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Transition of a domain wall in a weak ferromagnet to a supersonic velocity is analyzed. The 
Lyapunov function is used to reduce a study of the dynamics of a nonequilibrium dissipative 
system to a study of an equilibrium conservative system. The velocities of steady-state motion of a 
domain wall correspond to extrema of the Lyapunov function which depends parametrically on 
the magnetic field. In fields corresponding to two comparable minima of the Lyapunov function 
thevelocity changes abruptly, in analogy with the Maxwell rule in the theory ofphase transitions. 
Allowance for fluctuations of the force acting on a domain wall suppresses a hysteresis of the 
dependence of the domain wall velocity on the magnetic field. The region of a constant near-sonic 
velocity of a domain wall depends weakly on dissipation in the elastic subsystem. The field 
dependence of the time of transition to a supersonic velocity, derived by the authors, is in better 
agreement with the experimental results than the corresponding dependence obtained earlier 
using a dynamic theory. 

1. INTRODUCTION 

Dynamics of domain walls in ferromagnets is strongly 
nonlinear. Among nonlinear effects in domain-wall dynam- 
ics there is special interest in multivalued dependences of the 
domain wall velocity on an external magnetic field. Such 
dependences are associated with the effects of additional 
drag forces of resonant nature on domain walls and they may 
occur, for example, in the region of the velocity of sound. 
This effect has been investigated both experimentally and 
theoretically in weak ferromagnets which are at present the 
only materials in which the velocity of domain walls has 
been found to exceed the velocity of sound. The experimen- 
tally determined dependence of the domain wall velocity on 
the magnetic field V(H) obtained for a weak ferromagnet is 
plotted in Fig. 3 of Ref. 1. A corresponding theoretical curve 
is shown in Fig. 21 of Ref. 2. These dependences demon- 
strate clearly regions of constant domain wall velocity near 
the velocity of sound. 

A considerable (of width amounting to tens or hun- 
dreds of oersteds) hysteresis of the domain wall velocity has 
been predicted theoretically2 but it is not observed experi- 
men tall^.^ It is not clear from the existing theory how and in 
what magnetic field there is a transition from a sonic to a 
supersonic velocity of a domain wall. It follows from this 
theory that the width of the region of a constant domain 
velocity AH,,, is inversely proportional to the attenuation 
coefficient of sound, which should depend strongly on tem- 
perature (the indices t and I refer to the longitudinal and 
transverse sound). Experiments indicate that AH,,, depends 
very weakly on the sample temperature. Moreover, the exist- 
ing theory predicts a very short time for crossing the sound 
barrier and an unrealistic dependence of this time on the 
magnetic field." 

The aim of the work reported below is to resolve these 
doubts by reducing the bifurcation problem of domain wall 
dynamics to the problem of a kinetic phase transition. 

2. MAIN EQUATION. LYAPUNOV FUNCTION OF THE SYSTEM 

A domain wall is a soliton-like object of the spin-density 
nonlinear field in a magnetic crystal. The dynamics of a do- 

main wall is usually studied on the basis of the Landau-Lif- 
shitz equations for such a field. Determination of the field 
dependence of the domain-wall velocity in the modern theo- 
ry reduces to a nonlinear eigenvalue problem in which the 
eigenvalue is the velocity and the external parameter is the 
magnetic field. Subject to suitable boundary conditions, the 
Landau-Lifshitz equation yields a unique branch of eigen- 
values of V(H).  An example of such a dependence is the 
familiar Walker solution. However, under certain condi- 
tions' the solutions show branching and the dependence 
V(H) becomes multivalued (see Fig. 21 in Ref. 2 ) .  

The problem of transition from one branch of V(H) to 
another, formulated above, can be solved if we go beyond the 
eigenvalue framework. We are speaking here of an investiga- 
tion of transient dynamics of domain walls. A suitable equa- 
tion can be derived from the Landau-Lifshitz equations by 
the methods of perturbation theory for solitons (see, for ex- 
ample, Ref. 4).  In the case of weak ferromagnets of the 
YFeO, type the relevant equation is (for its derivation see 
Refs. 5-7) 

where P = mq is the density of the momentum of a domain 
wall; q is the coordinate of the center of a domain wall; 
m = m,[l - ( q / ~ ) ~ ] - " ~  is the mass density of a moving 
domain wall; cis  the limiting velocity ofthe wall, equal to the 
velocity of magnons in the linear part of the spectrum 
( C  = 2 X lo6 cm/s for YFeO, ); P/r is the density of the vis- 
cous friction force; T is the relaxation time (which is related 
to the domain wall mobility p by p = 2Ms r /m) ;  M, is the 
saturation magnetization; 2Ms H is the pressure exerted on a 
domain wall by an external field H; f (P)  is the density of the 
additional drag force acting on a domain wall and related, in 
the present case, to a resonant interaction of the wall with 
acoustic phonons or generally with other quasiparticles in 
the medium. The relativistic factor [ 1 - (q/c)'] - ' I 2  ap- 
pears in the expression for the mass because the Landau- 
Lifshitz equations for weak ferromagnets reduce under our 
conditions to the sine-Gordon equation, which is known to 
be Lorentz-invariant. We dropped the term VaVq, where a 
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is the surface tension (surface energy density), i.e., we ig- 
nored bending of a domain wall in the course of its motion. 
In the region of field corresponding to the transition between 
the branches of V(H) ( H = H M  in Fig. l a )  the amplitude of 
bending of the plane front of a domain wall is 100 p m  when 
the minimum observed radius of curvature of the wall is 
1000 p m  (Refs. 1 and 8). The effective contribution of the 
term VaVq is - 1 Oe, which is much less than the character- 
istic width of the near-sonic region of constancy of the do- 
main wall velocity, amounting usually to a few tens of oers- 
teds in orthoferrites. The form of Eq. ( 1 ) is identical with the 
Newton equation for a material particle (more exactly, for a 
flat membrane), which is a consequence of the particle-like 
properties of solitons. It can be represented conveniently in 
the form 

dP/dt=-a@ ( P )  IdP, (2)  

where 
P 

is the Lyapunov function of the system. If we regard P a s  a 
generalized coordinate, we can identify @ with the potential 
function of the system. Writing down the equation of motion 
of a domain wall in the form of Eq. (2)  using the Lyapunov 
function of Eq. (3)  we can essentially reduce an investiga- 
tion of the dynamics of a nonequilibrium dissipative system 
to a study of an equilibrium conservative system which has a 
potential and is described by a generalized coordinate P. The 
velocities of steady-state motion of a domain wall can be 
identified with extrema of the function @ depending para- 
metrically on H. The maxima of @ correspond to absolutely 
unstable motion, whereas minima correspond to stable mo- 
tion. 

The task of finding the velocity of a domain wall in a 
given field when the wall has initially some specific velocity 
is equivalent to the task of finding a minimum of the function 
@ which will be assumed by the system in this field. 

FIG. 1. Schematic representation of the formation of the dependence 
V ( H )  in accordance with the Maxwell principle ( a )  and the Lyapunov 
function for the system considered in the range H ,  < H <  HZ (b).  

There is a different way of looking at Eq. (2).  It can be 
regarded formally as the Landau-Khalatnikov equation of a 
system undergoing a first-order phase transition and de- 
scribed by the order parameter P. 

3. FOKKER-PLANCK EQUATION AND THE MAXWELL 
PRINCIPLE 

A change in the controlling parameters, such as the ex- 
ternal field, alters the function @. The initial global mini- 
mum, which governs the state of the investigated system, can 
then become a metastable local minimum or can even disap- 
pear. In this case the system should go over from one local 
minimum to another. The moment of such a transition and 
the minimum in which the system is stable are found in the 
treatments of domain wall dynamics by adopting implicitly a 
principle known as the principle of maximum retardation. It 
can be formulated as follows9: a system,which is initially in a 
given local or global minimum, remains in this minimum as 
long as it exists. This assumption has led to predictions, 
based on a dynamic theory, that hysteresis should be exhibit- 
ed by the velocity ofsuch a system, but this is in conflict with 
the experimental evidence. 

The adoption of this principle ignores the existence of 
noise, i.e., of fluctuations which undoubtedly occur in a sys- 
tem such as a domain wall moving across a real inhomogen- 
eous sample. A satisfactory allowance of fluctuations can be 
made if Eq. (2)  is supplemented on the right-hand side by a 
random force F ( t )  and comparing it with the Fokker-Planck 
equation for the distribution function of the probability den- 
sity W(P) in the momentum space: 

where the distribution function W depends on the momen- 
tum density, on time, and on the controlling parameters; D is 
the diffusion coefficient representing the level of noise in the 
system and governed by the correlation function of the ran- 
dom force: 

Here, F ( t )  is the resultant force, i.e, the sum of the effects on 
a domain wall of those defects which are being crossed by a 
domain wall of finite size at a given moment in time. The 
quantities Pand D in Eq. (4 )  now describe the whole domain 
wall of finite size, i.e., we shall consider a wall as a system 
with one degree of freedom and ignore its multidimensional 
nature when considering the transition process. It is known 
from the experimental results that in the region of the field 
corresponding to a transition between two branches of V(H) 
(H-H, in Fig. l a )  a domain wall exhibits bending of the 
plane front with an amplitude up to 50-100 p m  when the 
radius of curvature is 1-2 mm and this happens in an obser- 
vation region of 1 mm2 (Refs. 1 and 8).  In this region a 
domain wall can be regarded as having one degree of free- 
dom. 

In the simplest case if we assume that D is constant, we 
obtain the steady-state solution of Eq. (4 ) :  

where N is the normalization constant. 
In estimating the value ofD we shall represent a random 
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force F ( t )  exerted by defects on a moving domain wall by 

where x i  is the coordinate of the ith defect and ai is the 
corresponding momentum of the force. As pointed out 
above, all the quantities P, @(P) ,  and Fshould be normal- 
ized to a unit area S of the wall. In calculation of the correla- 
tion function ( F ( t ) , F ( t l ) )  we shall assume that 
( a , ~ , )  = ( r f ) S d ,  SO that 

where n is the concentration of defects. Let us assume that, 
for example, a defect is a local inhomogeneity of the magne- 
tization ; then, a = 2SMs HR 3/ V, where R is thecharac- 
teristic size of the inhomogeneity. Substituting this value in 
Eq. (6 ) ,  we obtain 

An analogous estimate is valid also in the case of local inho- 
mogeneities of other quantities such as the anisotropy con- 
stant K, the "exchange rigidity" A,  etc. 

Let us assume that R-  (2-5) X cm, n-  108-10'0 
cmP3, S-10-4 cm2, 11-10-2-10-4, ,u-lo3 cm2.s-I 
.Oe-I, and V-lo6 cm/s. Then, D-10-7-10-9 
g2.Cm-2.s-3 , which is in qualitative agreement with the ex- 

perimental value. 
According to Eq. ( 5 ) ,  the velocity with the highest 

probability corresponds to a minimum of the function @ ( P ) ,  
which is equivalent to the statement known as the Maxwell 
principle: the state of the system is governed by the global 
minimum of the potential function. Applying this principle, 
we can plot the dependence P(H) or V(H) and find the 
global minimum of the function @ ( P )  for a field H varying 
from 0 to W .  It is obvious that the field dependence of the 
velocity is single-valued, i.e., there is no hysteresis, in agree- 
ment with the experimental results reported in Ref. 3. In 
magnetic fields for which the values of @ in the two lowest 
minima are comparable we can expect abrupt changes of the 
velocity tested in the dependences V(H) . 

The velocities of stable steady-state motion of a domain 
wall can be found from a system of equations 

which in the region of two minima of @ has two solutions: 
PI (H) and P, ( H ) .  

The Maxwell principle is an equation for finding the 
bifurcation set, i.e., the set of points in the space of the con- 
trolling parameters in which a transition takes place from 
one local minimum to another: 

The solution of Eq. (8 )  is given by the field corresponding to 
the transition to a supersonic velocity in the V(H) curve. 
The geometric equivalent of Eq. (8) is the equality of the 
areas of two regions shown shaded in Fig. la, which is analo- 
gous to the Maxwell rule in the theory of phase transitions. 

4. CALCULATION OFTHE WIDTH OFTHE NEAR-SONIC 
REGION OF CONSTANT VELOCITY OF A DOMAIN WALL 

It follows readily from the geometric interpretation of 
the Maxwell principle that the width ofthe near-sonic region 

of constancy of the domain wall velocity (i.e., the width of 
the plateau) manifested by the dependence V(H) depends 
not only on the amplitude of a resonance peak, assumed ear- 
lier to be the dominant f a ~ t o r , ~ ' ~ ' ~ " ~  but also on the slope of 
the P ( H )  curve, i.e., on the initial mobility of the wall. When 
the mobility increases the quantity AH, (representing the 
width of the plateau) should increase, in agreement with the 
experimental results. 

We shall consider the specific case ofa  singularity of the 
dependence V(H) near the velocity of transverse sound in 
yttrium orthoferrite. We shall use an approximate expres- 
sion for f proposed in Ref. 7 (all the following conclusions 
apply also to f given in Ref. 10): 

where 

S, is the magnetoelastic coupling constant, s, is the velocity 
of transverse sound, c, is an elastic constant, and 7, is the 
dissipation in the elastic subsystem of the crystal. Equation 
(9 )  allows for the fact that (s, /c)' < 1. If f (P )  is given by Eq. 
(9) ,  the function @(P) is given by the following expression, 
apart from an additive constant: 

P bmo (Plmo) - st2 
0 = -- - 2M,HP + -- arctg 

22 2A A (10) 

The area under the resonance peak of the function f ( P ) ,  
equal to the difference between two calculated asymptotic 
values of the last term in Eq. ( 10) for the two opposite cases 
P %  m$ and P<mJ, is independent of 7 , .  Therefore, the 
width of the plateau AH, deduced from the Maxwell rule 
depends weakly on the dissipation processes. On the other 
hand, the amplitude of the peak and, consequently, the 
width of the plateau AH,,,,, deduced using the principle of 
maximum retardation, is inversely proportional to the dissi- 
pation. 

This difference is illustrated in Fig. 2a. The values of 
AH, were found by numerical solution of the system of 
equations (7)-(8) for the function @ given by Eq. ( 10). It is 
clear from Fig. 2a that reduction in the dissipation in the 
elastic system, resulting in an increase in the width of the 
plateau by a factor of 10 compared with the dynamic theory, 
increases AN,,,,, only by one-third. This behavior agrees 
with the observation that cooling a sample from 300 to 4.2 K 
alters only slightly the real plateau,' although the value of 
AH,,, should then increase by several orders of magnitude. 

As pointed out already, AH, decreases on increase of 
the initial domain-wall mobility p,,, in agreement with the 
experimental observation of disappearance of the plateau in 
the case of high-mobility samples, whereas AH,,, is indepen- 
dent of the domain wall mobility. The dependence H(p , )  
calculated numerically for a function @ ( P )  described by Eq. 
( 10) is shown in Fig. 2b. 

5. TRANSITION (TUNNELING) TIME 

The maximum-retardation principle and the Maxwell 
principle are extreme assumptions. The former holds in an 
ideal system free of fluctuations when the controlling pa- 
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FIG. 2. Dependence of the width of the near-sonic region of constant 
domain wall velocity, calculated in accordance with the Maxwell princi- 
ple, on the width of this region deduced using the dynamic theory ( a )  
assuming various values of the initial mobility p, = lo3, 2~ lo3, 5 x lo3,  
104 and 5X lo4 cm2.s-  ' .Oe- (curves 1-5, respectively), and the depen- 
dence on the initial mobility (b) for different values of the width AH,,,, 
deduced using the dynamic theory: 6)  1000 Oe; 7)200 Oe. 

rameters are altered slowly. The second is valid in systems in 
which the level of fluctuations characterized by the diffusion 
coefficient D is sufficiently high, i.e., when the diffusion co- 
efficient is comparable with the height of the potential bar- 
rier separating minima of the function @. In general, the 
transition of a system from a metastable to the global mini- 
mum takes a certain time known as the tunneling time and 
this is a random quantity with the average value T, . If in the 
range H ,  < H < H, (see Fig. l a )  the value of T, is less than 
the characteristic laboratory observation time T,, which is 
close to the time taken by a domain wall to travel along a 
sample, amounting to about l o 7  s, and then the Maxwell 
principle applies. In the opposite case the maximum-retar- 
dation principle applies. 

The dynamics of changes in the domain-wall velocity is 
described by the transient solutions of the Fokker-Planck 
equation (4) .  The presence of two terms on the right-hand 
side of this equation shows that the motion of a domain wall 
is characterized by two different time scales: a fast time T,, 
associated with relaxation back to a local minimum after 
perturbation, and a slow time T, associated with diffusion 
from a metastable minimum to the global minimum or, in 
other words, with tunneling of the domain wall velocity 
across a potential barrier. The time scales are given by the 
familiar expressions (see, for example, Ref. 9)  

whereaisgivenby Eq. ( 10) :d '@/dP2 = 1/r - df /dP; P,,, 
corresponds to a maximum of the function a and P,,, to a 
metastable minimum (Fig. lb) .  The expressions given by 
the system ( 11 ) are not valid near the fields H, and Hz. 
However, in a probabilistic description the transition of a 
domain wall to the upper branch of the V(H) curve after 
application of a magnetic field pulse H of intknsity in the 
range HM < H < H,  represents a two-stage process. In the 
first stage the probabilistic distribution of W(P) converges 
asymptotically in a time of the order of T, to a Gaussian 
distribution with a curvature concentrated at a local mini- 
mum corresponding to the local branch of the V(H) curve. 
In the second stage the value of W(P) with the time scale T, 
converges asymptotically to a steady-state solution (5), con- 
centrated in the global minimum corresponding to the upper 
branch of the V ( H )  curve. It is clear from Eqs. ( 10) and 
( 11 ) that, in contrast to the dynamic t h e ~ r y , ~  the transition 
time has a finite value T, ( H ,  ) in a field H corresponding to 
the edge of a plateau, which is confirmed experimentally.3 
Equating T, (HM ) to the maximum observed transition 
time, ~ e f i n d t h a t D - l O - ~ g ~ ~ c m - ~ - s - ~ f o r r n ,  = 10-'3g/ 
cm2 and AH,, - lo3 Oe. The value of T, decreases on in- 
crease in H. For example, T, decreases to half the initial 
value when the field is increased by 10 Oe, which is two 
orders of magnitude more slowly than in the dynamic theo- 
ry, but in agreement (to within an order of magnitude) with 
the experimental results reported in Ref. 3. If for any reason 
the value of D decreases, then T, corresponding to a given 
field rises rapidly and can exceed the laboratory observation 
time TI .  Then, the crossing of the sound barrier by a domain 
wall cannot be detected in a given field and the visible width 
of the plateau increases. On reduction in D the visible width 
of the plateau may increase up to AH,, for a fixed value of 
TI .  

A reduction in the thickness of a sample from 100 to 10 
pm increased the width of the magnetoelastic 
for the transverse sound from 40 to 500 Oe. When a sample 
of thickness 20 p m  was subjected to chemical etching of its 
surface, it was foundI2 that the visible width of the plateau of 
the transverse sound decreased from 400 to 100 Oe. These 
results indicated that the roughness of the surface of a sam- 
ple created by chemical etching eliminates the system6'over- 
heating" which was observed in the absence of the surface 
roughness. 

The present paper proposes a new probabilistic descrip- 
tion of the dynamics of a domain wall which allows for fluc- 
tuations of the system on the basis of the Fokker-Planck 
equation for the distribution function of the probability den- 
sity in the momentum space. It is shown that we can intro- 
duce the Lyapunov function of a domain wall moving in a 
weak ferromagnet, so that the dynamics of this dissipative 
system can be reduced to that of a conservative potential 
system. The probabilistic description makes it possible to 
avoid the difficulties of the dynamic theory encountered in 
explaining why there is no hysteresis in the system and in 
deriving a single-valued field dependence of the domain wall 
velocity. The two-time nature of the process of overcoming 
of regions of resonant drag by a wall is established. 
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