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A mean-field theory describing the effects of the topological interactions that occur in polymers 
on account of the mutual impenetrability of their chains is constructed by means of the replica 
formalism. On the basis of this theory for the description of a polymer with strongly entangled 
chains a physical model of a quasinetwork of effective hookings is proposed, the parameters of 
which are determined by the number N, % 1 of links along a chain between two quasi-cross-links. 
The free energies of a linear polymer and of a polymer gel network, subjected to a specified 
stretching and swelling, respectively, are calculated in the leading approximation in the small 
parameter E = l/Ns. It is shown that the deformation of such a network has both an affine 
component and a nonaffine component associated with the partial disentangling of the chains of 
the network as the network is stretched. The deformation dependence of a gel network with 
entangled chains, obtained by equilibrium linking of the chains via polyfunctional monomers 
both close to and far from the gel-formation point, is calculated. It is shown that this dependence 
is in agreement with the experimental data. 

1. INTRODUCTION 

The progress in the statistical description of polymer 
systems that are in equilibrium in respect of the chemical 
reactions of the formation and breaking of chemical 
bonds14 is due primarily to the fact that in the process of 
thermodynamic fluctuations such a system can occupy all 
states in configuration space. Therefore, to describe such a 
system we employ the standard method of the grand canoni- 
cal ensemble. The construction of a theory of polymers in 
which the molecules have a fixed topological structure is an 
incomparably more complicated problem. It incorporates 
the problems both of fixing the topological structure of the 
molecules and of taking account of the topological exclusion 
of the mutual intersection of macromolecular chains. The 
first of these problems was solved in Ref. 5. In this article we 
shall make use of the method of Ref. 5 for a statistical de- 
scription of polymers with allowance for the topological 
constraints. Because polymer chains cannot pass through 
each other without breaking, the configuration space of the 
system separates into a set of regions. Thermodynamic fluc- 
tuations are not capable of taking the system out of the re- 
gion in which it was situated at the time of preparation. 

Because of the extreme complexity of a detailed descrip- 
tion of the geometrical structure of such topological con- 
straints, several models have been proposed that make it pos- 
sible to mimic the narrowing of the set of conformations of 
real chains in comparison with the case of phantom chains 
that can pass freely through each other. Usually, topological 
interactions (which, in the theory of high elasticity, are 
usually called steric6) are modeled by placing each chain in a 
certain tube6*' or in a lattice of ob~tab les .~ ,~  

In this paper we use the replica formalism of Ref. 5 to 
construct a mean-field theory for the calculation of the ther- 
modynamic characteristics of a polymer system with topo- 
logical interactions. To interpret the main results of the the- 
ory we propose a physical model of a quasinetwork of 
effective hookings. Since this model is close to the ideas that 
have been developed in the description of the classical ex- 
periments of Refs. 10 and 11 on the mechanical perturbation 

of a polymer melt of linear chains, we shall first give an ac- 
count of these ideas." 

For rather long times t ,  T, the chains of such a system 
remained hooked around each other, and the system behaves 
like an elastic network. The characteristics of this quasin- 
etwork of hookings (see Fig. 1 ) are determined by the num- 
ber Ne - 100-300 (Ref. 12) of links along a chain between 
two successive hookings. In contrast to ordinary networks 
with fixed cross linkages between the chains, upon stretch- 
ing of the polymer under consideration its chains can slide 
relative to each other, and this leads to partial mutual disen- 
tanglement of the chains and to increase of the parameter 
N, . For a large chain length the maximum relaxation time 
T, -R3.3 (Refs. 1 1, 13) is macroscopically large. 

We now formulate the physical model that we have 
used for the topological interactions. Its mathematical for- 
mulation (the mean-field theory) is given in the second sec- 
tion of the article. One of the main achievements of this pa- 
per is the construction, on the basis of this model, of a theory 
of the high elasticity of polymer networks that takes exact 
account of their (phantom) topological structure. 

Thus, we shall assume that each chain of the polymer 
belongs to a quasinetwork characterized by the number N, 
of links between two effective hookings of this chain (N, 

FIG. 1 .  Quasinetwork of effective hookings; <, is the size of the fluctu- 
ations of its quasi-cross-links; R ,  is the characteristic size of its unit cell 
in the direction of the axis p = x,y,r. 
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= N, for a melt of chains for t ( r ,  ). The parameter NjO' 
determines the degree of entanglement of the chains under 
the conditions of synthesis. The case N : O ) < N  corresponds 
to strongly entangled chains, while the case N jO')N corre- 
sponds to the absence of topological interactions of the 
chains. We shall show that when the polymer is stretched 
(swollen) by a factor of A, along the axis p = x,y,z the pa- 
rameter Ns, = NIO'A, increases because of partial disen- 
tanglement of the chains. In the framework of the physical 
model that we are considering the entropy ? of the polymer 
is equal to the entropy of the ideal network that has the same 
number NEff of elastically active chains as the quasinetwork: 

where Nis the total number of links. We assume also that the 
characteristic size R ,  of a cell of the quasinetwork and the 
magnitude 6, of the fluctuations of its quasi-cross-links 
(see Fig. 1 ) also coincide with the corresponding quantities 
of this ideal network: 

where a is the bond length. The quantity 6, determines only 
the mean-square size of the fluctuations, which is small in 
comparison with their maximum amplitude. This extremal 
conformation is realized for the case of a completely ex- 
tended chain segment of length aN, between two hookings, 
and its amplitude r,, =:aN,, is of the same order of magni- 
tude. Thus, in the assumed physical model of the topological 
interactions there is a heirarchy of scales a<(, (r, ,  which 
owes its origin to the presence of the small parameter E = 1/ 
N, ( 1. The construction of a mean-field theory on the basis 
of this small parameter is the main result of this article. 

All the estimates given above are a physical interpreta- 
tion of the results obtained in this mathematical theory. 
From a more formal point of view, the role of the quasin- 
etwork of effective hookings reduces entirely to the forma- 
tion of a mean field v,that limits the fluctuations of each 
chain. The amplitude r, of an extremal fluctuation deter- 
mines the characteristic interaction range of this field, and 
the inequality {, <r, makes it possible, in the description of 
typical fluctuations, to confine ourselves to the quadratic 
terms of the expansion of the field v, in a Taylor series. Be- 
cause of the attractive character of the field v, on scales large 
in comparison with 6,, the chain is in a globularized state 
and its density fluctuations are small. We note that in the 
theory of the globular state the aforementioned hierarchy of 
scales follows directly from the results of Ref. 14, in which a 
quadratic attractive potential was considered (although this 
was not noted in Ref. 14). On scales small in comparison 
with 6, the topological interactions are unimportant. 

In Sec. 3 we calculate the free energy of a long entangled 
linear chain consisting of N links, under the assumption that 
its mean density at the time of synthesis is constant (see, e.g., 
Ref. 15). An analogous model of a polymer was considered 
in Ref. 16, in which it was shown that in the presence of 
hookings the free energy of this chain is an additive quantity 
F-N, but the coefficient of proportionality was not in fact 
obtained. 

In Sec. 4 we study systems consisting of a large number 
of entangled chains. In particular, we consider a melt of rI 

chains, investigated experimentally in Ref. 10. For the ex- 
ample of this very simple polymer we demonstrate the math- 
ematical methods that we use later for the description of a 
polymer gel network obtained as a result of the linking of 
chains through their end groups. Besides the gel, in such a 
system there is a sol, consisting of molecules of finite size 
with a tree structure. Because of the absence of topological 
hookings between these molecules, after the freezing (fix- 
ing) of all the chemical bonds the sol fraction can be washed 
out of the polymer network. The topological structure of the 
resulting network is determined by the value of the conver- 
sionp of the initial equilibrium system, equal to the ratio of 
the number of bonds formed by the polyfunctional mon- 
omers to the maximum possible number of such bonds. Near 
the gel-formation threshold p-p, a significant part of the 
gel consists of "freely dangling" chains, attached to the gel 
by only one end, while forp = 1 such chains are completely 
absent. These chains make a contribution to the total density 
of the gel, but do not affect its elastic properties. The order of 
the cross linkages uniquely fixes the topological structure of 
the networks, but their spatial structure depends strongly on 
the conditions of the experiment (which determine, in par- 
ticular, the relative magnitudes of the parameters N, and 
N ) .  For N,, 2 the chains of the network are weakly entan- 
gled and the spatial structure of the network is shown in Fig. 
2a. We shall show that such a gel can be described in the 
framework of the classical theory of high elasticity. 1 7 + 1 8  Ac- 
cording to this theory, under uniaxial stretching of the 
network by a factor of A the stress a per unit area of the 
undeformed material (of volume V'O') is equal to 

Here Tis the experimental temperature, a, is the coefficient 
of thermal expansion of the chains, and the effective number 
Pff of elastically active chains is determined entirely by the 

FIG. 2. Polymer network of a gel: a )  characteristic form in the case of 
weakly entangled chains ( N ,  2 N ) ;  b) quasinetwork of effective hook- 
i n g ~  in the limit of strong entanglement of the chains ( N ,  < N). 
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topological structure of the polymer network. The theory 
presented makes it possible to calculate the quantity Fa for 
any type of network synthesized in conditions of chemical 
equilibrium. 

The relations (3), with an appropriate choice of F a ,  
gives a rather good description of the experimental data on 
the compression of a gel to A < 1, despite the inapplicability 
of the classical theory to the description of gels with strongly 
entangled chains.I6 For A > 1 the deviations from the results 
of the classical theory are usually described by the empirical 
Mooney-Rivlin f o r m ~ l a ' ~ ~ ~ ~  

In theoretical papers these deviations have been ascribed to 
the presence of steric interactions of the chains of the poly- 
mer network. Their entanglement becomes strong for 
NSp (v, and the spatial structure of such a network is shown 
schematically in Fig. 2b. We shall demonstrate that the main 
contribution to the free energy of this gel is given by the 
elasticity of the quasinetwork of effective hookings shown in 
Fig. 1 .  In the framework of the theory presented, the defor- 
mation of a polymer network upon its stretching (swelling) 
has an affine and a nonaffine component. The first of these 
was taken into account in the classical theory, while the sec- 
ond is connected with the mutual disentanglement of the 
chains upon stretching of the network. This nonaffine char- 
acter of the deformations has been observed experimental- 
1y,21.22 and a crude phenomenological model of it has been 
given in Ref. 23. 

In the Conclusion we compare the results obtained 
from our proposed model of a quasinetwork of effective 
hookings with results from the study of other models, some 
of which are also discussed in the main text of the article. 

2. METHOD OFTHE GRAND CANONICAL ENSEMBLE FOR 
THE DESCRIPTION OF POLYMERS WITH A FROZEN 
STRUCTURE AND TOPOLOGICAL INTERACTIONS. THE 
MEAN FIELD THEORY 

The physical properties of a polymer with a fixed topo- 
logical structure are determined by the characteristics of two 
systems-the initial system, in which the polymer was ob- 
tained and its chemical bonds frozen, and the final system, in 
which the sample is found at the time of the investigation. In 
the following we shall indicate parameters of the initial sys- 
tem by the superscript (0) .  In the mathematical description 
of the polymers we associate with each configuration a graph 
G{x,), where xi are the coordinates of the monomer links 
(sites of the graph) .24,25 We shall label topologically distinct 
regions of the configuration space {xi) by the subscript T. 

From the experimental point of view, the main interest is in 
the determination of the mean value of the free energy of the 
system in a given field h:. 

F{h)= - ~ z ~ : : ) i n & ~  {h) .  

Here Tis the temperature of the final system, ZG7 is its parti- 
tion function for a given configuration G,, and P g') is the 
probability of this configuration, which is determined by the 
properties of the initial system. We shall assume that the 
initial system is in equilibrium, so that the probabilities are 
given by the Gibbs distribution 

The partition function ZG* is determined by an integral that 
is taken only over the region T of the configuration space 
{xi). We can represent it in the form of an integral over all 
space by introducing a 6-function: 

Summing (7) over all 7, for the given topology of the graph 
G we find the normalization condition 

Since the polymer model that we are using has been 
described in detail in Refs. 5 and 24, here we give just a brief 
account of the definitions necessary for what follows. With 
the aid of (7),  we can represent the partition function of the 
final system in the form 

Here Uo is the potential energy of the interaction of the mon- 
omer links of the system (in units of T). With each bond 
with coordinates x and x' we associate in (9)  a factor 
g (x  - x'), which is usually chosen to be Gaussianz6: 

where a  is the characteristic length of a bond and g is the 
entropy and energy factor of the bond. Since each bond is 
characterized entirely by the coordinates x and x' of its be- 
ginning and end, the different, topologically inequivalent re- 
gions ?in the model under consideration are defined only to 
within -a .  Since the characteristic scale of the topological 
interactions is r, z a N s  9 a  (see the introduction), this mod- 
el makes it possible to describe the topological interactions 
to order E = l / N s  4 1. 

In the calculation of the partition functions Z - of 
the initial system we must replace T, Uo, and g in (9)  by the 
corresponding characteristics of the initial system. For a sys- 
tem obtained in conditions of chemical equilibrium, Z 'O' con- 
tains extra factors ~ ; N ' / A : ~ ' N , !  for each type (I)  of particle. 
Here N, is the number of particles, z, and A, are their activ- 
ity and thermal ~avelength, '~  and the factor N,! takes into 
account that they are identical in the initial system. A mix- 
ture of several polymer systems (including a low-molecular- 
weight solvent) is also described by an expression of the type 
(9),  in which now the potential U i O )  is equal to the sum of 
the potentials of each of the initial systems (which have their 
own temperature, volume, etc. ), while the potential U, takes 
account of the'interaction of all these particles in the final 
system. Following Ref. 5, we represent the free energy (5)  in 
the form 

Using the normalization condition (8)  it is not difficult to 
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show tht for m = 0 the quantity Zo = Z ' O )  determines the 
complete partition function (6)  of the initial system. For 
integer values of m the quantity Z, takes the form 

XexP [- h (xi") - U (G (Xi))] 
i k=1 

where the summation runs only over the coordinate-free 
(phantom) graphs G, and the integration over the 
3(1 + m)-dimensional space of the replicas with coordi- 
nates X = (x''), x'", ..., x(") ). It is not difficult to show that 
Z, in (12) has the meaning of the partition function of a 
chemically equilibrium system in a space of effective dimen- 
sionality 3 ( 1 m) (Ref. 5). In such a system, in ( 12) we 
associate with each chemical bond with coordinates X and 
X' the factor 

m 

and the potential of a given configuration G{X,) is equal to 

Here U, is the potential of the topological interactions, by 
definition equal to 

We introduce the coordinates rLk' = xLk)/jl,,, k = 1, ..., m; 
r:' = x:', scaled to those of the initial system. It is not diffi- 
cult to show that U, possesses exact symmetry under permu- 
tations of the aggregate {r,'k)) of these coordinates amongst 
any of the replicas k = 0, ..., m. 

A specific feature of the formalism used by us is the fact 
that the potential interactions UAk' act separately in each of 
the replicas k = 0, 1, ..., m, whereas the topological interac- 
tions U, are manifested only as interactions between differ- 
ent replicas. The potential U, in ( 15) takes two values 0 and 
~ 4 ,  leaving only those configurations in which all the repli- 
cas are simultaneously in arbitrary but identical topological- 
ly inequivalent regions r. An analogous potential was con- 
sidered in the well known lattice model of polymers in Ref. 2. 
In this model the potential leaves only those configurations 
in which the particles are situated at arbitrary but different 
lattice sites. As shown in Ref. 2, in the description of a sys- 
tem with a singluar potential of this type, in the case when 
the fluctuations of the order parameter are small, the self- 
consistent field (SCF) approximation can be used. In the 
system that we are considering the order parameter is equal 
to the density p(X) of links in the replica space. As will be 
shown below, an "attractive" topological interaction sup- 
presses transverse fluctuations of p(X),  i.e., statistical den- 
sity fluctuations from configuration to configuration. There- 
fore, if the longitudinal fluctuations ofp (X) (induced by the 
potential interactions uAk') in each of the replicas are small, 

the density is a self-averaging quantity and for the calcula- 
tion of the partition function Z, ( 12) of a chemically equi- 
librium system we can use the usual SCF approximation. As 
shown in Refs. 3 and 24-26, in this approximation Z, fac- 
torizes into a product of factors: 

Z m  {h) = Zm,=b  {hfu) Zrn ,b~  { p) / Z m ,  ig { p}. (16) 

Here Zm,c, { h  + v} is the partition function of the so-called 
system of chemical bonds, on the noninteracting particles of 
which ( U = 0) acts a field h + v that determines the density 
of links of this system in the replica space: 

where N is the total number of links. In the limit m -0 the 
function p(X) gives the densities of links in the initial 
( k  = 0) and final (k  = 1 ) systems: 

I f k  

The condition ( 17) that the total numbers of links in the two 
systems be equal follows automatically from ( 18). The func- 
tional Z,,,, @) in ( 16) defines the partition function of the 
so-called system of broken links, which has the same density 
p ( X )  (17). The particles of this system interact with each 
other with potential U (14), but do not form chemical 
bonds. Finally, the function Z,,,, @} in ( 16) is equal to the 
partition function of an ideal gas ( U = 0) of the same den- 
sity p(X). In the system of broken links, owing to the ab- 
sence of elasticity of the chemical bonds topological interac- 
tions are also essentially absent, and this, in the language of 
replicas, implies the absence of interaction of different repli- 
cas. As shown in Ref. 5, in the thermodynamic limit the 
partition function of such a system of broken links factorizes 
into the product of the partition functions of these replicas: 

where PL:'(p'k') is the equation of state of the correspond- 
ing system of broken links, and, in the following, will be 
assumed to be k n o ~ n . ~ . ~ ~  

Thus, in the SCF approximation the problem reduces to 
the determination of the partition function Zm,cb of a chemi- 
cally equilibrium system, situated in a 3 ( 1 + m) -dimension- 
al space, on each link i of which acts an external field 

h (Xi) + u (X,) , h (x) = h") (x'"). (20) 

According to ( 17), the one-particle field u is defined as the 
variable thermodynamically conjugate to the density p(X), 
and is determined from the condition that this density distri- 
bution be reproduced. In the SCF approximation fluctu- 
ations of both the quantities p(X)  and v(X) are neglected. 
Thus, unlike the potential ( 141, the field v is a continuous 
function of the coordinates and has a form analogous to 
( 14) : 

"L 
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In a spatially uniform system the fields vAk) describing the 
potential (volume) interactions are constants; see (25) be- 
low. In accordance with the exact symmetry of the potential 
U,, the function v, should be symmetric under interchanges 
of the coordinates r'k' ( k )  = 0, 1, ..., m), and, in a spatially 
uniform system, depends only on their difference: 

Expanding this in a Taylor series, we find 

where a = a(  T'O'). The constant term Co describes the re- 
normalization of the field v, on account of collisions of links 
of the chains, and henceforth we shall assume it to be includ- 
ed in vr' (21). To determine the functions vAk' ( P ' ~ ) )  we 
equate the variational derivative of the functions InZ, ( 16) 
to zero. By making use of the relations ( 17)-( 19) and 
SP * = psp*, we obtain 

whence for the magnitude of the SCF volume interactions 
we find the expression 

wherepi:' (P '~ ' )  is the chemical potential of the correspond- 
ing system of broken links of a given density 

In the model under consideration the topological poten- 
tial U, changes on a scale -a  when chains intersect each 
other. By analogy with the dynamical picture the entangle- 
ment of chains is usually simulated by placing them in a tube 
of diameter -aN j (Ref. 11 ). In reality, when thermody- 
namic fluctuations of the chains forming this tube are taken 
into account, the characterisitic range of the field v, limiting 
the fluctuations of this chain has a much greater scale: 
r, = a / C " 2 z a ~ s ) a ;  see the Introduction. Repeated 
change of direction of a chain on this scale leads to effective 
averaging of the anisotropy of the field v, along and at right 
angles to the direction of the chains. Because of the weakness 
of the anisotropy the very idea of a tube loses its meaning in 
the thermodynamics. In the derivation of (24) we also ne- 
glected anharmonic terms in the expansion of the field u,. 
The possibility of such neglect is connected with the inequal- 
ity g, <r, already discussed in the Introduction. This in- 
equality makes it possible to confine ourselves to the qua- 
dratic term in the expansion of (24) in the parameter (g,/ 
r, ) =: l/Ns < 1. The more rigorous calculations performed 
in the following sections confirm these very simple estimates 
on the basis of the model of a quasinetwork of effective hook- 
ings. Thus, the derivation and applicability of the mean-field 
theory for the description of topological interactions are di- 
rectly related to the existence of the small parameter E = 1/ 
N, < 1. To calculate the parameter Cof the topological inter- 
actions (23) it is necessary to describe in more detail the 
geometrical structure of the topological interactions. In the 
following we shall show that Cis determined by the number 
N 1'' 1 of links of the quasinetwork between two effective 
hookings (quasi-cross-links) in the initial system, and we 

shall assume it to be given by C = (Nio')  -'. 
When substituting the expressions (16) and (19) ob- 

tained into ( 11 ) one must take into account that the parti- 
tion function Z,,cb depends on m both parametrically and 
through its argument: 

where the derivative of the first term is taken at a fixed argu- 
ment h + v, and that of the second term is taken at a fixed 
density ( 17). Thus, in the framework of the replica method, 
in the calculation of the derivative with respect to m the 
Legendre transformation (26) from the field v(X) to the 
density p (X) is performed automatically. The physical 
meaning of this procedure is obvious: The field v specifies 
external constraints imposed on the system, while the inter- 
actions of the particles are internal constraints. Therefore, to 
determine the entropy of such a system we must subtract 
from its free energy the energy of the interaction with the 
external field; see, e.g., Refs. 26 and 27. To bring the free 
energy (26) to the standard form we separate out from this 
energy term the contribution of the volume interactions v&'" 
(2 1 ), (25). Using the relation ( 18), we finally obtain 

The formula (27) for f * (p"') defines the Legendre transfor- 
mation to the density p"' in real space. The topological con- 
straints do not make a contribution to the energy term f * but 
determine the entropy of the system: 

The relations (27), (281, (23), and ( 12) with U = 0 com- 
pletely determine, in the SCF approximation, the free energy 
of a polymer with a specified fixed topological structure and 
entangled chains. 

3. TOPOLOGICAL INTERACTIONS IN LINEAR CHAINS 

We shall consider a polymer consisting of a single long 
chain with N links. We shall assume that the density of this 
polymer is constant and that the density fluctuations are 
small. In the initial system such a situation can be realized, 
e.g., in the globular state ofthe chain,26 in a system of limited 
volume (see the Appendix), or as a result of joining of the 
ends of a large number of chains having a spatially uniform 
density." In the thermodynamic limit N- 03 the relaxation 
time T, of such a polymer tends to infinity, and the polymer 
can be described in the framework of the theory (27). 

We denote the coordinates of the beginning and end of 
the chain in the k-th replica by x ' ~ '  and x"&' . Then for the 
partition function Z E,,, of such a chain with fixed ends, the 
links of which are in the external field (23), we obtain the 
recursion relation 
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To determine the function Z E,, we expand it in the eigen- 
functions of the following eigenvalue equation (with eigen- 
values Am ): 

Here q is the wave vector characterising the fluctuations in 
the initial spatially uniform system, and the subscript n la- 
bels the fluctuational modes of the chain with hookings. The 
desired expansion has the form26 

Under the assumption that the largest eigenvalue A, (0,O) 
belongs to the discrete spectrum and is separated by a finite 
interval from the next eigenvalues in the sum (3  1 ), it is suffi- 
cient to confine ourselves to the single term with q = n = 0. 
In the Appendix it is shown that these conditions are ful- 
filled for N%Nw = NjO'il,, NIO' = C-'12$ l (in the oppo- 
site case of a sufficiently short chain with N(N,,, all the 
terms in the sum (3  1) are important and the sum factorizes 
into a product of contributions from each of the replicas). 
Thus, as already discussed in the Introduction, for N% N,, 
the chain is in the globular state. We shall seek the solution 
of Eq. (30) for a Gaussian chain ( 10) in the form 

Substituting (32) and (27) into (30), we obtain 

For the quantity Am (0,0), in first order in m, we find the 
expression 

The formulas (3 1 ) and (34), together with (21 ) and (29), 
completely determine, in the SCF approximation, the free 
energy of a chain with hookings. It is not difficult to con- 
vince oneself that under identical external conditions 
T = Po' , V = VO', and f * = f *"' , the pressures 
$+k) = - dF' k' /a V( k,  also coincide in the initial and final 

systems. 
We now discuss the role of statistical fluctuations of the 

order parameter. The average value of the density of the 
links of the system is determined by the variational deriva- 
tive of the free energy with respect to the field h '" (20): 

Sln Z,,,,{h + v , )  6 In A, (X) = - = -N 
Sh ' " ( x ) '  6h(')(x) ' 

The correlation function of the statistical density fluctu- 
ations in different configurations (replicas) is found analo- 
gously: 

p'l' (x) p'" (x') -- -1 
p") (x) p(" (x') 

1 -- 62 ln A0/6h(1) (x) 6h(9 (x') 1 
- N (6 In h,/Sh(l) (x)) (6 In AO/6h(2) (x')) - 7 ' 

Thus, the density of the links of a strongly entangled chain is 
a self-averaging quantity, i.e., has a normal distribution with 
width -N -'124 1. It is not difficult to show that the free- 
energy density is also a self-averaging quantity. 

We now elucidate the physical meaning of the param- 
eter C. According to (23 ), the maximum amplitude of fluc- 
tuations of the links of the chain is equal to r ,  =.ail, C - 'I2. 

In the model of a quasinetwork of effective hookings (see the 
Introduction) it is of the order of the length of a segment 
between two hookings. Hence, for the parameter N,, for 
arbitrary anisotropic stretching of the network we obtain the 
expression N,, = NjO'il,, NjO' = C -'I2 . H enceforth we 
shall confine ourselves to treating the most interesting case 
N jO' % 1, to which corresponds C 4  1. Using the solution 
(32), (33) obtained above, we obtain the mean-square ex- 
tent of the fluctuations in the pth direction: 

which coincides with the formula (2 ) .  Thus, we have shown 
that for E~ = 1/NW 4 1 we have the hierarchy of scales 
a <<, 4 r ,  that was discussed in the Introduction. 

For the free energy of the chain under consideration of 
E~ 4 1 we find the expression (p = p'O'/il,R,A, ) 

It is not difficult to show that (35) is equivalent to the 
expression ( 1 ) obtained in the framework of the model of a 
quasinetwork of effective hookings. The swelling coefficient 
a = A ,  of the polymer in a given solvent is determined by 
minimizing the functional (35). As a rule, in the deforma- 
tion of a polymer we can neglect the change of its volume. In 
this approximation, for the stress a in the case of uniaxial 
stretching by a factor ofil(il, = ail, A, = A, = ail - ' I2)  we 
find the expression 

The modulus of elasticity of the polymer is equal to 

in agreement with the result E-pT/N, (Ref., 11) of classi- 
cal theory. 

The exact solution (32)-(34) that we have obtained 
makes it possible to convince oneself of the correctness of the 
assumptions made in its derivation. In determining the func- 
tion u, ( X )  we confined ourselves to the quadratic terms in 
the expansion (23). We shall show that the discarded terms 
of higher order are indeed small. By making use of the ex- 
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pressions (32) and (33), we find the characteristic values of 
the coordinate difference r'k) - r'k " in (23). In the case 
CgA:, fork, kl#O, we have 

C C'" C - (rjO) - - , - ($)-$'))z 
aZ hp aZ 

Thus, for N,, ) 1 both the field (23) itself and the next terms 
of its expansion are small in the parameter E, = l/Nsp. 

We now write out the most general form of the field 
vT (X) with allowance for the anisotropy of the interaction 
along and at right angles to the chain: 

Here the unit vector n$' characterizes the direction of the 
bond between the links i and i + 1 in the k th replica for 
C " = C ' the field (38) depends only on the components 
transverse to n'k' ). When (38) is substituted into (30) we 
must take account of the explicit form of this vector: 

It is not difficult to verify that for N,, ) 1, to within correc- 
tions of order E, , the solution of Eq. (30) has the form (32), 
(33) with C = C' - C "/3. In the following we shall disre- 
gard these small corrections, assuming the field v ,  to be iso- 
tropic. 

4. TOPOLOGICAL INTERACTIONS IN POLYMER SOLUTIONS 
AND GELS. FIELD THEORY 

We now study the properties of a polymer consisting of 
a large number of sufficiently long chains, with x) 1. Under 
this condition we can neglect the change of the field v in (25 ) 
near the ends of these chains. In such a system, we must not 
only take into account the mutual impenetrability of the 
chains but also fix their length distribution and the order of 
the cross links to be the same as at the time of preparation in 
the initial system. 

We shall consider two systems, the first being a melt of 
chains. Their hookings are described by the parameter 
C, = ( N  60' ) - 2  in (23 ); see the Introduction. The second 
system is a polymer network obtained by joining chains 
through their end groups. The free energy of such a gel 
network is equal to 

where r, are topologically inequivalent configuration of the 
gel. Their probabilities Pi! are determined by the expres- 
sions ( 6 )  and (9 ) ,  in which we must take r { x ,  as the argu- 
ment of the ST-function (7). To calculate (39) it is conven- 
ient to introduce the generating functional of the free 
energies Fc of all the np' molecules C washed out (see the 
Introduction and Ref. 5), including the gel, for which np' 
= 1: 

Cr 

where 1 is the number of links of the molecule C. Neglecting 
the effects of the hookings in the washed-out molecules of 
the gel, we must set for these molecules CT = C and 
Z 2 = Z'O'. In the thermodynamic limit the free energy 
(39) of the gel is obtained from (40) by taking the limit 

F , { h } = F ( l ( h } -  lim F { s ( h } .  
8 -1 ,  a < l  

The subsequent transformations of the expression (40) 
are carried out in the same way as in Ref. 5, in which it is 
shown that the functional qm has the meaning of the gener- 
ating functional of the correlation functions of individual 
molecules placed in a space of dimensionality 3 ( 1 + m ) . 
The only difference from Ref. 5 for m #O is the presence of 
the additional topological potential U,  (G{X, ) ) acting only 
on the coordinates X, of the links of the polymer-network 
skeleton that is obtained by cutting out of the gel the chains 
that are attached to it by only one end. The change in the 
position of such chains over times long in comparison with 
r ,  does not change the topological invariants that parame- 
trize the regions r of the configuration space. Therefore, top- 
ological interaction of their links is absent. In the mean-field 
approximation the steric interaction of the links of the skele- 
ton is described by the potential us (X), the expansion of 
which in a Taylor series has the form (23) with 
C = C, = (NjO') -2.  

To calculate the partition function Z,,,, from ( 12) and 
( 161, and the generating functional Ym,c, from (40) for the 
corresponding systems, we make use of their representation 
in the form of a functional integral over a field p(X). In the 
SCF approximation @(x) should be found by minimizing 
the effective action Sm {a. Since it is difficult to find an 
analytic solution of the equations that we have obtained for - 
p(X), we make use of the variational approach, assuming 
the coordinate dependence of ?(X) to be Gaussian, corre- 
sponding to the Gaussian character of the fluctuations of 
links of the chains. We note that in the limit of strong topo- 
logical interactions ( 32 ) this approximation becomes exact. 

A. Solution of linear chains 

It is not difficult to show, in the same way as in Refs. 1- 
4, that the partition function Z,,,, of this system can be 
"packed" as a Gaussian functional integral with effective 
action 

In deriving (42) we have used the smallness of the field v ,  
(37). The quantity H in (42) defines the activity of the ends 
of the chains, and we have set 

g ( 0 ) g n ~  

-c, = 1 - --- 
A ?a 

(43 

In the SCF approximation the partition function Z,,,, in 
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( 16) and the densityp(X) ( 17) in the replica space are given 
by the expressions 

w h e r e F ( ~ )  is found by minimizing the action (42). In the 
Gaussian approximation, F ( x )  = & o o ( ~ ) ,  where the 
function lc,OO is defined in (32), and the parameters ,  A,, 
and B, are found by minimizing the action (42): 

From (44) and ( 18), for the density - of links we find the 
expression p = p'O~/il,il,A, with p'O' = q, '/2g'O', while from 
(44) and (21), (23) we obtain for the free energy of the 
system 

For N, <n(z, 4 1 ) the expression (46) obtained goes over 
into (35), since such a polymer can be regarded as one gigan- 
tic chain of total length N = ~ 8 .  In the opposite case N S  N, 
(z, ) 1) the equation of state that follows from (46) is the 
same as in the absence of hookings. Thus, the Gaussian ap- 
proximation makes it possible to give a correct description of 
hooked chains over times short in comparison with T,, for 
arbitrary relative magnitudes of the parameters 8 and Ne . 
B. Polymer network of a gel 

We shall make use of the concept, obtained in Refs. 4 
and 5, of the generating functional (40) for a system of 
chemical bonds (see ( 16) in the form of a functional integral 
over fields q,o(x'O'), qi (X)  ( i  = 1, ..., n) with effective action 

Here a, = a ( T'O)) /a ( T) is a factor describing the thermal 
expansion,of the chains and zf is the activity of thef-func- 
tional links through which the joining occurs. The func- 
tional S, describes the contribution of the topological inter- 
actions: 

The fields ve and v, describing, respectively, the hookings of 
all the chains and the effective hookings of the chains of the 
gel skeleton have been determined earlier. The functionp (X) 
is equal to the density of links of the gel network in the re- 
plica space, whilep, (X) is the density of links of the skeleton 
of this network. These functions are related to'the corre- 
sponding densities in the initial and final systems by the rela- 
tion ( 18). It is not difficult to show that the interaction v, 
makes a contribution both to the gel fraction and to the sol 
fraction, describing the effects of hookings of their chains. 
Henceforth we shall neglect such effects (Ce = O), confin- 
ing ourselves to times that are long in comparison with the 
maximum relaxation time: t s ~ ,  . The field us (X) makes a 
contribution only to the gel fraction, and describes the effect 
of the steric interaction of the chains of the gel skeleton. The 
assertions advanced above are a consequence of the follow- 
ing formulas, obtained in Refs. 4 and 5: 

which determine in the SCF approximation the contribu- 
tions of the sol fraction and gel fraction to the functional q, 
(40). The fields q, y' in (49) are found by minimizing the 
action S,, (47). The index j = 0 corresponds to a symmet- 
ric (with respect to the replicas) extremal value q, y), while 
the indices j = 1, ..., n correspond to a nonsymmetric extre- 
ma1 value. In the Gaussian approximation for i#O, 

where IC.,, is defined in (32). Minimizing (47) with respect 
to Fy' in the limit n = m = 0 gives 

where 0 < u < 1 for p >pc = Cf- 1 ) - '. The parameters A, 
and B, are determined by the expressions (45), in which we 
must set 

C= (1-u)C, / ( l+u) ,  C,= (N,(OJ)-', 

z, = - / ~ , R , / ~ N , C " ~  (51) 

The main difference between (5  1 ) and (45) is the change of 
sign of z,, which strongly alters the result in the limit of 
weak entanglement of the chains. Whereas for z, + co the 
relations (45) describe a system of noninteracting chains, in 
gels for z, -. - co the expression (51) leads to the classical 
theory of high elasticity. In (51) the quantities N, and R, 
are the numbers of links and independent rings in the gel, 
and are related to the total number N of links in the initial 
system by the relations 

Near the gel-formation threshold, at T =p/pc - 1 4 1, we 
f indp-~ ,p ,  -72, and R, -73. 

In the limit of strong entanglement of the chains the 
gradient terms ( Vq,)  and field terms v, q, in (47) are of the 
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same order of magnitude - E  ( 1. From this condition it is 
not difficult to obtain the estimate (37) for the applicability 
of the expansion (23) of v,. The anisotropy of the field v, 
(38) along and at right angles to the direction of the chain 
makes a contribution only to small cross terms of the form 
v, ( V ~ J ) ~ - E ( V ~ J ) ~ ,  which we did not even begin to write out 
in (47). With decrease of the entanglement of the chains the 
contribution of both effects is reduced still further. For the 
free energy of the network for E <  1 there follows from (49), 
(40), (41 ), and (21) the expression 

Here the parameter A, = NgC '12/Rg 2 1 characterizes the 
magnitude of the steric interactions. It depends essentially 
on the conditions of preparation of the polymer network, 
and increases with increase of the entanglement of its chains 
in the initial system. In the case A, 2 A,, from (52) we find 

According to (53), the deformation of the network is com- 
posed of an affine and a nonaffine component. The affine 
deformation is described by the last two terms in (53). The 
first of these ( -A ) describes the elastic response of the 
network under affine stretching of the points at which its 
chains are joined. The logarithmic term in (53) determines 
the entropy of the entanglement of the chains: For a given 
position of the joining points the chains can be interwoven in 
different ways. For A, )A, both these terms are small in 
comparison with the first term, which describes the nonaf- 
fine deformation of the lattice. This term, analogous to that 
obtained in (35), arises from the partial disentanglement of 
the chains of the network as it is stretched. Complete disen- 
tanglement in a given direction ,u = x ,  y, z occurs when 
A, -A,, after which the chains remain entangled only as a 
result of true topological hookings. For A, SAP, from (52) 
we find 

and the free energy of the gel is determined by the classical- 
theory expression with N ''' = R,; see (3).  

We shall compare the result (53) with the phenomeno- 
logical formulas that describe the experimental data with 
great accuracy. As shown in the work of Bartenev and Kha- 
zan~vich, '~ uniaxial and biaxial stretchings of polymer net- 
works are well described by formulas that can be obtained 
from (52) with the choice 

@ (A,)  =Elhu+Erh,,2. (55 

When this is compared with (53) we must take into account 
that the constant terms in (53) are unimportant and the 
logarithmic term does not make a contribution to the stress a 
when the deformation of the gel is not accompanied by 
change of its volume. When this is taken into account for 

a 2 A )  1 (53) goes over into (55) (a is the swelling coeffi- 
cient of the gel, characterizing the change of its dimensions 
in comparison with the dimensions in the initial system). 
prissZ8 proposed a formula that follows from (52) with 

It gives a correct description of a compressed gel and a suffi- 
ciently good description of the experimental data on the 
stretching of a compressed gel. It is not difficult to see that 
our result (53) is also in excellent agreement with the formu- 
la (56). Thus, the expression (52) essentially takes into ac- 
count both the elasticity mechanisms considered in Refs. 28 
and 29 and gives a correct description of highly elastic poly- 
mer-network deformations that are small in comparison 
with the maximum values (500-1000% ). 

The equilibrium swelling coefficient a = A, of a gel is 
determined by minimizing its free energy (52). In uniaxial 
stretching (compression) of such a gel, not accompanied by 
change of volume, the quantities A, = a A  and 
A, =A,  = a A  -'I2. Differentiating (52) with respect to A, 
we find 

For A, <a this expression goes over into the classical-theory 
result (3),  with I\pff = Rg . In the caseA2As /a the chains of 
the gel are completely disentangled in the direction of the 
axis of stretching, but remain entangled in the perpendicular 
directions. Disentanglement in these directions occurs only 
under strong compression (A 5 a2 /As  ). 

The characteristic form of the dependence (57) is 
shown in Fig. 3 in the Mooney-Rivlin coordinates (4).  For 
small A - ' < 1, in accordance with the formula (4)  the func- 
tion f (A -') is linear and decreases slowly with increase of 
A - ' 2 1. With increase of a the steepness of the linear part at 
A -' < 1 decreases, and for sufficiently strong swelling a the 
classical theory (3)  becomes applicable. The region of appli- 
cability of the classical theory increases with decrease of A,. 
For sufficiently small A, S 5 the function l ( A  -') does not 
decrease with increase of A -' > 1, but remains constant or 
increases slowly. The distinctive features of the behavior of 
g(A that are considered here are in agreement with the 

FIG. 3. The theoretical deformation dependence (57) of a polymer 
network in the Mooney-Rivlin rectifying coordinates ((A - ' ) = U/U,, for 
the parameter values a, = 1 a n d l ,  = 10 (the solid curves) and A ,  = 100 
(the dashed curves). The numbers denote the corresponding values of the 
parameter a. 
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experimental data of Ref. 6. We emphasize that the quantity 
a is the swelling coefficient relative to the situation in the 
conditions of synthesis, and not the the dry state of the 
network, as is usually assumed in experiments. 

5. CONCLUSION 

Thus, we have shown that in the framework of the 
mean-field theory ( 16) the free energy of a polymer with a 
fixed topological structure and entangled nonintersecting 
chains has the form ( 2  1 ), (29), and we have calculated the 
entropy term (23) in the leading approximation in the small 
parameter E = l/Ns ( 1. In the case of weakly entangled 
chains (see Fig. 2a), the results obtained reproduce the re- 
sults of the classical theory of high elasticity. ".18 In the limit 
of strongly entangled chains (see Fig. 2b) we have shown 
that the entropy of the gel is determined by the elasticity of 
the quasinetwork of effective hookings (Figs. 1 and 2b). 

The method of replicas in the formalism of functional 
integration over paths (rather than over fields5) was first 
used for the description of polymer networks in Refs. 30 and 
3 1. In these papers the network that is obtained as a result of 
the joining of a phantom chain at the points of its self-inter- 
section was considered. In Ref. 3 1, in fact, a model of a quasi- 
network was proposed for the description of topological in- 
teractions. This quasinetwork consisted of mobile cross links 
that could fluctuate along the chain, within certain limits, 
about their stationary average positions. In the calculations, 
both the fixed cross links of the initial network and the mo- 
bile cross links of the quasinetwork were simulated by a qua- 
dratic external field acting in the replica space on the links of 
the phantom chain. Unfortunately, in this model no account 
was taken of the nonaffine character of the stretching of the 
quasinetwork, which arises on account of the partial disen- 
tanglement of the polymer chains (see the Introduction). 
But since it is precisely this effect that distinguishes a quasi- 
network from an ordinary network, the authors of Ref. 31 
did not succeed in obtaining even the Mooney-Rivlin de- 
pendence (4)  for values of A not too close to unity. 

The method of introducing an external field to describe 
the topological interactions has been used in a large number 
ofpapers. First we shall consider those in which the topolog- 
ical constraints are modeled by impenetrable walls or by 
rods placed in the polymer. In such models the fluctuation 
length 6, coincides with the range r, of the field, and there is 
no small parameter: E Z  (g,/r, ) - 1. In reality, the fluctuat- 
ing chain under consideration is in no way different from the 
chains (simulated by obstacles) that surround it, and their 
fluctuations wash out the Sfunctions interaction. There- 
fore, the modeling of topological interactions by sharp con- 
straints is too crude to display the presence of the small pa- 
rameter E = l/Ns < l. 

We shall discuss these models in more detail. As shown 
in Ref. 32, in the model of a "chain in a lattice of obstacles" a 
closed chain of given length N has, on a scale large in com- 
parison with g,, a fractal dimensionality D = 4 greater than 
the dimensionality of the space in which it is situated, and its 
free energy is not additive in N. In the opinion of the author, 
this model, which predicts such a superglobular state, exag- 
gerates the compressive effect of the topological interac- 
tions. The neighboring chains, which in the model are under- 
stood as obstacles, are in reality not "nailed down," but 

adjust themselves in such a way as to form an effective field 
(26) that globularizes the chain on a scale larger than 6, (so 
tha tF-NandD= 3).  

In the "chain in a tube" model1' one assumes the pres- 
ence of strong anisotropy singling out the direction of the 
tube. We have shown (see (38))  that, as a result of the 
"smearing out" of the walls of the tube by thermodynamic 
fluctuations of the chains composing it, such anisotropy 
makes a contribution that is small in the parameter E 4 1, so 
that the idea of a tube loses its meaning. We note that over 
short times, when such fluctuations can be neglected, both 
models give a good description of the dynamics of the 
chain.33,fl,13 

Example of continuous analogs of the "chain in a tube" 
model are the various modifications of the "channel" model 
of Refs. 6 and 7, in which the topological interactions are 
modeled by a harmonic potential binding a chain to a chan- 
nel. We note that in such models, in fact, one calculates not 
the entropy of the system but the free energy Fof the system 
in a given external field. To calculate the entropy of the sys- 
tem with internal constraints we must subject from F the 
energy of the interaction with this field (see the discussion 
after (28)),  which is of the same order of magnitude as the 
entropy itself. This subtraction can change not only the mag- 
nitude of the entropy but also its functional dependence on 

4. 
In conclusion we shall consider possible generalizations 

of the theory proposed. To take account of the finite extensi- 
bility of the chains we must replace the Gaussian bond func- 
tion g(x)  (10) by a more realistic function, e.g., one with 
free articulation: g (x)  = g6( 1 xJ  - a).  The results that are 
then obtained for strong stretchings A ,  -Am,, - N - ' 1 2  in 
the case A, SA,,,/a are in agreement with the theory of 
Isihara et ~ 1 . ~ ~  

We now discuss the role of fluctuation effects. The 
mean-field theory ( 16) developed in this paper is based on 
the assumption that the fluctuations of the density p(X)  in 
the replica space are small. The longitudinal fluctuations of 
p (X)  in each of the replicas are due to the potential interac- 
tions (the excluded-volume effect). The principal distin- 
guishing feature of the topological interactions is the fact 
that they tend to suppress transverse fluctuations of the den- 
sity p(X) ,  thereby carrying the chain into a statistically cer- 
tainZ6 globular state. This is why the mean-field theory gives 
an adequate description of the system in the case of weak 
excluded-volume effects. As is well-known," the potential 
interaction of the links of the chains of a network (quasi- 
network) is also well described in the framework of the 
Flory (SCF) approximation that we have used. In the swol- 
len state of networks in the scaling region topological inter- 
actions are unimportant. The replica formalism proposed by 
us makes it possible to take exact account not only of ex- 
cluded-volume effects but also of the topological structure of 
networks. As shown in Refs. 11 and 5, such a gel can be 
described in the framework of the concept of blobs, the inter- 
nal structure of which depends in an essential way on the 
magnitude of the conversionp of the polymer n e t ~ o r k . ~ ~ . ~  

The author expresses his gratitude to A. R. Khokhlov, 
F. F. Ternovskii, and also the participants in the seminar on 
the theory of polymers at Moscow State University for useful 
discussions on the results of this work. 
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APPENDIX 

Calculation of the eigenvalues of Eq. (30) 

For a nonzero wave vector (q#O) a replica-symmetric 
solution of (30) is easily found: 

Here $oo is defined in (32) and the corresponding eigenvalue 
is equal to 

It is also not difficult to find the following eigenvalues: 

A, (q, n) = A,, (q, 0 )  / I I [ A ( ~ . ) I " ~ .  n,=O.1.2.  .. . 
P 

(A.3) 
A ( h )  = l + l / f [ C h - 2 ( l +  m)l , 

to which correspond degenerate replica-aymrnetric eigen- 
functions. According to (A.3), the eigenvalues with n, = 1 
closest to the largest eigenvalue (n = 0)  are separated from 
it by a finite interval and, for sufficiently long chains 
(N) l/ln A(A, ) - N,, ), may be disregarded. If in the initial 
system the polymer had dimensions L F', the wave vector q 
in (A. 1 ) takes a discrete series of values: 

According to (A.21, for N) (L'0'/a)"2 the eigenvalues 
with q#O are unimportant. Thus, when both inequalities on 
N are fulfilled, the free energy of the chain is completely 
determined by the expression (35). We note that the in- 
equality N) (L '0'/a)"2 implies that the size of the polymer 
in the initial system is small in comparison with the radius 
-aN ' I 2  of a Gaussian coil. The density fluctuations are cor- 
respondingly small, and this ensures that the mean-field the- 
ory is applicable for the description of the initial system. 
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