are pure Bloch walls. The value of Lo can be easily estimated. 
For L < L, we can use expression (45), from which we find, 
for E=:2ah (at p = 0), that L,-l,ln( l/Q), i.e., for thin 
films with h < 1, we have indeed Lo < L, . 

Thus, the minimum size of a low-frequency soliton in a 
thin film is the same as in a bulk sample, but the maximum 
size differs substantially, and this leads to specific relations 
for the number of magnons bound in the soliton and for its 
frequency. The difference manifests itself at low frequencies, 
when L, )L, (the corresponding estimate for the frequen- 
cies will be given below). In this limit, the main contribution 
to the integral characteristics of the soliton (such as the 
number N of magnons and the period T) yields that part of 
the oscillation period in which the distance betwen the walls 
is large: L - L, and Eqs. (40) and (41 ) can be used. 

We carry out a semiclassical quantization of low-fre- 
quency solitons and calculate the dependence of their fre- 
quency on the number N of bound magnons. The adiabatic 
invariant ( 15) can be approximately represented in the form 

and the number of the bound nucleons is then 

Substituting in (47) expressions (40) and (41 ) for d p  / 
dt and dL /dt and using (46), the resultant integral is easily 
evaluated and the relation N = N(L, ) obtained: 

Since Eqs. (40) and (41 ) can be used only for L > L, , 
the result (48) is valid for L, )Li/L,, i.e., for 
L, 910[ln(Qh/I,)12/11n Ql. 

The domain-wall oscillation frequency corresponding 
to a specified energy or a specified value L, can be easily 

found by calculating the oscillation period T = 4 dL / lm 
(dL /dt). Substituting expression (41 ) for dL /dt in dimen- 
sional units into the integral, we obtain 

It follows hence that the soliton oscillation frequency is 

It follows from the foregoing estimates for the allowable 
values of L, and from (50) that the results are valid at very 
low frequencies 

For Q- 1 and h -Io, however, they can be used as estimates 
if the weaker inequality wgw, is satisfied. Equation (50) 
differs substantially from the corresponding dependence for 
an unbounded biaxial ferromagnet, in which w/ 
o , - ~  'I2 exp( - L,/I,) (Ref. 4). 

Comparing Eqs. (48) and (50) we can reconstruct the 
sought dependence of the number of magnons bound in a 
soliton on its frequency: 

We note first of all that as w -0 the number N of bound 
magnons increases without limit, in contrast to a soliton in 
an unbounded biaxial ferromagnet, where it is finite as w -0 
and is equal (recalculated to the thickness h)  to (Mo/ 
p,) x hl, In Q (Ref. 4). On the other hand, relation (5 1 ) is 
close to the corresponding relation for an unbounded uniax- 
ial magnet, for which No- (Mo/po) x hlolln(w/wo) I. These 
values, however differ by a factor (h i.e., NgN,. 

The asymptotic values of the function N = N(w) as 
w - 0 and o + w, make it possible to determine qualitatively 
the function N(w) in the entire frequency range 0 < o < w,. 
It is shown by curve 1 of Fig. 4. For comparison, curves 2 and 
3 are plots of N = N(w) for solitons in an unbounded easy- 
axis and biaxial ferromagnet. Curve 4 corresponds to radial- 
ly symmetric two-dimensional solitons without allowance 
for the magnetodipole interaction. 

FIG. 4. 
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We can draw thus the following conclusions. Magnetic 
films, just as in unbounded samples, retain an ability to con- 
tain dynamic magnetic solitons. In films, however, solitons 
have a number of peculiarities: they are less localized and are 
formed by binding of a finite number of magnons; this com- 
plicates the problem of exciting such solitons. 

In conclusion, we thank K. V. Maslov for help with the 
numerical calculations, L. Yu. Gorelik for numerous discus- 
sions, and B. A. Kalinikos and V. I. Nikitenko for providing 
experimental data on the dynamics of magnetic solitons. 
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