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A new method is proposed for a theoretical analysis of multisublattice magnets. In certain cases 
the method makes it possible, by an exact mathematical procedure, to decrease effectively the 
number of magnetic sublattices and thereby simplify considerably the development of both a 
linear and a nonlinear theory of spin waves. The capabilities of the method are illustrated by a 
calculation of the magnon spectrum and of the antiferromagnetic-resonance frequencies in 
MnCI, (NH,), (CH,), in the cubic phase of uranium compounds of type UX, . A theory of 
orientational phase transitions in UX, is constructed with the aid of this method. The energy and 
structure of domain walls in the cubic phase of UX, are calculated. A criterion for the degeneracy 
of the magnon spectrum on the whole surface of the Brillouin zone is formulated. 

1. INTRODUCTION 

Practically all magnetically ordered crystals have sev- 
eral atoms per unit magnetic cell, i.e., are of the multisublat- 
tice type. Examples are rare-earth orthoferrites with 8 mag- 
netic sublattices, rare-earth iron garnets with 32, the popular 
antiferromagnet CuC1,.2H2O with 4 sublattices, and many 
other. The microscopic theory of a magnet having more than 
two magnetic atoms per unit cell is technically extremely 
complicated. Considerable difficulties are encountered even 
in the problem of finding the spectrum of the elementary 
excitations. of such a magnet, let alone analysis of nonlinear 
processes. These circumstances make it urgent to develop 
symmetry methods that simplify the theoretical analysis of 
multisublattice systems. 

The use of symmetry methods in the theory of magneti- 
cally ordered crystals was started in Refs. 1 and 2. The main 
idea of these papers was a change from sublattice magnetiz- 
ations to their linear combinations that transform in accor- 
dance with irreducible representations of the symmetry 
group of the crystal's paramagnetic phase. Many results in 
the theory of static, high-frequency, optical, and other prop- 
erties of magnets were subsequently obtained along these 
lines. Notwithstanding the appreciable progress achieved by 
following Refs. 1 and 2, however, the technical difficulties in 
the case of multisublattice magnets are still quite great. 

Additional possibilities in the theory of magnetically 
ordered crystals are uncovered by color symmetry,3v4 which 
admits of independent transformations of the space and spin 
variables and a symmetry of approximate theoretical mod- 
els. Color symmetry is described by spin space (color) 

We shall be interested in the present paper in color sym- 
metry because it permits extension of the translational-sym- 
~%try^concept. It waszhown in Ref. 4 that operations of type 
TU ( T-translation, U-rotation in spin space) generate an 
Abelian subgroup cf a spin space group, and this subgroup is 
isomorphous to the translation group. It was proposed in 
Ref. 3, and later in Ref. 4, to use this group to calculate the 
energy of stationary states in magnetic spirals and to classify 
their stationary state. 

A A  
1% the present paper we propose, on the basis of the 

TU- T isomorphism, a method that permits to lower effec- 
tively in certain cases, by an exact mathematical procedure, 

the number of magnetic sublattices and thereby simplify ap- 
preciably the development of a linear as well as nonlinear 
theory of multisublattice magnets. 

2. EXTENDED TRANSLATIONAL SYMMETRY IN SPIN-WAVE 
THEORY 

We consider first a magnet in which multiplication of 
the unit cell takes place on going from the paramagnetic to 
the magnetkally ordered phase. In other words, let the 
translation T be contained in the symmetry group of the 
paramagnetic phase and be absent from that of the magneti- 
cally-ordered phase. The igitial Hamiltonian of the magnet 
is, of course, invariant to T. In the de~elopment of a spin- 
wave theory, linear or nonlinear, the T-invariance is lost. 
The reason is that spin-wave theory is a theory of small oscil- 
lations about the ground state. The symmetry of the ground 
state is that of a magnegcally ordered phase, and conse- 
quently does not contain T. In practice, in development of a 
spin-wave theory it is customary to change to local coordi- 
nate frames for the atomic spin moments, i.e., to frames 
whose Z axis coincides with the direction of the spin in the 
ground state. The Hamiltonian, as a fun%tion of local spin 
coordinates, loses in the general case the T invariance. This 
makes it necessary to introduce several magnetic sublattices 
and quasiparticles of different species even if the unit cell of 
the initial paramagnetic phase contains one magnetic atom. 
The ensuing technical complications are obvious. 

In addition, one can imagine a situation in which the 
translational symmetry is raised on going to local spin co- 
ordinates: the Hamiltonian becomes invariant to a transla- 
tion absent in the paraphase group. For example, as will be 
made obvious below, this is possible in models of a magnet in 
which the symmetry element is a screw axis or a slip plane. 
Allowance for the additional translational symmetry in such 
a case would noticeably simplify the development of a spin- 
wave theory. 

It is thus logical to raise the question of how the transla- 
tional symmetry of a spin Hamiltonian changes, under var- 
ious conditions, on going to local coordinate frames in spin 
space. An answer to this question is the following lemma. If 
the spin Hamiltonian an2jts groun? state are invariankto 
the symmetry operation TU, where Tis translation and Uis 
rotation in spin space, then the Hamiltonian as a function of 
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the local spin coordinates is invariant to T. To prove the 
lemma we consider a magnet with a Hamiltonian 

A h  

that is invariant to TU. The subscripts n and m in ( 1 ) num- 
ber the magnetic atoms, the superscripts a,p = x, y, z num- 
ber the spin components, S are the spin-projection opera- 
tors, and A$, is the inte~action-constants matrix. The 
~c t ion  of the translation T is  ̂the atom rearrangement 
TJr, ) = r, +, . The action of U is rotation inAs~in space 
( US, )" = U,,S E. Invariance to the operation TU imposes 
then on the coefficients of Hamiltonian ( 1 ) the condition 

We introduce local coordinate frames for the atoms n 
and m. Then 

where 4 and u: are the spin projections on the axes of the 
local systems, while N,, and Mgv are the matrices of the 
transformation from the crystallographic coordinate frames 
to the local ones. We introduce for the atoms n 1 and 
m + 1 coordinate frames obtained by the rotation U from 
the local frames of the nth and mth atoms, respectively. 
Since the conditions ~lf^the lemma presuppose invariance of 
the ground state to TU, these frames will be local for the 
atoms n + 1 and m + 1: 

The Hamiltonian of the interaction of the (n + 1)st and 
(m + 1)st atoms takes the form 

a v 
= A ~ ~ ~ , , , + ~  ( O - i ) a i  (U-')sJNiaMjv(~n+i(~m+i. 

Taking (2)  into account, we have 

H n + i , m + i  = A,$,U~,U,~ ( O - ' ) , i  ( 0 ) s j ~ i * ~ ~ v o , 6 + 1 o n ~ + 1  

The Hamiltonian of the interaction of the nth and mth atoms 
is 

as 
H n , m = A n , r n N a ~ M ~ v ~ n ~ ~ m " .  (4)  

It is obvious from a comparison of (3)  and (4)  that in the 
local coordinate frames 

This proves the lemma. 
Note that we used in the proof not arbitrary local 

frames, b~ksuch t h a ~  are transformed into each other by thz 
action of TU. Each T translation is accompanied here by a U 
rotation of the coordinate frames. The lemma is therefore 
valid only for just such a choice of the local spin coordinates. 

Allowance for this remark makes obvious a method for 
a theoretical analysis of models of multisublattice magnets 
with properties that meet the conditions of the lemma. In 
this method, which can naturally be calk2 the method of 
extended translational symmetry (ETS) , TU-invariant local 

frames are chosen and the ensuing translational symmetry is 
successively used. 

A h  

We emphasize once more that TU invariance, and 
hence the possibility of using the ETS method, is obtained 
for definite model-dependent approximation. 

In this connection, the exchange approximation6.' is 
worthy of a separate consideration. The exchange Hamilto- 
nian is invariant to any rotation in spin space, so that in the 
exchange approximation the translational symmetry re- 
mains unchanged on going over to local spin coordinates. 

In addition, from the standpoint of the ETS method, 
interest attaches to low-dimensionality models. The point is 
that in such models the conditions of the lemma are relaxed. 
For a one-dimensional chain it suffices to stipulate invar- 
iance of the Hamiltonian and of the ground state relative to a 
screw axis. Only if the positions of the magnetic atzFs of the 
chain lie on a screw axis does its,a,ction reduce to TU. In the 
general case a screw axis is not TU, since it contains besides 
rotation in spin space also rotation of the atom coordinates. 
For one-dimensional models, however, only one coordinate 
is important, the one of the atom position along the chain. 
Variation of this coordinate by the action of a screw axis is 
translation. As applied to one-dimensional systems, the 
lemma can therefore be reformulated as follows. 

If the Hamiltonian and the ground state of a one-dimen- 
sional magnetic chain are invariant relative to the screw axis, 
the Hamiltonian, as a function of the local spin coordinates, 
is invariant to the translation accompanying the screw axik 

For two-dimensional moments, the invariance to TU 
can be replaced by invariance relative to a slip plane. 

3. SPIN WAVES IN URANIUM COMPOUNDS 

To illustrate the foregoing considerations we consider 
antiferromagnetic crystals of UO, and of the compound 
UX(X = N, P, As, Sb) that has been attracting interest of 

We designate these crystals by UX,. The space sym- 
metry of UX, is described by the group 0 - Fm3m. The U 
atoms are located at inversion centers and form a face cen- 
tered cubic (fcc) lattice. The corresponding Hamiltonian is 

I- D (S,") ( & ! I )  ( S n 2 )  '1. ( 5 )  

The unit cell of the paramagnetic phase contains one mag- 
netic atom, the U atom, and the Hamiltonian (5 )  is invariant 
to the fcc lattice translations T, = (0, a/2, a/2), ry = (a/2, 
0, a/2), T, = (a/2, a/2,O), where a is the length of the edge 
of the face-centered cube. The subscript n numbers all the 
magnetic atoms. The subscripts m, I, and t number the 
neighbors of then atom from the first coordination sphere in 
the planes YZ, ZX, and XY, respectively. The subscript n' 
numbers the neighbors of the atom also from the second 
coordination sphere. 
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FIG. 1. 

In the UX, model it is of primary importance to take 
into account interactions of fourth order in the powers of the 
spins.'' If only quadratic interactions are considered, the 
ground state of (5)  becomes continuously degenerate with 
respect to a definite spin orientation in the magnetic cell. 
This degeneracy was lifted in the theoretical papers1'-l4 de- 
voted to UO, by using a model with biquadratic exchange. 
This is natural, since the exchange interaction is the stron- 
gest in the hierarchy of magnetic interactions. In heavy mag- 
netic atoms such as U, however, the spin-orbit interaction is 
substantial, so that one-ion anisotropy is taken into account 
in (5) in addition to biquadratic exchange. 

We consider below spin waves only in the cubic noncol- 
linear phase of UX, (Ref. 12). The cubic phase has the sym- 
metry group Pn3mf. The corresponding magnetic unit cell 
contains for magnetic atoms or four crystallographic cells 
(see Fig. la) .  The numbers 1,2, 3, and 4 in the figure desig- 
nate the magnetic sublattices distinguished in the cubic 
phase. 

Spin waves in the cubic phase of UO, were investigated 
by the traditional approach in Ref. 13. The Hamiltonian 
used there differed from (5)  only in that the latter takes into 
account one-ion anisotropy but lacks the biquadratic ex- 
change that connects triads and tetrads of atoms. In addi- 
tion, the Hamiltonian of Ref. 13 is written in a form that 
explicitly postulates the presence of four magnetic sublat- 
tices. There is no need for this in principle, since the unit cell 
of the paraphase contains one magnetic atom, a circum- 
stance taken into account in (5) .  

From the standpoint of the ETS method it is remark- 
able that the Hamiltonian ( 1 ) is invariant to the translations 
T, , T,, T, , and also to 180" rotations C,, , C,, , C,, in spin 
space around the the axes X, Y, and 2. 

The ground state of the cubic phase is invariant to the 
operations T, C2,, T~ CZy  , CZr . Therefore, according to the 
lemma, one can choose the coordinate frames for the spin 
moments in such a way that the Hamiltonian remains invar- 
iant to T,, T,, , 7,. In the unit magnetic cell the spin of the 
sublattice 1 is connected with the spins of sublattices 2, 3, 
and4by theoperations~, C,, , T, C,, , T, C,, . Weshall there- 
fore use for the spins of sublattice 1 the initial crystallo- 
graphic coordinate frame, and introduce for the spins of sub- 

lattices 2 , 3, and 4 coordinate frames obtained from the 
crystallographic by rotations around the axes X, Y, and 2, 
respectively. 

We call these coordinate frames comoving. We note 
that comoving frames are not local in the sense that their Z 
axes do not coincide with the directions of the spins in the 
ground state. In the ground state, however, the projections 
on the axes of the comoving systems are the same for all 
spins. This is ensured by the fact that the systems are rotated 
by ground-state symmetry operations. If a transition is made 
for the spin of sublattice 1 from the crystallographic frame to 
the local one, the comoving frames for the remaining spins 
become automatically local. 

Following the change to the comoving frame, the Ham- 
iltonian (5)  takes the form 

5' + ,{G ((on")4 + (o,~')' + (onz) ') + D ( ~ n X ) 2 ( ~ n " ) L ( ~ n 2 ) ' ) .  
n 

(6) 
In the Hamiltonian (6) ,  8 are the operators of the pro- 

jections of the spin magnetic moments on the axes of the 
comoving systems: 

Thus, the Hamiltonian ( 6 )  and its ground state are in- 
variant to the translations T,, T,,, T, ,. Its analysis can be 
continued in the usual manner, by starting from one sublat- 
tice, and if necessary constructing a complete nonlinear 
spin-wave theory. In the present section we solve two prob- 
lems: we obtain the spin-wave spectrum and the antiferro- 
magnetic-resonance (AFMR) frequencies. 

The ground state of (6)  is given by 

where S is the spin. This is the known result that in the 
ground state the spins of UO, cubic phase are oriented along 
the body diagonals of a cube. 

After a change to Bose operators and a Fourier trans- 
formation we obtain in the momentum representation the 
Hamiltonian component quadratic in the Bose operators: 

H,  = (AkBkfbk + 1/2Bkb.b-k + ' / ,B,.b,+b-,+I.  
k 

Ah=&' [8/3GS2-C/'gDS4+I0 ( 1 - y k )  +Jo+Lo+2QoSL 
-113(Jo+Lo-'0/l,QaS2) ( / - ~ k + ~ l . g k + ~ i k )  I . 
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where 

Io/I=6,  Jo/l=LoIL=QolQ=4, 
1  ak ,  ak ,  

yk  = -(COS ak, + cos ak,  + cos a k , ) ,  p., = cos - cos - , 
3 2 2 

( 9 )  
ak ,  ak, ak, ak ,  

pyk = COS C O S  - 
2 2 '  2 2 

p2k = C O S C O S .  

We obtain the spin-wave spectrum by the usual procedure of 
diagonalizing H ,  : 

cC2 (k)  =S2 [8/3GS2-L/gDSL+Jo+Lo+2Qo+Io (1-YA) 
-'I, (Jo+Lo-i0/3Q~S2) ( ~ x k + ~ v k + @ z h )  I 

-S2 ' I g (  Jo-'I,Lo+2/3QoS2) 2 (  kzkZ+~~gA2+~zk2 

- ~ u k ~ z h - ~ z k ~ x k - ~ l k ~ U k ) .  (10) 

We consider now resonance interaction between an ex- 
ternal high-frequency field and spin waves. To obtain in 
closed form a theoretical scheme for this interaction in the 
framework of the ETS method, it is necessary to describe the 
magnetic field acting on the spin and the spin itself in one 
and the same coordinate frame. Therefore, to describe the 
high-frequency field we use the comoving coordinate frames 
(7).  The field is no longer uniform with respect to these 
frames, since they have different orientations. We consider a 
specific situation in which a field of amplitude h, is linearly 
polarized along the Z axis. The Z-projection of the field in 
the spin frames 1,2,3, and 4 (see Fig. l a )  are then h,, - h,, 
- ha, h,. This coordinate dependence can be represented in 
the form h(r,t) = h(t)e"lnr. In the case of 2-polarization we 
have k, = k,, = (27r/a, 27r/a, 0) .  Such a field excites a mag- 
non with momentum k,, . The resonance frequency is 

If the high-frequency magnetic field is polarized along the X 
and Y axes we have similarly kox = (0, 27r/a, 2n/a), 
koy = (21r/a, 0, 2.rr/a), and the resonance frequencies 
wx = wy = w,, which is natural in view of the cubic symme- 
try. 

Since we have reduced UX, in the cubic magnetic phase 
to a system containing one U atom per magnetic cell, the 
spectrum ( 1 1 ) consists naturally of one mode. The quasimo- 
mentum varies then within a Brillouin zone corresponding 
to the translations r X ,  r y ,  7, . The usual approach yields a 
spectrum consisting of four modes, three acoustic and one 
exchange, but defined in a Brillouin zone whose volume is 
one-quarter as large. The different modes correspond here to 
different regions of the expanded band. 

Comparing the spectrum (10) with the results of Ref. 
13, it is easy to verify that the energies of magnons with 
momenta k , , k ,, , k ,, correspond toactivation ofthe acous- 
tic modes, and the energies of the magnons with momentum 
k = 0 to activation of the exchange mode. Then 

momentum k = 0. This agrees with the conclusion of Ref. 13 
that no UO, exchange mode is excited in AFMR. 

4. ORIENTATIONAL PHASE TRANSITIONS IN UX, 

The possibilities of using the ETS method are not re- 
stricted to spin-wave theory. In fact, an additional transla- 
tional symmetry appears in the ETS method prior to lineari- 
zation or to introduction of some Bose representation. The 
ETS method can therefore be useful in the mean-field theo- 
ry, in the Green's function method, etc. 

We consider below, on the basis of the ETS method, the 
possible phases and orientational phase transitions in UX,. 
An investigation of orientational phase transitions in UO, is 
of particular interest because different experimental papers 
contain contradictory data on its magnetic structure. In 
most studies, starting with Refs. 15 and 16, it is assumed that 
a cubic noncollinear magnetic phase is realized in UO,. At 
the same time, earlier on inelastic neutron scatter- 
ing in UO, point definitely to a tetragonal symmetry. This 
contradiction can be reconciled by assuming that a phase 
transition between the tetragonal and cubic phases can occur 
in UO, at a definite temperature. 

The possible phases of UX, were analyzed in Ref. 8, but 
without allowance for biquadratic exchange, which will be 
shown below to play a substantial role in the analysis of 
phase stability and phase transitions. 

We note first that the comoving coordinate frames (7)  
used to calculate the magnon spectrum in the cubic phase 
permit a description of any magnetic phase whose symmetry 
group contains the operations T, C,, , T,, C Z y ,  T, CZz  The 
spin direction relative to the comoving frame uniquely para- 
metrizes the phases of this aggregate. The direction corre- 
sponding to the cubic phase is then [ 1 1 1. 

The thermodynamic-potential density at T = 0 can be 
obtained in the quasiclassical approximation from the Ham- 
iltonian ( 6 ) ,  by identifying the nodes using the substitution 
u, -+a: 

It should be noted that the potential ( 11 ) receives no 
contribution from the terms quadratic in spin, and particu- 
larly from quadratic exchange, since the energy correspond- 
ing to them is independent of the spin direction. This impor- 
tant circumstance means that the barriers between the 
different phases are of low energy: they are determined only 
by one-ion anisotropy and biquadratic exchange. In addi- 
tion, the constants of the potential ( 1 1 ) , which correspond 
to interactions of different origin (one-ions anisotropy and 
biquadratic exchange), can vary differently with tempera- 
ture, and this can lead in turn to phase transitions. 

It is noteworthy that the thermodynamic potential ( 1 1 ) 
has the same structure as the potential of a cubic ferromag- 
net. One can therefore analyze (11) by using the results 
known for a cubic ferromagnet.,' 

Let us list the equilibrium phases of ( 11). The phase 
[ 1 1 1 ] is the already considered cubic noncollinear four-sub- 
lattice phase (see Fig. la) .  The condition for its stability is 

This result could have been obtained by considering the 
A uniform external field does not excite magnons with spectrum ( 10). Loss of stability of phase [ 11 11 corresponds 
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to softening of the magnons with momentum k = 0. 
Phase [ 1001 is a tetragonal collinear two-sublattice 

phase (see Fig. lb). Its stability condition is 

Also in equilibrium is the complanar four-sublattice phase 
[ 1 101 (Fig. lc) .  Its stability condition is 

A phase transition between [ 1 1 1 ] and [ 1001 occurs under 
the condition 

It is evident that when the condition Dg0 is met the phase 
[ 1101 is unstable. If, however, the stability condition for the 
[ 1101 phase is met, the stability regions of [ 11 1 ] and [ 1001 
do not cross and a phase transition between them is impossi- 
ble. 

Since there is no experimental evidence of realization of 
a [ 1101 phase in UO,, it can be assumed that Dg0 in it. 

A phase transition between [I001 and [I101 takes 
place under the condition 

A phase transition between [ 1101 and [ 11 11 occurs if 

9 (G+2Qo) =2DS2, DZO. 

All the phase transitions considered above are of first order. 
Allowance for anisotropy and exchange of higher or- 

ders could yield a more detailed pictures of the magnetic 
phases and the transitions between them. 

5. DOMAIN WALLS IN THE CUBIC PHASE OF UX, 

The ETS method can be useful also for the considera- 
tion of nonlinear inhomogeneous states in multisublattice 
magnets, particularly domain walls. We consider here do- 
main walls of a special type in the cubic phase of UX,, the 
existence of which was first pointed out by Dzyaloshin~ki'i.~' 

It was shown in Ref. 21, with UO, as the example, that 
orientational magnetic phases that can be transformed into 
one another by continuous rotation can exist in antiferro- 
magnets with more than three sublattices. This pertains to 
rotations of the system of spin magnetic moments making up 
the magnetic unit cell, without disturbing the mutual orien- 
tation of the spins in the cell. The corresponding domain 
walls are not hydrodynamic, in the sense that they can be 
described in principle within the framework of a hydrody- 
namic approach22 that operates with rotation of the spin 
"hedgehog" of the unit cell.' 

It was shown laterz3 that, owing to the definite hierar- 
chy of the interactions in UO,, the domain-wall thickness 
can be macroscopic. This is possible because the mutual ori- 
entation of the spins in the cell is governed only by biquadra- 
tic exchange, which is much weaker than the quadratic ex- 
change. The macroscopic character of the domain wall is in 
this case the result of competition between homogeneous 
biquadratic exchange, which tends to compress the wall, and 
inhomogeneous quadratic exchange, that tends to make the 
wall thicker. 

Such domain walls can be obtained in principle as a 
solution of the system of Landau-Lifshitz equations for each 
of the four sublattices of the UO, cubic phase. The corre- 
sponding variational problem, however, would contain eight 
field variables and would be very complicated. 

Yet the problem of domain walls in UX, can be solved 
quite briefly by the ETS method. The point is that the en- 
ergywise most important condition that determines the do- 
main-wall structure in UX, is that the energy of the homoge- 
neous quadratic exchange be a maximum.23 The 
Hamiltonian describing smooth variations of the spin mag- 
netic moments in space can be obtained by expanding ( 6 )  in 
terms of small gradients: 

The Hamiltonian ( 12) does not contain the homogeneous 
energy of either the cubic inter-ion anisotropy nor, more im- 
portantly, biquadratic exchange. In the walls described by 
( 12), the principal energy condition is met automatically. 
This is precisely why (12) can be used to describe the do- 
main walls in UO, in terms of one vector field u ( r ) .  

Sixth-order anisotropy has been left out of the Hamilto- 
nian (12) because it does not play a principal role in the 
analysis of domain walls far from the phase transitions. Also 
left out are the inhomogeneous terms corresponding to qua- 
dratic anisotropy and biquadratic exchange, since they are 
small compared with the inhomogeneous terms taken into 
account in ( 12). 

We point out that the inhomogeneous part of the Ham- 
iltonian ( 12) has a rather unusual, anisotropic form, al- 
though it is derived from a pure exchange Hamiltonian. 

Eight different orientational domains are possible in the 
cubic phase. They are characterized by the following direc- 
tions of a: 

The domains belonging to any one set, ( 13) or ( 14), can be 
obtained from one another by rotating, without disturbing 
its internal arrangement, the "hedgehog" of the spin mag- 
netic moments that form the unit cell. The corresponding 
domain walls can be obtained by the usual hydrodynamic 
approach. We do not consider such walls here. 

Domains belonging to different sets ( 13) and ( 14) can- 
not be obtained from one another by rotations of the "hedge- 
hog." On going from any domain from ( 13) to any domain 
from (14), the mutual orientation of the spins in the cell 
must change.21 It is the corresponding domain walls which 
we treat in the present article. 

Consider, by way of argument, the wall between the 
domains ( 1, 1, 1 ) and ( 1, 1, - 1 ). We introduce for the 
components of the vector u the notation 

o'=S s i n  0 cos cp, (rU=S sin 0 s in  cp, (rz=S cos 0. 

In the domain ( 1, 1, 1 ) we have 
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inthedomain (1, 1, - 1) 

We seek the solution in the form of a plane wall. We intro- 
duce for this purpose a spatial coordinate defined by the 
relation 

where n,, n,, and n, are the direction cosines of the normal 
to the wall plane, and assume that 9 and e, are functions of 
only. The Hamiltonian ( 12) takes then the form 

H = ~ V ( ( G + Z ~ , ) S ' [ C ~ S '  0 + sin' 0 (eos' rp + sin' cp) ] 

8 0 
sin rp cos 0 - + cos rp sin 0 - 

a Y 

Solution of the variational problem for the Hamiltonian 
( 17) with boundary conditions ( 15) and ( 16) leads to 

where 

is the domain-wall thickness. An important feature is that 
the boundary conditions ( 15 ) and ( 16) determine uniquely 
the orientation of the wall in space. The normal to the wall 
between the domains ( 1, 1, 1) and (2, 1, - 1 ) is directed 
along the Z axis. 

The domain-wall surface tension is 

6. SPIN WAVES IN M~ICI,,(NH,)~(CH~)~ 

As an example of a magnet whose translational symme- 
try increases on going to local spin coordinates we consider 
the quasi-twodimensional four-sublattice antiferromagnet 
MnCl, (NH, ), (CH,) ,. This crystal has been recently at- 
tracting intent attention in view of the magnetic-resonance 
modes and unusual pattern of phase transitions observed in 

The paramagnetic-phase symmetry of this antiferro- 
magnet is described by the group D iz. The magnetic atoms 
are located at inversion centers. The MnCl,(NH,),(CH,), 
crystal constitutes an assembly of monoclinic antiferromag- 
netic layers weakly coupled to one another by antiferromag- 
netic exchange. The presence of a second-order screw axis 
unites the monoclinic layers into a rhombic crystal. We con- 
sider an MnCl, (NH,), (CH,), model that takes into ac- 
count only exchange interactions and one-ion anisotropy, 
H = HI + H, + HI,, , where 

The subscripts n,, n,, n,, n, in ( 18) number magnetic 
atoms belonging to four different sublattices. The Hamilto- 
nians H,  and H, describe interaction in the layers, with J the 
intralayer antiferromagnetic-exchange constant, a n d p ,  P,  
and a the one-ion anisotropy constants. The Hamiltonian 
H , ,  describes interlayer interaction and I is the interlayer 
antiferromagnetic-exchange constant. The crystal 
MnCl, (NH, ) , ( CH, ), is quasi-two-dimensional because 
J$ I- a, p" , . Equation (2  1 ) , of course, does not take into 
account all the invariants of the D :; group. In particular, no 
account is taken in ( 18) of the Dzyaloshinskii interaction, 
which forms the weak ferromagnetic moment. As shown in 
Ref. 24, however, the Hamiltonian ( 18) permits an adequate 
description of many observed properties of this crystal. 

The magnetic unit cell of MnC1, (NH,), (CH,), is 
shown in Fig.2, where the numbers 1 ,2 ,3 ,  and 4 mark the 
magnetic sublattices. The translational symmetry of the 
magnetic phase is specified by the basis t, = (a, 0, O), 
t, = (0, b, 0) ,  t, = (0, 0, c), where a, b, and c are the lengths 
of the edges of the rhombic base-centered cell. 

At the same time, the Hamiltonian ( 18) and its ground 
state are invariant to the operations .r, C,, , ry C,, , where 
T, = (a/2, b /2, O), T, = (0,0, c / 2 ) ,  while C,, and C,, are 
180' rotations in spin space around the X and Y axes, respec- 
tively. According to the lemma, this means that one can 
choose for the spins local coordinate frames such that the 
Hamiltonian ( 18) becomes invariant to the translations and 
T, and 7,. 

FIG. 2. 
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It should be noted here that the translation  is a sym- 
metry operation for neither the ground state nor the Hamil- 
tonian. Thus, on going to the local spin coordinates the 
translational symmetry is increased compared with the par- 
aphase. 

We introduce appropriate coordinate frames for the 
sublattice spins. We use for sublattice I the crystallographic 
frame, from which we obtain for the spins of sublattices 2,3, 
and 4 comoving frames by means of the rotations C,, , C,, 
and C,, . This choice of the comoving frames is determined 
by the fact that the spin of sublattice I is connected with the 
spins of sublattices 2 ,3 ,  and 4 by the respective operations 
T,C~, , ,  and T~T ,C ,~C , , .  Then 

In ( 19), 6 are the operators of spin projection on the axes of 
the comoving systems: 

The subscript n numbers all the magnetic atoms, m the 
nearest neighbors of the atom of n in the layer, and I the 
nearest neighbors of n from other layers. 

The four-sublattice antiferromagnet has thus been re- 
duced to a one-sublattice system. 

Minimizing (19), we find that the angle B between the 
ground-state spin direction and the Z axis of the crystallo- 
graphic frame is given by 

The spin-wave spectrum corresponding to the Hamilto- 
nian is 

where 

k,a k,a cos k,c 
J0=41, 1,=2Z, y, = cos - cos - 

2 
1 V R = -  

2 '  

6 ,=pZ cos2 0+PU sinz 8+ ' / za  sin 20,  

62= (p z - j3~)  cos 2B+a sin 20.  

Interaction with a high-frequency field polarized a l k g  
the axes X, Y, and Z excites magnons with momenta 

The corresponding resonance frequencies are 

O,=E ( k o r )  =S{ [2Jo+Zo(cos  20+1)+6! ]  S2)', 

o,=e (k , , )  =S{  (2Jo+2Zo cos 20+&) [6,-Zi (1-cos  2 0 )  ] ) I h ,  

O,=E ( k o i )  =S ( (2Jo+62)  [lo (cos  20+1)  +6,] )'I2. 

Interest attaches also to the point k = 0, corresponding 
to the frequency 

mo=e(k=O) = { [ 2 J o - I o ( l - c o s  2 0 )  + h i ]  (21 ,  cos 20+6,))'".  

The frequency w, corresponds to the exchange mode, 
and ox and w,  to the acoustic modes of the magnetic reso- 
nance. These -frequencies correspond to the homogeneous 
oscillation modes obtained in Ref. 24. 

7. CONCLUSION 

In all the examples considered, the magnetically or- 
dered crystals were described by a model Hamiltonian of 
rather general form. Besides the exchange interaction, ac- - - 
count was taken of various relativistic interactions. We have 
thereby succeeded in reducing four-sublattice antiferromag- 
nets to single-sublattice systems. In our opinion, this demon- 
strates clearly the extensive capabilities of the ETS method. 

Mention must be made of several studies devoted to 
two-sublattice antiferromagnets2"" and s ~ i r a l  struc- - 
t u r e~ ,~ ' . *~  where use was made of the conservation of the 
translational symmetry of the Hamiltonian after changing to 
local coordinate frames. Analysis shows that in all these pa- 
pers the Hamiltonian and the ground state satisfy the condi- 
tions of the lemma formulated by us. 

We note in conclusion that the lemma has one more 
aspect. It is well known that the energy spectrum of spin 
waves can become degenerate in symmetry points of the 
Brillouin zone. It is obvious from our analysis that when the 
conditions of the lemma are met degeneracy appears on en- 
tire surfaces of the Brillouin zone. We have in mind here, of 
course, the usual Brillouin zone, and not the one obtained in 
the ETS method. T h ~ s ~ i r ~ m s t a n c e  is a direct consequence 
of the isomorphism TU- T (Ref. 4 ) .  

The authors thank A. N. Goncharuk for a discussion of 
the work. 

'1. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 32, 1547 (1957) Sov. Phys. 
JETP 5, 1269 (1957)l. 

'E. A. Turov, Physical Properties of Magnetically Ordered Crystals, Aca- 
demic, 1965 [p. 224 of Russian original]. 

3V. E. Naish, Izv. AN SSSR, Ser. Fiz. 27, 1496 (1962). 
4W. Brinkrnan and R. J.Elliot, Proc. Roy. Soc. A294, 343 ( 1966). 
5V. A. Ko~ts ik  and I. N. Kotsev, JINR Commun. (Soobshcheniye) R4- 
8466 (1974). p. 19. 

6A. F. Andreev and V. I. Marchenko, USD. Fiz. Nauk 130.39 ( 1980) Sov. 
Phys. Usp. 23,21 (1980)l. 

'V. G. Bar'yakhtar and D. A. YablonskiI, Fiz. Nizk. Temp. 6,346 (1980) 
Sov. J. Low Temp. Phys. 6, 164 ( 1980) 1. 
'D. Monachesi and F. Weling, Phys. Rev. B28,270 (1983). 
9J. Rossat-Minnod, P. Burlet. and S. Quezel, Physica (Utrecht) B102, - 
177 (1980). 

1°J. Rossat-Mimot. J. Burlet. H. Bartholin. et al., ibid. D. 177. 
llG. H. ~ande;, J. M a p .  and Magn. Mater. 15, 1208 (i980). 
"I. E. Dzyaloshinskii, Comm. Phys. 2, 69 (1977). 
"I. E. Dzyaloshinskii and B. G. Kukharenko, Zh. Eksp. Teor. Fiz. 75, 

2290 ( 1978) Sov. Phys. JETP 48, 1 155 ( 1978) 1 .  
I4V. G. Bar'yakhtar, I. M. Vitebskii, and D. A. Yablonskii, ibid. 89, 189 

(1985) 62, 108 (1985)l. 
I5J. Faber and G. H. Lander, Phys. Rev. B14, 1151 (1976). 
165. Allen, Phys. Rev. 166, 530 (1968). 
"5. Allen, Phys. Rev. 166, 530 (1968) [sic!]. 
1 8 ~ .  A. Cowley and D. G. Dolling, Phys. Rev. 167,464 (1968). 
19R. M. White and T. H. Geballe, Long Range Order in Solids, Academic, 

1979 [p. 170 of Russ. original]. 
'OK. P. Belov, A. K. Zvezdin, A. M. Kadorntseva, and R. Z. Levitin, 

Orientational Transitions in Rare-Earth Magnets [in Russian], Nauka, - .  

1979, p. 165. 
"I. E. Dzvaloshinskii, Pis'ma Zh. E k s ~ .  Teor. Fiz. 25,442 ( 1977) [JETP 

Lett. 25; 414, (1977)l. 
"L. M. Sandratskii, Phys. Stat. Sol. (b )  135, 167 (1986). 
"V. G. Bar'yakhtar, I. A. Leonov, and V. L. Sobolev, Fiz. Nizk. Temp. 

14, 1109 (1987) [Sov. J. Lou Temp. Phys. 14, sic ( 1987) I. 
2 4 ~ .  I. Zvyagin, M. I. Kobets, V. N. Krivoruchko, et al., Zh. Eksp. Teor. 

2291 Sov. Phys. JETP 67 (1 I), November 1988 A. L. Alistratov and D. A. Yablonskil 2291 



Fiz. 89,2298 (1985) Sov. Phys. JETP 62, 1328 (1985)l. "S. V. Tyablikov, Methods in the Quantum Theory of Magnetism, Ple- 
"A. I. Zvyagin, V. I. Krivoruchko, V. A. Pashchenko, et al., ibid. 92,3 11 num, 1967, Russ. transl. p. 1631. 

(1987) [65, 177 (1987)l. 29V. G. Bar'yakhtar, A. I. Zhukov, and D. A. Yablonskii, Fiz. Tverd. Tela 
26D. C. Mattis, The Theory of Magnetism, Harper & Row, 1965 [Russ. (Leningrad) 21,776 (1979) Sov. Phys. Solid State 21,454 (1979) 1. 

transl. p. 2231. 
*'A. A. Stepanov, Author's abstract, Candidate's Dissertation, Kharkov 

13hysicotech. Inst., 1978. Translated by J. G. Adashko 

2292 Sov. Phys. JETP 67 (1 I ) ,  November 1988 A. L. Alistratov and D. A. Yablonskil 2292 


