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Measurements of the magnetization and differential susceptibility of two gadolinium single 
crystals were carried out in magnetic fields H = 0-5 kOe at reduced temperatures t = lop4- 
loW2. The results of these measurements and an analysis of the published data demonstrated that 
static critical behavior of gadolinium corresponded to the crossover region and the influence of 
the uniaxial anisotropy was significant at reduced temperatures t(8.3 X loW4. 

1. INTRODUCTION 

Gadolinium is a rare-earth metal which crystallizes in 
the hexagonal close-packed structure and exhibits simple 
ferromagnetic ordering at temperatures 250 < T < T ,  =: 293 
K .  Its ferromagnetism is due to the Gd3+ ions which are in 
the 'S,,, state. The spherical distribution of the electron 
density and the absence of an orbital momentum suggest 
that the magnetocrystalline anisotropy energy of gadolin- 
ium should be considerably less than for other rare-earth 

This has been confirmed by magnetic2 and neu- 
tron-diffraction3 investigations and it has been established 
that the easy magnetization axis coincides with the hexagon- 
al axis and that the anisotropy constants K l  and K, depend 
in a complex manner on the temperature of a sample and on 
the applied magnetic field H. An analysis of the influence of 
Hand Ton K, and K,, carried out by Belov et aL2 and by 
Yang,4 demonstrated that the magnetocrystalline anisotro- 
py is due to single-ion and two-ion mechanisms and that the 
role of the latter increases on approach to T -  T , .  Conse- 
quently, the anisotropy constant K,  of gadolinium does not 
decrease in the limit T-. T , ,  as expected from the magneto- 
crystalline anisotropy theory,' but increases and in the vicin- 
ity of T, passes through a maximum remaining finite in a 
wide range of temperatures above T, (Refs. 2 and 4).  Inves- 
tigations of quasielastic neutron scattering not only confirm 
these results, but they show that the magnetocrystalline ani- 
sotropy observed in the paramagnetic phase is due to the 
uniaxial anisotropy of the short-range magnetic order.5 

These experimental observations and an analysis of the 
nature of the magnetic ordering thus demonstrate that gado- 
linium is a uniaxial anisotropic magnetic material and, con- 
sequently, its critical behavior may be classified as of the 
Ising type. However, this hypothesis is not supported by the 
results of experimental studies of the critical behavior of 
gadolinium. 

The static critical behavior of gadolinium had been in- 
vestigated on many occa~ions.~- '~ Measurements of the spe- 
cific heat6., thermal expan~ ion ,~ .~  magnetic properties,I0-l6 
and Mossbauer spectra1' carried out on single-crystal and 
polycrystalline samples of gadolinium were used to deter- 
mine the whole set of critical exponents a * , a ' , 8 ,  y ' and 
S (we shall use the generally accepted notation for the criti- 
cal exponents and employ the plus and minus signs for 
T >  T, and T < T, ,  respectively). Table I gives the experi- 
mental values of the critical exponents selected from the 
published data. Preference was given to those investigations 
which were carried out on crystals with fewest defects and in 

a sufficiently wide range of reduced temperatures 
10W4<t< loW2, where t = IT - T, I/T,. For comparison, 
Table I1 lists the most accurate (at present) critical expo- 
nents calculated using the renormalization group in the E 

expansion for three-dimensional Heisenberg (n = 3), XY 
(n = 2), Ising ( n  = 1) including .c5 (Ref. 20), and isotropic 
dipole including E' (Ref. 21) magnetic materials. 

The critical exponents of the specific heat a * (Refs. 6 
and 7) and of the thermal expansion a' (Refs. 8 and 9) 
should be, according to the theoretical predictions, equal to 
one another, showing that gadolinium is either a Heisenberg 
or an isotropic dipole magnet, since a' and a* assume 
negative values close to the theoretical exponents. In the case 
of the critical exponents 0 ,  y, and S, we should note that all 
the investigations of the temperature dependences of the 
spontaneous magnetization M,,  characterized by the critical 
exponent p (see Table I ) ,  also suggest that gadolinium is a . 

Heisenberg or an isotropic dipole magnetic material: the val- 
ues of y are closer to those predicted by the Ising model, 
whereas S does not agree not only with the fluctuation theo- 
ry but also with the mean field theory. An analysis of the 
experimental results published in Refs. 6-17 shows that this 
disagreement is not due to the characteristic features of the 
critical behavior of gadolinium, but is the result of the meth- 
od adopted to determine the critical exponents. In fact, in the 
majority of the investigations for which the results are given 
in Table I the critical exponents 0 ,  y, and S were found by 
fitting the experimental M-H-T data to the scaling equation 
of state for the magnetization, which implies that the scaling 
law y = p(S  - 1) is obeyed. Obviously, the critical expo- 
nents determined in this way should satisfy the scaling laws 
containing only 0 ,  y, and S, whereas their separate values 
may not correspond to the true asymptotic critical behavior 
since in practically any experiment the asymptotic critical 
region is never reached. Therefore, the experiments yield not 
the asymptotic but the effective critical exponents, which 
may differ significantly from the asymptotic values because 
real crystals exhibit additional interactions that perturb the 
initial critical behavior. For example, isotropic dipole inter- 
actions in Heisenberg magnetic materials give rise to a de- 
pendence of y on the reduced temperature t. Moreover, in 
the crossover region the exponent y passes through a mini- 
mum and the difference between the values of y and ye, may 
reach 10% or more.22 

Therefore, for the reasons given above the published 
experimental values of the critical exponents do not allow us 
to determine the class of universality of the static critical 
behavior of gadolinium. We therefore carried out an investi- 
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TABLE I. Experimental critical exponents (CE) of gadolinium (published data). 

*The numbers in parentheses denote the experimental error in the critical exponents: po = 
p(300 K)/p(4.2 K ) .  

gation of the static and dynamic aspects of the critical behav- 
ior of gadolinium. The present paper reports the results of a 
study of the magnetic properties of this element and an at- 
tempt to determine the class of universality of the static criti- 
cal behavior on the basis of these properties. 

CE 

a +  
a- 
a+ 
a-  
a+ 
a- 
a+ 
a- 
B 
P 
B 
y 

1 
Y 
6 

B 
s' 
I 

2. EXPERIMENTAL METHOD AND RESULTS 

In contrast to the previous  investigation^'^-'^ of mag- 
netic properties of gadolinium, in which the critical expo- 
nents were estimated solely from the magnetization mea- 
surements, we carried out experiments in which we 
determined P, y, and S independently of one another. This 
was done by recording the temperature and field depen- 
dences of the magnetization Musing a vibration magnetom- 
eterZ3 and of the susceptibility x using a modulation magne- 
t~meter , '~  which made it possible to carry out measurements 
in near-zero magnetic fields ( - 0.1 Oe). The temperature 
dependences of M and x were recorded under quasistatic 
thermal conditions. The rate of change of temperature was 
selected in the course of measurements on the basis of a ther- 

Values of CE 

-0.09 (5) * 
-0.32 (5) 
-0.20(2) } 
-0.20(2) 
-0.06 (3) 
-0.121 (2) 
-0.25 
-0,32 

0.385 

>0.39 
O j 9  } 
1.3(1) 

1.24(3) 
0.37(1) 1 
1.25(10) 
4.39 (10) 

::a:)::) ] 
3.615 (15) 
0.399 (16) 
0.362181 1 

mal hysteresis and it did not exceed 0.5 K/h. The isotherms 
of the field dependences of M and x were recorded keeping 
the temperature of a sample constant to within 5 X Kin 
magnetic fields up to 5 kOe, which were created by an elec- 
tromagnet where the field homogeneity was within 5 X lop4 
cm- I. Copper-constantan thermocouples, calibrated using 
a standard platinum resistance thermometer, were used to 
determine the temperature of a sample and as sensors used to 
control the temperature. 

Our measurements of M and ,y were carried out on two 
gadolinium single crystals differing from one another by the 
Curie points: Tc = 293.575 K for Gd I and Tc = 293.370 K 
for Gd 11; these crystals were oriented with the aid of the 
Laue diffraction patterns to within 0.5". Orientation and me- 
chanical finishing of cylindrical crystals were followed by 
chemical etching in order to remove the cold-worked layer 
and by annealing at T = 900 K for 4 h. X-ray and electron 
diffraction investigations, as well as the high values of Tc 
(Table I) ,  demonstrated that the investigated gadolinium 
single crystals were of high quality. 

The temperature dependences of M obtained for gado- 

T a "  I Interval o f t  

TABLE 11. Asymptotic critical exponents (CE) of three-dimensional model and dipole crys- 
tals*. 

I I 

Comments 

single crystal 
 PO=!^ 
f"="~ that 

single crystal 
po = 300 

single crystal 
p0=227 

polycryst. sample 
single crystal 
reanalysis of data of 
Ref. 13 
polycryst. sample 
analysis of data of 
Ref. 13 using equa- 
tlon of state 
deduced from equa- 
tion of state 

Mossbauer spectros- 
copy 

291.31 

293.358 
293.425 
293.62 

292.5 

291.1 
292.5 

293.3 

291.85 
291.75 

n Isotropic dipole 

I magnetic mate- I rials 

Ref. 

[ G I  

171 

[81 

[91 

[ l o ]  

[ I21 

[12] 

[ I41  
[ I51 

[I61 

[ 17 ] 

10-3 - 10-t 
B .  

2.5.10-4-8.6. 
1.3~10-3-6.6~10-2 

7.10-4-4. lo- '  
1) 

1.7.10-"6. l o - *  
2.7~10-2-1.9~10-' 

tc2.7. 
2.2.10-3-0,2 

9.9. 10-3-3.7. 10-' 
t>2.10-3 

t>4-10-3 

~ 1 0 - 3  
10-4-10-3 

*Values of the critical exponents fl and y were taken from Ref. 20, whereas a and S were 
calculated using the relationships 2 = a + 2P + y and y = P ( 6  - 1 ). The numerical values of 
the critical exponents for isotropic dipole magnetic materials were based on the calculations of 
Ref. 21. 
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M, rel. units 

FIG. 1 .  Temperature dependences of the magnetization of gadolinium 
( N ,  = 0.452) along the easy (0)  and difficult (0)  magnetization axes: 
1 1 ,  1 ' )  10.3 Oe; 2) ,  2') 54.1 Oe; 3 ) ,  3') 100.5 Oe. 

linium along the easy and difficult magnetization axes in 
weak magnetic fields (H < Ha and H < H,, where Ha and 
H, are the anisotropy and demagnetization fields, respec- 
tively) were obtained for a sample with identical demagnet- 
ization factors N, along the easy and difficult magnetization 
axes (Fig. 1 ). It is clear from this figure that the magnetiza- 
tion and the easy axis remained constant in the ordered 
phase right up to Tc, and that there was an inflection at the, 
Curie point, and this inflection shifted toward lower tem- 
peratures on increase in H. The value of M for the difficult 
magnetization axis at temperatures T < Tc decreased on in- 
crease in temperature and it was found that an increase of H 
or a reduction in N, increased the degree of the change of M 
with T. As in the case of the easy magnetization axis, an 
inflection was observed in the dependence M( T). Moreover, 
it is clear from Fig. 1 that the anisotropy ofM, retained in the 
paramagnetic phase, increased in H. 

The characteristic features of the temperature depen- 
dence of M in a magnetic field, typical of the easy and diffi- 
cult magnetization axes, can be explained on the basis of the 
Landau theory, which predicts that anisotropic crystals of 
finite dimensions should exhibit second-order phase transi- 
tions of two types.'* In a magnetic field applied along the 
magnetization axis a transition takes place from an inhomo- 
geneously magnetized (polydomain) to a homogeneously 
magnetized (single-domain) state. The characteristic signs 
of this transition are constancy of the magnetization M, 
along the field in a wide range of temperatures, a linear de- 
pendence of M, on H at temperatures T <  Tc (H) and in 
fields H < H,, where T, (H) is the temperature of the transi- 
tion in a magnetic field, and the presence of an inflection or a 
kink in the case of the M(T) curve at T = T, (H) or at 

H = H, = N, Ms. However, in the case when H is parallel to 
the difficult magnetization axis there is a transition from a 
state in which the magnetization component M, along the 
easy axis does not vanish to a state with M, = 0. The magne- 
tization measured along the field then exhibits the same be- 
havior as M, in the case when the field H is parallel to the 
easy axis. However, in contrast to the easy axis, when we 
have 

the magnetization in a field H parallel to the difficult axis is 

and the magnetization measured in a field can increase or 
decrease when T is increased. The sign of the temperature 
coefficient of M, depends on the corresponding sign of the 
thermodynamic coefficient of the anisotropy constant 
k = 2K, /M f .  For any relationship between N, and k the 
value of M, remains constant only if K ,  a MZ Otherwise, 
M, varies with temperature. 

Therefore, in view of the weak dependence of N, on T, 
the reduction in M, of gadolinium observed on increase in 
temperature can be explained by an increase in k in the limit 
T- T,, This hypothesis is supported also by the temperature 
dependences of M,, recorded for a sample with a smaller 
demagnetization factor and characterized by an increase in 
the temperature coefficient of the magnetization. It should 
also be mentioned that an increase in k in the limit T + Tc is 
observed also when K, is determined directly in strong mag- 
netic fields.*,I3 

Measurements of the differential susceptibility not only 
confirmed the characteristic features of the M-H-T data, but 
also revealed additional anomalies. In particular, the value 
of x measured parallel to the easy magnetization axis de- 
creased on increase in T (Fig. 2) and it remained constant 
only in the direct vicinity of T,, whereas x parallel to the 

X ,  rel. units 
r 

FIG. 2. Temperature dependences of the differential susceptibility of 
gadolinium in fields H = 0 and H _  = 0.1 Oe: 1 )  easy magnetization axis 
( N ,  = 0.358); 2 )  difficult magnetization (N,  = 0.321). 
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difficult magnetization axis passed through a maximum at rdq 1d3 h 

T = Tc (0) which was retained up to H = 650 Oe (Fig. 1 in 1 l l i i l ' i  

Ref. 19). In fields H >  650 Oe the temperature dependences Z? - 

were the same for the easy and difficult magnetization axes. 
In contrast to thcM-H-T data, we found that thex-H-T 

results could not be explained by the Landau theory, accord- 
ing to which the susceptibility should remain constant in the 
magnetically ordered phase and it should be equal to l/Nd 
and l/(Nd + k) for the easy and difficult magnetization 
axes, respectively. We found that along both axes of the 
gadolinium crystal the value o f x  decreased at temperatures 
down to T = 291.5 K which was clearly due to modification 
of domain walls. In fact, in the case of magnetically uniaxial 
crystals withK, that does not vanish at T = Tc there should 
be a transition from a B1och to a linear wa11'25'26 This type of nc, 3 Double logarithmic dependences of Ms /M0 and on r, and of 
wall is characterized by a reversal of the magnetic moment /Mo on h = H, /Ho ( H ,  is the internal magnetic field), 
direction only when the modulus of the magnetic moment 
passes through zero. Investigations of the stability of a wall - - 
in a uniaxial medium have shown25 that transition to such a 
medium should be expected near Tc under the condition 
M :/8,yp = K1 (here, X, is the paraprocess susceptibility). 
If we assume that M, and X, are described by simple power 
laws with the critical exponents p = 0.38 and y = 1.33 and 
that K ,  depends weakly on temperature in the vicinity of Tc, 
we find that this condition is satisfied by gadolinium at 
T = 291.8 K. It is clear from Fig. 2 that this temperature is in 
good agreement with the experimental results. The absence 
of anomalies in the case of the M(  T) curves is due to the fact 
that theoretical estimates indicate that the change in the 
magnetization on transition from a Bloch to a linear wall 
does not exceed 1 % (Ref. 25). 

It follows therefore that the anomalous behavior ofx of 
gadolinium near Tc can be due to crossover from the Heisen- 
berg (Bloch wall) to the Ising (linear wall) critical behavior 
which, in the opinion of the authors of Ref. 10, was discov- 
ered by them first when measuring the power of the Bark- 
hausen noise of polycrystalline gadolinium. 

3. DETERMINATION OF CRITICAL EXPONENTS AND 
AMPLITUDES 

We determined the critical exponents and amplitudes 
from the experimental data of the type presented in Figs. 1- 
3. The spontaneous magnetization and the Curie point were 
deduced from the M-H-T data using the kink method.18 
Clearly, an inflection or kink of the M(T)  curve, corre- 
sponding to the transition from the inhomogeneously to the 
homogeneously magnetized state, is observed in the given 
field when M, = H /Nd and, consequently, a determination 

of the temperatures in which these inflections (kinks) are 
observed and of the corresponding values of H can be used to 
reconstruct the temperatufe dependence of M,; one should 
know the numerical value of N,. However, since N, was 
independent of T, its value could be estimated using the 
M-H-T data from Tc or the susceptibility data obtained at 
T = T, where x = l/Nd is measured along the easy magne- 
tization axis, and also by calculation from the geometric di- 
mensions using familiar expressions.' In the case of gadolin- 
ium the values of N, estimated by three different methods 
agreed to within 8%. It should be noted that in determina- 
tion o f 0  and y there was no need to know the exact value of 
N, so that its error did not affect the values of S and of the 
critical amplitudes. 

The experimental temperature and field dependences of 
M and X, corrected for N, and H,, are plotted on a double 
logarithmic scale in Fig. 3. Here, different symbols represent 
the experimental results and the straight lines 1, 2, and 3 
correspond to the following power laws: 

where M, = 4n-NSg p, = 24 474 G, Ha = k, TC/gpB 
S = 6 . 2 4 ~  lo5 Oe, andx, = M,/H, = 3.92 X lo-', where N 
is the number of atoms in 1 cm3, Sis  the spin number, g is the 
Land6 factor, k, is the Boltzmann constant, and ,LL, is the 
Bohr magneton. An analysis of the experimental results in 

TABLE 111. Experimental values of effective and asymptotic critical exponents (CE) and of 
critical amplitudes (CA) of gadolinium 
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6 CE and CA B I 
Effective 4.8*0.1 
Asymptotic 4.8*0.1 

1.13*0.07 
1.08*007 

0.197*0.015 
0.145*0.015 

aM 

Effective 6.72k0.08 1.95k0.15 - 
Asymptotic 1 6.72*0.08 1 - 1 - 1  1.21k0.15 0.55*0.05 0.73*0.03 0.27*0.03 

A I O X  

CE and CA D I R~ 



accordance with Eqs. (3)-(5), which was carried out by us 
using the least-squares method and a standard program, 
demonstrated that the best agreement between them was ob- 
tained for the critical exponents and amplitudes listed in Ta- 
ble 111. A comparison of the theoretical (Table 11) and ex- 
perimental (Table 111) values of the critical exponents 
indicated that P and 6 corresponded to isotropic Heisenberg 
and dipole magnetic materials. On the other hand, in the 
case of y the discrepancy between the theory and experiment 
exceeded considerably the experimental error. In the case of 
the nonuniversal critical amplitudes the theoretically pre- 
dicted universal ratio of these amplitudes, R, = TDB" I ,  

was much higher than the theoretical value for Heisenberg 
and dipole magnetic materials for which the renormaliza- 
tion-group theory and the E expansion (in the first order 
with respect to E )  give R, = 1.33 (Ref. 27). 

The critical exponents and amplitudes found by fitting 
the data to simple power relationships (3  ) - ( 5 )  give not the 
asymptotic but the effective  value^,^^,^' which in most cases 
are smaller than the theoretical values. In particular, the 
exponent y may be underestimated because of a number of 
factors, the most important of which is the difficulty of at- 
tainment of the asymptotic critical range in experiments. 
The value of y is also influenced strongly by the occurrence 
of crossover from one critical behavior to another, particu- 
larly in the crossover region.22 In any case, the correct deter- 
mination of the critical exponents and amplitudes requires 
correction to the scaling i.e., when an analysis is 
made of the experimental data, it is necessary to allow not 
only for the leading term, but also for the less singular terms. 
The first two terms of the correction to the scaling are of 
interest, but in the case of the majority of three-dimensional 
crystals the temperature dependences of the magnetization 
and susceptibility were analyzed in accordance with the ex- 
pressions 

where a, and a, are the corresponding nonuniversal ampli- 
tudes of the correction, and A is the universal correction to 
the critical exponent. The correction procedure is not usual- 
ly applied to a critical isotherm, because the asymptotic 
critical range is certainly reached here. The correction asso- 
ciated with the nonlinearity of the scaling fields gives rise to 
unimportant corrections to the dependence (5 ), as shown in 
Ref. 29. 

The final results of the analysis of the experimental data 
in accordance with Eqs. (6) and (7)  are presented in Table 
111, and the graphs demonstrating the validity of the adopted 
correction procedure are given in Fig. 4. It follows from Fig. 
4, which gives the dependences of the critical amplitudes B 
and r on ton a double logarithmic scale, that the maximum 
scatter of the fitting parameters does not exceed the experi- 
mental error in the investigated temperature ranges 
2X 10 -3< t<3 .7~  and 6~ 10-4<t<5.1 x for x 
and M, respectively. 

It therefore follows that in the correction to the scaling 
all the critical exponents (including y) and the universal 
ratio R, between the critical exponents of gadolinium are in 
good agreement with the theoretical values predicted for 
three-dimensional Heisenberg and dipole magnetic materi- 

FIG. 4. Double logarithmic dependences of the critical amplitudes B ( A )  
and r (0 )  on t, and of D (0)  on h. 

als with isotropic interactions. However, the experimental 
values of the critical exponents and of R, are insufficient to 
distinguish between these universality classes. It is therefore 
necessary to estimate the influence of the dipole and other 
forces on the critical behavior of gadolinium. 

4. DIPOLE NATURE OF THE CRITICAL BEHAVIOR OF 
GADOLINIUM 

Following Refs. 30-33, we shall estimate the contribu- 
tion of the dipole and anisotropic forces to the critical behav- 
ior of gadolinium from the crossover temperatures t ,  and t, 
found from the relationships 

where a, and a, are the crossover critical exponents for the 
anisotropic and dipole critical behavior, @'and 0" are the 
paramagnetic Curie points for the c and a axes, and Cis the 
Curie constant. The parameters g, and g, representing the 
anisotropic dipole interactions can be estimated using the 
molecular field theory.lp2 These estimates indicate that g, 
= 1.41 x loV4 and g, = 1 . 3 5 ~  lop3 for K, = 2 x  10' 

erg/cm3, N = 3.02 X cmp3, S = 7/2, and T, = 293.575 
K, which shows that t, = 8.31 x and t, = 8 . 0 2 ~  lop3 
if a, = 1.25 (Ref. 30) and a, = 1.37 (Ref. 31). It is thus 
found that the temperature of the crossover to the Ising criti- 
cal behavior is an order of magnitude closer to the Curie 
point than t, and, therefore, the former cannot affect signifi- 
cantly the critical exponents. The temperature of the dipole 
crossover t, occurs approximately in the middle of the inves- 
tigated range of the reduced temperatures t and, consequent- 
ly, the experimental situation corresponds to the dipole 
crossover region. This is supported also by the absolute value 
ofx (Fig. 3), which at t = 2.62 x satisfies the condition 
x = 1 dividing the critical range into the exchange (X 9 1) 
and dipole (x) 1) intervals.32 Consequently, beginning 
from t = 2.62 >( loV2 the critical behavior of gadolinium is 
governed by isotropic dipole forces. In this case we can esti- 
mate the amplitude of the correction to the scaling, the shift 
of the Curie temperature of an isotropic Heisenberg magnet- 
ic material by the dipole forces 
t ,  = [ T, (g) - T, (0) ]/T, (O), and the effective value of the 
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critical exponent ye, from the theory of the renormalization 
group and the E expansion.33 

In estimating these parameters we can use the scaling 
equations of state for the susceptibility and the ideas devel- 
oped in Ref. 33 for dipole systems, according to which the 
renormalization mass r (representing the reciprocal of the 
susceptibility) obeys the crossover scaling function 

where C, is a nanuniversal constant, t = [T, - T, ( O ) ] /  
T, (O), y, is the Heisenberg critical exponent of X, and 
y = x / i  (x = gd/tOd, i = =,/t :d). The asymptotic dipole 
critical behavior (t(gy*d) in Eq. (10) is described by a 
function X(y), which has a singularity at y = 1. Expanding 
X-'(y) near the point y = 1 and bearing in mind that 
1 - y--, (@,/tc)i, we find that if k t ,  Eq. (10) yields 

where t = [T, (g, - T, (0)  ]/T, (0); y, and A, are the di- 
pole critical exponent o fx  and the correction to the scaling, 
respectively. The complete expression for the nonuniversal 
constant B( 1) is given in Ref. 22 and will not be repeated 
here because it is too cumbersome. A comparison of Eqs. (7)  
and ( 1 1 ) shows that 

If we substitute in Eq. ( 12) the values B( 1 ) and cP, calculat- 
ed using the& expansion, then in the case of three-dimension- 
al crystals we find that 

and at a temperature t, = 4.17 X lo-' (estimated from the 
molecular field theory) when A, = 0.425 (Ref. 21 ), we find 
that a, = 1.017 for gadolinium. This result differs consider- 
ably from the experimental value (Table 111). A more cor- 
rect method for the determination ofa, was proposed in Ref. 
33. This method is based on a comparison of the expressions 
deduced from the macroscopic and microscopic theories of 
X ,  and it makes it possible to express the susceptibility of a 
substance in terms of the principal parameters of the micro- 
scopic theory. 

Obviously, we should have g, = r at some temperature t, 
Using this condition in Eq. ( 10) and expressing C, in terms 
of t, (t, = ( c / d ) = Y H ) ,  as in Ref. 33, we obtain an expres- 
sion 

from which we find that in the case of three-dimensional 
( d  = 3) crystals 

Thus, in finding t, from Eq. (15) we need simply to 
determine the temperature t, at which the experimental val- 
ue is x = 1/4r (X = 1 in the SI system). As pointed out 
already, the susceptibility x of gadolinium satisfies this con- 
dition at t = 2 . 6 2 ~  (Fig. 3). It then follows from Eq. 
( 15) that t, = 9.16X lop3, which is approximately twice as 

FIG. 5. Dependence of ye, on logtin the crossover range: 0 )  Ref. 16; A )  
Ref. 15; A ) Refs. 12 and 13; 0) Ref. 14; ) results of the present study. 

large as the corresponding estimate obtained from the mo- 
lecular field theory. Substitution of this value of t, into Eq. 
(13) on the assumption that A, = 0.55 gives a, = 0.727, 
which is in excellent agreement with the estimate of a, ob- 
tained from an analysis of the experimental data in accor- 
dance with Eq. (7).  

Another piece of evidence in support of the dipole na- 
ture of the critical behavior of gadolinium is provided by a 
comparison of the effective critical exponents ye, 
= - d lgx/d lg t calculated from the experimental results 

and theoretically. The definition of y,, and Eqs. (7) and 
(13) yield 

Here, 7 = t /t, . If we allow for terms of higher order, the 
correction to the scaling of ye, can be found from the scaling 
function for the susceptibility in the crossover range.33 
Equation (10) and the definition of ye, yield 

w h e r e y = ( l + f ) - @ d ; ~ ( Y )  = ~ ( ~ ) / ( l - y ) - ~ ~ ; P ' ( y )  is 
the first derivative of P(y) with respect toy. The expressions 
for the calculation of P(y) and P f ( y )  are given in Refs. 22 
and 33. The dependences of ye, on t calculated from Eq. 
( 16) (dashed curve) and from Eq. ( 17) (continuous curve) 
are presented in Fig. 5. Here, for comparison with the theo- 
ry, we plotted the experimental values of ye, of gadolinium. 
The points with different configurations in Fig. 5 correspond 
to the values of ye, listed in Table I. We must bear in mind 
that ye, cannot be determined from the experimental results 
at each temperature and, therefore, Fig. 5 gives only one 
value corresponding to the average temperature in the inter- 
val where the critical exponent was determined, bearing in 
mind that 7 should be calculated as the arithmetic mean of 
log t (Ref. 33). An estimate o f t  based on our results gives - 
t = 0.995 and log 7 = - 0.0022. In Fig. 5 this value of log t 
is represented by an experimental point labeled by a square, 
which is in good agreement with the theoretical value de- 
duced from Eq. (16). Consequently, in an analysis of the 
experimental data for gadolinium we need to consider only 
the first term of the correction to the scaling. This conclu- 
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sion is supported also by the results reported in Refs. 12 and 
13, which indicate that ye, = 1.33 and log i = 0.339 (Table 
I ) ,  and by the agreement between the values of a, deduced 
from the experiments and from Eq. ( 13). In the other case 
only the first term of the correction to the scaling is allowed 
for. Moreover, it is clear from Fig. 5 that all the experimental 
studies of magnetic properties of gadolinium correspond to 
the crossover range and it is therefore not surprising that the 
critical exponent y is undervalued compared with the 
asymptotic exponent. 

It therefore follows that an analysis of the experimen- 
tally determined magnetic properties carried out by us al- 
lowing for the possibility of crossover and also used in deal- 
ing with the correction to the scaling, demonstrates that all 
the critical exponents as well as the universal relationship 
between the critical amplitudes and the amplitude of the cor- 
rection to the scaling are in good agreement with the theo- 
retical values for magnetic materials whose critical behavior 
is determined by isotropic dipole interactions. 

In conclusion, we express our deep gratitude to A. S. 
Borovik-Romanov and K. P. Belov for their interest and 
valuable comments, and to S. A. Nikitin for supplying gado- 
linium crystals. 
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