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The hysteresis behavior of a system of dipole-interacting uniaxial ferromagnetic particles of low 
concentration is investigated. A number of new results are obtained for an ensemble of 
noninteracting particles. The application of the local-field approximation to remagnetization of 
dilute magnetics with random or parallel orientation of the easy axis is substantiated. The local 
field-distribution density is found. Analytic expressions are presented for the field dependence of 
the magnetization. The remagnetization curves calculated numerically for ensembles of varying 
concentration are also given. 

Systems of classical magnetic moments randomly dis- 
tributed in space and separated by a relatively large dis- 
tances, which interact with each other primarily through the 
dipole interaction, are the subject of this study. The intro- 
duced model applies, in the first place, to such experimental 
objects as ensembles of macroscopic ferromagnetic particles 
in a solid suspension of the type used in a magnetic record- 
ing, but it is also useful for the study of hysteretic properties 
of dipolar spin glasses. 

The energy of an ensemble of interacting dipoles is a 
complicated function of the angular coordinates of all the 
moments and, as in other disordered systems, has a large 
number of local minima-valleys. Equilibrium magnetic 
properties are studied numerically for spin glass systems 
mainly in weak magnetic fields, and the system relaxation 
toward thermodynamic equilibrium is the most interesting 
problem. For large values of elementary magnetic moments 
the barriers between valleys are high and, therefore, tunnel- 
ing and (at low temperatures) excitation transitions are not 
likely to occur. In this case the question of a thermodynamic 
equilibrium and relaxation towards it becomes a secondary 
one, while the system evolution caused by fact that the val- 
leys of potential energy lose stability and vanish when the 
external magnetic field H changes becomes primary. If one 
completely disregards transitions between valleys and as- 
sumes relatively high dissipation, one can ignore the mo- 
ments dynamics after loss of stability. The problem then be- 
comes one of tracking the minima of potential energy of an 
ensemble of interacting dipoles. The magnetization M ( H )  
averaged over the entire system then exhibits hysteretic be- 
havior, which is of principal interest. 

When the elementary moments do not have an internal 
anisotropy, each of them is not collinear with the local mag- 
netic field acting on it, and the hysteresis of M(H) exists 
only as collective interaction between the moments. When 
an internal anisotropy (of crystallographic origin or caused 
by particle shape) leads to magnetization hysteresis we have 
a much simpler solution even for noninteracting particles. In 
this case one can consider the interaction between the mo- 
ments as a perturbation and look for corrections to the ideal 
hysteresis loop by expanding in the moment concentration 
in the magnetic material. 

The first calculations for an ensemble of noninteracting 
single domain ferromagnetic particles were made by Stoner 
and Wohlfarth.' The properties of remagnetization curves 
for such ensembles with uniaxial, as well as with more com- 

plicated anisotropy of particle magnetic characteristics are, 
in principle, known now (see for example Ref. 2).  At the 
same time a rigorous remagnetization theory for an ensem- 
ble of noninteracting particles is still in the initial stage, in 
spite of long-term research efforts. A successive expansion in 
the particle concentration in the local-field approximation 
was used only for random Ising magnetic systems with di- 
pole-dipole interaction under thermodynamic eq~ilibrium.~ 
Applied studies that employ various approximations are 
dominant in the existing li terat~re."~ There is now an effort 
to model the remagnetization processes numerically using 
methods of molecular dynamics7 and semi-empirical sys- 
tematization of experimental results.' 

The magnetization hysteresis of a dilute system of iden- 
tical spherical ferromagnetic particles with an easy anisotro- 
py axis is studied in this paper. The situations with random 
axes orientation and with axes parallel to an applied field are 
considered. The equilibrium equation for an elementary mo- 
ment and its main properties are studied in the first section; 
the remagnetization curves for an ensemble of noninteract- 
ing particles are derived in the second section; in the third 
section we discuss the justification for the use of the local 
field approximation. The Holtsmark method for calculation 
of a three-dimensional local magnetic field distribution 
function, which turns out to be close to a Lorentzian, is cal- 
culated in the fourth section, and on the basis of this expres- 
sion the remagnetization curves for real dilute magnetic sys- 
tems with random or parallel easy-axes orientation are 
constructed numerically in the last two sections. It is possi- 
ble to derive analytical expressions for a number of charac- 
teristic points and regions of these curves, in particular for 
the value of remanent magnetization and (in an oriented 
ensemble) coercive force. 

1. SINGLE PARTICLE 

For simplicity let us assume that all ferromagnetic par- 
ticles have spherical shapes and identical radii a. In the low 
temperature region (we limit ourself to only these tempera- 
tures) the particle magnetic moment m rotates without 
changing its value /m( =Is Vo, where I, is the saturation 
magnetization, and V,, = 47ra3/3 is the particle volume. The 
magnetic field will be measured in units of PIs (P is the 
magnetic anisotropy constantg), and the magnetic moment 
in units of I, Vo (i.e., /mi = 1 ). The energy will correspond- 
ingly be measured in units of PI: V,. 

In this section we consider only one particle of an en- 
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semble in an arbitrarily directed magnetic field h. Let us 
introduce a coordinate system with z' axis parallel to the 
magnetic field and x' axis in the plane formed by the magnet- 
ic field and the particle easy axis. The easy axis direction in 
the x'Oz' plane is given by the spherical angle 8,, the direc- 
tion of the magnetic moment (which, in case of the single- 
axis anisotropy, lies in the sample plane) by the angle 8. We 
can assume, without limiting the universality, that 8, 
changes from 0 to ~ / 2 .  The particle energy per unit volume 
is 

U=-h ,  cos 0+ '1, s in2(0-0 , ) .  (1) 

The equilibrium value of the angle 8 is determined by 

dU/6'0=hZ sin O f ' / ,  sin 2 (0 -0 , )  =0, (2)  

which must be complemented by the stability condition 

a2U/a02=h, cos 0+cos 2 (8 -00)>0 .  ( 3  

Analysis of Eq. (2)  shows that for any angle 8, there 
exists a region of weak fields Ih, I < H0(8,) where two solu- 
tions for 8 exist, and a region of strong fields (h, ( > H, (8,) 
where the solution is unique. This agrees with a physical fact 
that in a weak magnetic field anisotropy determines two 
equivalent moment directions, while in a high field the influ- 
ence of anisotropy is suppressed and the only possible direc- 
tion for a moment is along the magnetic field. For 
h, = f 1/2 Eq. (2)  has a trivial form and two solutions 
linear in 8,: 

2 0ae,an/4 
01 = - € l o ,  

3  2 (2n+Bo) / 3 ,  n/4<B0<n/2 - (4)  

For other field values Eq. (2)  requires a numerical solution. 
The resulting dependence 8(h,), given for example in 
Ref. 2, possesses an obvious physical symmetry: O(h,) 
=8(  -h,) +P. 

The critical value of the field H, (8,) at which one solu- 
tion vanishes is determined by the set of equations: 

Ho sin 8+' / ,  sin 2 (8-Oo) = O ,  Ho cos 0+cos 2 (0 -0 , )  =0, 

which follows from (2) and from the stability loss condition 
(3 1. The solution for this system gives (compare with Ref. 
2)  an H, (8,) dependence, which is symmetrical about 
8, = P/4: 

2 [  (I-Ho2)/3]%=H,Z sin 20,. ( 5 )  

For 8, = 7r/4 the H,(8,) dependence has a minimum 
Ho(B0) = 1/2 (at the boundary of the stability range the 
angle of deflection of the particle moment from the easy axis 
is 7~/2). Near the minima H,(8,) is given by 

The maximum value ofH, (8,) reached at 8, = 0 and at 
8, = 71/2 is 1. The asymptotic form of H, (8,) near 8, = 0 
follows from ( 5) : 

A similar form can be obtained for 8, close to 7r/2. 
In order to apply these results to calculations of the 

remagnetization of an ensemble of particles it is necessary to 
relate the direction of the moment m to the vector of the 

magnetic field h for an arbitrary direction of the particle easy 
axis, which is given by a unit vector n. This relation is deter- 
mined by the rotation of the initial coordinate systemxyz (in 
which h, m and n are defined) to the coordinate system x'y'z' 
used above to derive the equation of state for the moment, 
which is conveniently expressed as B(h, ,cos 8,). Let us skip 
simple calculations and show the final expression: 

m (h, n) = h cos ~ ( h ,  hn) + 
n-i;(Ln) . 

s in 0 ( h ,  hn), ( 8 )  
I [hnl l 

from which it is easy to obtain the projection of the particle 
moment on the z axis of the initial coordinate system (the 
caret here and in ensuing expressions will mean a vector 
renormalized to unit length). Equation (8)  solves, in princi- 
ple, the problem of possible allowed states of an arbitrarily 
oriented particle in an arbitrary magnetic field h. 

The existence of a region where the dependence 
8(h,cos 8,) does not have a unique solution leads to a similar 
non uniqueness in the expression (8) .  In order to construct 
the remagnetization curve for an ensemble of particles this 
expression must be complemented (for those h for which it is 
necessary) by a prescription for choosing one of the two 
values of m, . The universal rule is that as the applied mag- 
netic field changes continuously, the moment m also changes 
continuously so long as the stability condition (3)  is not 
violated. Whenever this condition is violated, the moment 
discontinuously assumes a new value, which is, in turn, sta- 
ble for the given field value. In the future we will refer to 
these transitions as to moment flips. Therefore, the value m, 
for a given particle depends on the sequence of change of the 
applied magnetic field under the specific remagnetization 
conditions. 

2. NONINTERACTING PARTICLES 

In our study of remagnetization curves we will assume, 
as always, that the applied external magnetic field H is uni- 
form and is always parallel to a certain direction, which we 
choose as the z axis in our coordinate system. Then compo- 
nents H, and H, are zero and Hz changes from - w to 
+ co and back. The magnetization M of an ensemble de- 
pends not only on the value of the magnetic field, but on the 
direction of its change as well, and can be expressed in terms 
of the moment m averaged over all particles. It is convenient 
to relate the magnetization not to a unit volume of a magnet- 
ic material, as usual, but only to one particle 

Because of the symmetry of the problem, the vector M will 
always be directed along thez axis and we will omit the mag- 
netization-component subscript. We will understand that 
Mo(H, ) and M(H, ) arez-components of the magnetization 
of an ideal (noninteracting particles) and a real magnetic 
material, respectively. In accordance with the definition (9) 
the limiting values of Mo(H, ) and M(H, ) as Hz -+ + are 
f 1. 

It is not necessary to use the general expression (8)  
when an ideal magnetic material is studied. In the absence of 
interaction each particle is acted upon only by the external 
magnetic field directed along the z-axis and therefore the 
initial coordinate system coincides (up to the rotation 
around the z-axis) with the one used in the derivation of the 

2256 Sov. Phys. JETP 67 (ll), November 1988 D. V. Berkov and S. V. Meshkov 2256 



equation of state of the moment. The magnetization M,(H, ) 
can be obtained by direct averaging of cos 6 over the direc- 
tions of the particle axes: 

M o ( h z )  = ( c o s ( ~  (Hz, cos 8,)) >. (10) 

If the external field changes monotonically strictly along the 
z-axis, we choose one of the two values of the projection of 
the moment (8)  according to following simple recipe: the 
smaller value of m, = cosB is chosen for Hz increasing from 
- w and the larger for decreasing from + W .  

As Hz increases all moments are at first antiparallel to 
thez-axis. Flipping takes place for positive values of the criti- 
cal field Hz = H, (go), which depend on the orientation of 
the easy axis. For Hz decreasing from + w , flipping takes 
place for negative values Hz = - Ho(Bo). From now on we 
always mean that the field increase from - W ,  so that mo- 
ment flips occur in the region of positive Hz only. 

For an ensemble oriented along the z-axis the equilibri- 
um equation has a trivial form. All particles flip simulta- 
neously at Hz = 1, changing the projection of the moment 
m, from - 1 to + 1. Therefore the hysteresis loop shown in 
Fig. 1 has a rectangular shape. 

For a random distribution of the axes the particle flip- 
ping occurs consecutively, beginning from the field value 
Hz = 1/2, at which only particles that form an angle 0, close 
to 71/4 flip. Near the minima the dependence H,(B,) has the 
quadratic form ( 6 )  and thus the interval of the angles 8, to 
which the axes of flipped particles belong, for Hz close to 
1/2, increases as a square root. The particles with axes paral- 
lel and perpendicular to the external field flip last (at 
H,=:l). 

When B(H,,cosB,) is the solution of Eq. (2)  with 
allowance for particle flips (i.e., the correct branch of 8 is 
picked), the averaging (10) over the orientations of easy 
axes gives the Mo(Hz ), dependence shown in Fig. 1. Let us 
discuss the form of this dependence for various limiting cases 
that allow analysis. 

For weak fields, Hz 4 1, the angle between the moment 
of each particle and its easy axis is small: 18 - B,lg 1. Ac- 
cording to Eq. (2),  accurate to third order in Hz, 

8,-8-Hz sin 8, (1-H, sin go), (1  1) 

which after substitution into (8)  gives 

i.e., for an ideal ensemble the remanent magnetization j: 
= Mo(0) = 1/2, and the static susceptibility x,(H, ) 
= JM, (Hz )/dH, has the initial valuex,(O) = 2/3. 

In strong fields, Hz $1, the angle Bis small. Expanding 
(2) in powers of H; ' we get, to first order, B-,sin(2Bo)/ 
2Hz. The limiting case of - Hz > 1 is treated similarly and as 
a result we have 

I )  i n  I ( I - /  I f f z  I >I. (1%) 

The points Hz = 1/2 and Hz = 1 in which flipping be- 
gins and ends are of particular interest. It was noticed in 
many numerical calculations (see Refs. 2, 6, and 7)  that 
susceptibility x,(H, ) for (Hz = 1/2 is very large, but the 
values quoted forx, ( 1/2) varied greatly. Actually, the sus- 
ceptibility becomes infinite to the right of Hz = 1/2 because, 
according to ( 12), the fraction of flipped particles has a 

FIG. 1 .  Remagnetization curve for an ensemble of noninteracting parti- 
cles with a random (solid line) and collinear with the external field 
(dashed line) easy-axis orientation. 

square-root increase after passage through this point: 

M,(H, )  =C+3/,(2H,-1)'h, X ~ ( H , ) ~ ~ / ~ ( ~ H , - I ) - ' " .  (13) 

The singularity turns out to be weaker to the left of Hz = 1/2 
and the susceptibility goes to infinity logarithmically 

The constant C in (13) and (14) is equal to C = 

(35/2 + 5 - 7 ~ 2 ~ / ~ ) / 1 5 ~ 0 . 0 5 3 .  TO the left of Hz = 1, 
where flipping of the moments ceases, the calculation of the 
fraction of nonflipped particles according to (7)  gives an 
extremely weak singularity which corresponds to a discon- 
tinuity in the third derivative of Mo(Hz ). 

3. THE LOCAL-FIELD APPROXIMATION 

Allowance for the interaction of the moments to lowest 
order in particle concentration in magnetic materials means 
that each moment experiences the combination of the exter- 
nal field and the field produced by all other moments. The 
self-action of the moment through its influence on the direc- 
tions of the neighboring moments is an effect of the second 
order in concentration. Therefore the field applied to a parti- 
cle by all other particles can be viewed as a random field not 
correlated with the spatial position of the particle and with 
the orientation of its moment. Knowledge of the density dis- 
tribution of this field F ( h )  allows us to write the magnetiza- 
tion of a weakly nonideal ensemble as 

where Mo(h) is the magnetization of the ideal ensemble. 
This approach, which is usually called the local-field 

approximation, was applied earlier to an equilibrium ther- 
modynamic ~ i tua t ion .~  We consider the problem of the re- 
magnetization of a system of dipoles, and the main difference 
of this problem from earlier studies is nonuniqueness of mag- 
netization as a function of field. When a certain branch of 
M(H, ) is calculated in the integral ( 15), the corresponding 
branch of the ideal hysteresis loop Mo(Hz ) must be used in 
its three-dimensional form (i.e., valid for any h direction) 
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This form is more universal than ( 10). 
It may seem that for using the local field approximation 

it is sufficient to consider a sufficiently diluted magnetic ma- 
terial. But the question is complicated by the magnetization 
hysteresis. The neighboring-particles field acting on a cer- 
tain particle during the remagnetization, changes in steps 
that correspond to the field produced by these particles. Be- 
cause of that the local magnetic field at a particular particle 
has, in general, a complicated trajectory of motion toward its 
instant value h. This trajectory can sometimes leave the re- 
gion of stability of the considered branch even if h itself is 
still within this region (we will call these return trajector- 
ies). The existence of return trajectories must lead ultimate- 
ly to earlier moment flips, i.e., to the narrowing of the real 
hysteresis loop. A rigorous analysis of this situation would 
have demanded the consideration of the dependence of the 
magnetization on the trajectory of the local field and intro- 
duction of a probability distribution of these trajectories. 
The problem would become so complex that the very con- 
cept of a local field would be meaningless. 

The hysteresis loop refinements are determined mainly 
by a small number of closely located particles rather than by 
a large number of particles far away, and therefore the prob- 
lem is not eliminated by the abundant number of particles in 
an ensemble. In order to be able to neglect the influence of 
the return trajectories the interaction field between particles 
that are separated from each other by a minimum distance 
2a must be small, i.e., the anisotropy constant must be large: 
P )  1. In this case even the flip of a closely located particle 
will cause a relatively minor jump of the local field. In the 
case of a random distribution of the axes this jump will not 
usually exceed the critical field. As a consequence, the prob- 
ability for return trajectories turns out to be relatively small 
and all particle flips can be considered independent. Let us 
emphasize that this conclusion is directly related to the ran- 
dom-axes distribution and the situation is much more com- 
plicated for an ensemble with parallel axes. 

The recipe for choosing one of the two values of the 
function 8(h,cose0) in the expression (8)  remains practical- 
ly the same as for an ideal magnetic material (see Sec 2):  for 
Hz increasing from - w the value of 8 that gives the larger 
m, in the integral ( 16) is chosen. 

4. THE LOCAL-FIELD DENSITY DISTRIBUTION 

When one calculates the random field distribution den- 
sity it is convenient to replace the averaging over all particles 
by the field averaging over the spatial positions and the mo- 
ment directions of all particles except the test particle at the 
origin. Taking into consideration the dilute character of the 
magnetic material we will assume that particles are distrib- 
uted in space randomly and neglect the correlation associat- 
ed with the finite particle size. We must realize, however, 
that the moments interacting with the test particle cannot be 
at a distance less than the particle diameter 2a from its cen- 
ter. We will denote the average over the direction of the mo- 
mentum m by the angle brackets ( ( . . .) ). In the local-field 
approximation the probability density of the direction of the 
moment m must correspond to that of an ideal ensemble at a 
certain value of the external field H. 

First, let us calculate the average value and the vari- 
ance, i.e., the mean-square deviation of the random field. 
The fields created by different particles are independent, and 

a particle with a moment m located at a point r creates at the 
origin a field 

Averaging over the particle positions in the sample and over 
the direction of its moments m and then multiplying by the 
total number of particles in the system we have 

n VO h a  r )  = - , (18a) 
P B 

Here and below 7 stands for the volume fraction of the ferro- 
magnetic substance, q=n V,. The integral ( 18a) is taken 
over all scales, from the particle size to the sample boundar- 
ies, and constitutes the demagnetization field, while Jd is 
the tensor of the demagnetization  coefficient^.^ In the inte- 
gral ( 18b), unlike in ( 18a), only the small distances are es- 
sential, infinity is the upper limit, and the particle size is the 
lower. 

Many  author^'^." deduce a Gaussian distribution den- 
sity of the local field from the central limit theorem. Should 
these speculations be correct, the calculated parameters 
( 18). would have fully described the distribution. In fact the 
above-mentioned theorem claims that any random quantity 
which is the sum of a large number Nof other random quan- 
tities which all have identical distributions which are inde- 
pendent of N has in the limit as N+ co a Gaussian distribu- 
tion with a variance equal to the sum of the variances of all 
parts. In our case N can be increased only by increasing the 
system volume and the variance of the field distribution 
created by one particle depends (inversely) on the system 
volume. Therefore there are no real grounds to believe that 
the local field distribution is Gaussian. This effect is physi- 
cally due to the steep decrease of the dipole field with dis- 
tance. 

We will use the Holtsmark technique for a rigorous 
calculation of the distribution density of the local field. The 
field distribution created at the origin by N particles distrib- 
uted randomly over the volume V of the sample can be ex- 
pressed as 

Here averaging over all moments mi is assumed. Using the 
Fourier transform 

F k  - j F (h) e-'.. d3h=IN (k) (19) 

the distribution density is expressed through the integral for 
one particle: 

For large systems this expression is close to unity: 
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For not very small k ) a 3  the integral transforms into 

J Q J P { I  - exp (- i  vo*(m7i) )}  
2 0  Br3 

Here the sample is approximated by a sphere of an infinitely 
large radius R. In the general case the integration at large 
distances adds in (21) a specific imaginary term 
- ik, Ja8m8 which is related to the demagnetization and 

depends on the sample shape only. 
Substituting (20) and (21) into (19) we have, in the 

limit V+ co , for a fixed particle concentration N / V = n 

The unknown distribution density F (h )  can be expressed as 
the inverse Fourier transform of (22) 

where A ' and A " denote real and imaginary parts of A. The 
distribution of the projections of the random field h on an 
arbitrary direction h can be derived from the three-dimen- 
sional distribution (23). It turns out to be a displaced Lor- 
entzian distribution: 

F (hh) 

- 1 -- ( ~ I S )  (A! (im) ) 

n [<Af (hm) > l Z + [  (plq) hh-h^ ,~ ,~~~-(A"  (hm) > 1 2  ' 

Let us note that the displacement is due not only to the de- 
magnetization but also to the existence of the additional 
imaginary term - iq/3 - ' ( A  " (k-m)) in the exponent of 
(22). 

By virtue of the approximations used in transforming 
(21 ), the expression (23) is valid for fields much smaller 
than the maximum possible field of interaction between the 
particles h 4P - I .  It is not necessary to calculate the integral 
(20) exactly for calculation of F(h)  in the h-f i  -' range. 
The distribution for a dilute ferromagnet in this range is de- 
termined by only the one particle closest to the test particle. 
As a result, F(h)  can be calculated directly: 

The practical use of (23) and (25), which describe the 
local field distribution in the whole actual range h@ -I, is 

difficult as the integrals in these expressions can not be cal- 
culated explicitly. The numerical analysis, however, shows 
that for any distribution of moment directions the function 
F (h )  is almost isotropic. This is revealed by the behavior of 
the function A( im) :  the real part is even and is located be- 
tween A 1 ( O ) = 4 n / 3 ~ 4 . 1 9  and A ' ( 1 ) = 8 d ~ 3 - ~ / ~  
-- 5.06, the imaginary part is odd, its absolute value is less 
or equal to 

Thus the isotropic distribution density F,(h), obtained for a 
case of uniform momentum distribution over a sphere (or a 
hemisphere), is thus a good quantitative approximation. 
Corresponding to this distribution is 

The three-dimensional distribution that follows from (23) 
and (25 ) in the range h 4 l / p  is 

and in the range h ZB -' 

where 

For h > rr/30 the function F (h )  is zero with an accuracy of 
up to second order in concentration. The average value and 
the variance of the local field are, according to ( 18 ) 

We will use this distribution for numerical calculations and 
assume, in further analysis, that the statistical properties of 
the local field do not depend on the external field H. We will 
also ignore the demagnetization. Let us remark that the in- 
fluence of the demagnetization is missing for a spherical 
sample (Jas G O )  and a disk with its plane parallel to the z 
axis (J,, = O ) .  

We conclude thus that the local field distribution has a 
complicated form and actually has a Lorentzian cutoff at 
large fields. It has three characteristic scales: the field 
6 ,  -- q/B created by a particle on distances of the average 
order n-'I3, the field of a nearest neighbor h, zfl- ' and the 
square averaged field A,-- q'I2/p. 

5. RANDOM ORIENTATION OF THE AXES 

In order to calculate the hysteresis loop in the local field 
approximation for an ensemble of interacting particles one 
has to substitute the distribution density of the local field 
(26) and an ideal three-dimensional hysteresis loop (16) 
into the integral ( 15). The ideal hysteresis loop ( 16) is in 
fact the expression (8)  for projections of the moment m, 
averaged over the easy axes orientations. For a random axes 
orientation this leads to 
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Figure 2 shows hysteresis loops for ensembles with different 
particle volume fractions q, obtained by numerical integra- 
tion of (28). Figure 3 gives the concentration dependence of 
the coercive force for these ensembles. 

The Lorentzian character of the distribution F(h)  in 
the range of small values of the random field is especially 
important near the singularities of the ideal curve Mo (Hz ) 
at Hz = 1/2 and Hz = 1. However, for external fields that 
are not extremely close to the singularities ( [Hz - 1/21 ) 1/ 
P,(H, - 11) 1/8), one can use the local character of the 
distribution density F(h)  and consider the quadratic expan- 
sion Mo(H) only. In that range the result is determined by 
the average value of the random field and its variance, which 
were calculated in the beginning of the previous section. For 
small Hz this does not help much because the derivatives of 
the magnetization Mo(H) and the curve M o ( H )  itself can be 
obtained numerically only from the equations derived in Sec. 
1. The only exception is the zero value of the external field. 
For H = 0 in the absence of interaction between particles 
(see Sec. 2) the moments uniformly fill a hemisphere and 
give Mo(0) = 1/2. The influence of the interaction can be 
best accounted for by considering separately groups of parti- 
cles with the same easy-axis orientation. The deflection S of a 
particle moment from the easy axis is equal [see ( 1 1 ) ] to the 
component of the local field perpendicular to this axis. The 
average moment of a particle in each group remains directed 
along an easy axis in the case of a spherically symmetric 
random field distribution. The influence of the local field is 
reduced to the reduction in its value which is now equal to 

The remanent magnetization is equal to the half of this mo- 
ment: 

Thus the interaction between particles reduces the remanent 
magnetization. 

6. PARALLEL ORIENTATION OF THE AXES 

When we considered (Sec. 2) an ideal ensemble with 
the easy axes of all particles collinear to the external field (z 

FIG. 2. Remagnetization curves for a randomly oriented ensemble with a 
volume particle concentration 7 = 0.2 with (dashed line) and without 
(solid line) interaction between particles. 

FIG. 3. Dependence of the coercive force for a randomly oriented ensem- 
ble on the volume particle concentration. 

axis) we saw that the particle moments do not deviate from 
the field direction but rather change sign only during flips 
(all particles simultaneously) when Hz = 1. The influence 
of the random fields created by other particles leads to devi- 
ation of the moments from z and to a certain scatter of the 
flipping field. 

The random field component which is perpendicular to 
the axis of the random field is the most important one and 
that becomes the main criterion for the use of the local field 
approximation as applied to an oriented ensemble. Far from 
the flipping range Hz =: 1 the influence of the random field 
reduces to deflection of the particle moment from the easy 
axis by an angle (see Sec. 1 ) 

which is in the first approximation proportional to the per- 
pendicular component of the random field. This deflection 
leads to a decrease, quadratic in h , ,  of the absolute value of 
the magnetization M(Hz ) : 

In the flip region the displacement of the critical particle 
field under the influence of the field produced by other parti- 
cles contributes more to changes of the ensemble magnetiza- 
tion. The critical displacement of the flipping point due to a 
random field component which is parallel to the z axis is 
weaker than the deflection of the local field from the particle 
axis. According to the asymptotic behavior (7) ,  this deflec- 
tion decreases the value of the particle's critical field by 

The assumption that the jump of the local field caused 
by the neighboring particle flip is not likely to change the 
stability range for a given particle is essential for validity of 
the local field concept (see Sec. 3).  This assumption might 
seem not to hold in an oriented ensemble where all particles 
flip at almost identical field values. In fact, however, when a 
neighboring particle flips, the field created by it on a given 
particle is replaced by a practically opposite field. The 
change of sign of the random-field component parallel to the 
axis is negligible in this case, while the absolute value of the 
perpendicular component (see (29) and ( 3 0 ) )  does not 
change. 

Thus the existence of the return trajectories that are 
unfavorable for the local field approximation can be ignored 
in the case of the oriented ensemble as well. Figure 4 shows 
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Here we neglect demagnetization effects. As a result we have 

FIG. 4. Remagnetization curves of a collinear ensemble for various values 
of the volume particle concentration: 1) 7-0, 2) q = 0.02, 3) q = 0.04, 
4) q = 0.08. 

for an oriented ensemble with a different particle concentra- 
tion the remagnetization curves obtained numerically as the 
convolution 

of the three dimensional remagnetization curve of an orient- 
ed ensemble 

which is derived from the general expression (8)  after recog- 
nizing that the director n is parallel to the z axis, with the 
local field distribution (26). 

The analytic form for the asymptotic behavior of 
M(H, ) outside the flipping region where the magnetization 
changes are caused mainly by the moment deflections (29) 
from the z-axis, can be obtained by making use of expansions 
derived above, which are valid for small random field values 
which in turn correspond to a large anisotropy f l )  1. The 
behavior of M(H, ) in the range Hz z 1 where, on the con- 
trary, only changes of critical fields caused by the random 
field (30) are important, can be obtained in a similar fash- 
ion. In the first case it is necessary to calculate, according to 
( 18), the average square of the perpendicular field compo- 
nent 

and in the second case it is necessary to derive from the three- 
dimensional distribution (23), by means of integration over 
h,, the distribution of the random field component that is 
perpendicular to the axis 

These relations allow us to calculate, in particular, the cor- 
rection to the remanent magnetization (from (3 1b) ) 

and to the coercive force (from (3 1b) ) 

The remanent magnetization and coercive force decrease 
under the influence of the moments' interaction, similar to 
the case of a random-axes distribution. 

In conclusion let us remark that the practical uses of 
oriented ensembles include studies of distributions in the an- 
isotropy constants. In this case the moments' interaction, 
which, as we have shown, deforms the hysteresis loop signifi- 
cantly (see Fig. 4) even for identical particles, is not taken 
into account. 
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