
Fluctuations of the polarization of the radiation transmitted by a nonequilibrium 
gaseous medium 

D. V. Kupriyanov and I. M. Sokolov 

M. I. Kalinin Polytechnic Institute, Leningrad 
(Submitted 24 December 1987) 
Zh. Eksp. Teor. Fiz. 94,75-85 (November 1988) 

An investigation is reported of correlations of fluctuations of the polarization of the radiation 
transmitted by a nonequilibrium optically thin gaseous medium. It is shown that the correlator of 
photocurrents is related to symmetric and antisymmetric correlators of the polarization moment 
of the Wigner density matrix of particles in the medium. The resonances exhibited by the 
correlators at zero and Zeeman frequencies are governed by the average polarization moments of 
the density matrix of the medium ofrank x = 1-4. In a weak magnetic field the contributions of 
the moments x = 3 and 4 can be separated explicitly. 

1. INTRODUCTION 

Spectroscopy of the intensity fluctuations (SIF) I-' is a 
new promising method for the investigation of the spectra of 
atoms and molecules and of interparticle interactions, the 
potentialities of which have not yet been realized in full. The 
essence of the SIF method is determination of a correlation 
between fluctuations of the intensities of the radiation trans- 
mitted by a gas cell at different moments in time and an 
analysis of the spectrum of these correlations. For example, 
experiments reported in Ref. 2 demonstrated that the spec- 
trum of correlations of the angle$ of rotation of the plane of 
polarization of linearly polarized light transmitted by a cell 
containing Na vapor, studied in the optical transparency re- 
gion in the vicinity of the D, line, exhibits a resonance at an 
rf frequency corresponding to the Zeeman splitting of the 
ground state of the sodium atom. A theory of the effect pro- 
posed in Refs. 2 and 3 accounts for the resonance as a conse- 

use of the SIF method in experiments on a nonequilibrium 
gas may therefore provide additional information on the in- 
teraction of particles with light or with one another, giving 
rise to high-rank polarization moments. 

2. CORRELATOR OF PHOTOCURRENTS 

In SIF method one measures the correlator of the pho- 
tocurrents induced by radiation which probes a medium and 
passes through optical analyzers; this correlator is related to 
a second-order correlation function of an electromagnetic 
field (see Refs. 8 and 5)  

quence of correlations between fluctuations of the refractive 
Here, D("' ( 1,2;2', 1') is the correlator of the Heisenberg op- 

index, which are due to fluctuations of the random optical 
erators of the electric field E ( i )  =E,,, ( r ,  t ,  ), and is expressed 

orientation of atoms inside a beam. Subsequent investiga- 
in the Coulomb gauge and quasimonochromatic case in 

tions5-' have provided a theoretical generalization of the SIF 
terms of the correlator of the vector potential operators: 

method. Studies have been made of the correlation between 
fluctuations of the transmitted light, of fluorescence, and of 
scattered light. However, in all these cases a gaseous medium 
was assumed to be in equilibrium and a practical recommen- 
dation could be reduced basically to the feasibility of using 
the SIF method in a study of rf resonances in noise and deter- 
mination of the relaxation constants of various polarization 
moments of atoms in the medium, including the relaxation 
parameters of high-rank (x = 3-4) moments when the fluc- 
tuations are manifested in the scattered radiation noise6,' in 
those cases when it is difficult to use directly optical pump- 
ing, rf resonance, and other methods. 

We shall report an investigation of the feasibility of us- 
ing the SIF method in experiments on a nonequilibrium gas 
containing atoms or molecules which have arbitrary polar- 
ization moments. The value of the correlator of fluctuations 
of different polarization moments of the density matrix is 
then determined not only by the concentration of the parti- 
cles, as in an equilibrium gas,'-3 but also by the average val- 
ues of the polarization moments of nonzero ranks x = 1-4. 
In some cases the contribution of moments of higher rank 
x = 3 or 4 can be separated explicitly. This provides an op- 
portunity for direct determination of these moments, which 
is difficult to carry out by conventional optical methods. The 

DCEJ (I, 2; 2'- I) = ( o / c ) * ( < T A  ( 2 ) A ( I ) ) T ( A ( i ' ) A ( 2 ' ) )  > 
= ( ~ / c ) ~ D  ( I ,  2 ;  2', If), 

(2 )  
r,=r[, t:=tr-~r. 

The angular brackets denote averaging over the density op- 
erator p, of the system; T and are the time-ordering and 
antiordering operators; f :iLi ( T ~  ) are the photodetector sen- 

sitivity functions the dependences of which on the polariza- 
tion indicespi andp,! are governed by the analyzers standing 
in front of the photodetectors; o is the average frequency of 
the probe radiation; e is the electron charge. The sensitivity 
functions are localized in time so that f jL;. (7) -0 if T 2 T ~ ,  
where T, is the characteristic time scale of the investigated 
correlations. Integration with respect to r , and r, in Eq. ( 1 ) 
is carried out over the photocathode surfaces; v ,  and v,  are 
the numbers of atoms per unit surface area. 

In the Keldysh diagram technique9.10 the two-photon 
correlator defined by Eq. (2)  corresponds to a two-particle 
Green function the ends of which 1' and 2' are labeled with 
the minus sign and the ends 1 and 2 are labeled with the plus 
sign. Calculation of this function will be made subject to the 
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following assumptions. The light incident on a medium will 
be regarded as Gaussian radiation with the coherence time 
assumed short compared with 7,. We shall consider an opti- 
cally thin gas layer, so that a single interaction of a photon 
with a medium is important. We shall assume that the radi- 
ation is quasimonochromatic and its spectrum is in quasire- 
sonance with the frequency of the transition being excited. 
The dimensions of the photodetector are assumed to be suffi- 
ciently small to ignore the contribution of the scattered light. 
The density matrix of the gas particles is assumed to be of 
nonequilibrium nature in respect of the internal state be- 
cause of the interaction with external pump sources, colli- 
sional processes, etc. (for brevity, we shall consider primar- 
ily atoms, but the treatment is applicable also to a molecular 
gas). We shall assume that the probe radiation is weak and it 
does not influence the state of the medium. 

An analysis of possible Keldysh diagrams shows that, 
subject to the adopted approximations, the following graphs 
contribute mainly to the correlation of the transmitted radi- 
ation: 

The wavy lines denote one-photon Green functions in the 
standard notation.1° The indices R and A identify retarded 
and advanced Green functions. The internal parts of the dia- 
grams in Eq. ( 3 )  represent blocks composed of atomic 
Green functions: 

Here, a, (a,) = - , + the continuous thick lines with in- 
dices n and m represent the exact Green functions for the 
ground and excited states of atoms, respectively. The terms 
of the expansion of Eq. (4 )  allow for all possible interactions 
of atoms in the ground state with one another and with buff- 
er particles. The shaded circles represent a complete set of 
irreducible diagrams describing two-particle interactions. 
Using the fact that the Green functions of excited states de- 
cay in intervals of the order of the lifetime 7, of these states 
and over distances of the order of vr, (v is the thermal veloc- 
ity of an atom), we can describe the evolution of the atomic 
Heisenberg operators of the ground state over intervals of 
this kind by the free evolution approximation. The correla- 
tion block identified by the letter d in Eq. (4)  is then de- 
scribed by 

i En, (Pi) + E n , ,  ( P I )  -- 
2 

( t i - t i ' )  
A 

Here S/jn., (PRT)  denotes the Heisenberg operator repre- 
senting fluctuations of the Wigner density matrix: 

which evolves with time in accordance with the Hamiltonian 
of the atomic subsystem. The indices n denote the quantum 
numbers of the ground state; p,., (PRT)  is the Wigner den- 
sity matrix; R, = (ri  + ri)/2; T, = (ti + tJ)/2; is the total 
energy of an atom; a,& ( T )  and a,, ( T) are the Heisenberg 
creation and annihilation operators for atoms in the ground 
state. The ordering operators TuIu2 act in accordance with 
the following rules: T is the ordering operator of the "slow" 
times TI and T,; T +  + is the antiordering operator of T I  
and T,; T-  + is the identity operator; T +  _ is the operator 
representing transposition of fluctuations S/j  ( 1 ) s S/j (2) .  

In calculation of the correlator of the photocurrents in 
accordance with Eq. ( 1) we shall temporarily assume that 
an optical analyzer records directly a certain polarization 
moment of the radiation and the dependence of the sensitiv- 
ity functions in Eq. ( 1 ) on the correlation indices in coordi- 
nate system with the z axis along the direction of propaga- 
tion is described by the relevant polarization operator: 

where the polarization operator ?:' is defined in the stan- 
dard manner ' : 

It is convenient to introduce the polarization moment 
representation for the operators of fluctuations of the 
Wigner density matrix: 

j i  ?t ji 
t ic j i  ' . (PRT)  = ( - 1 )  J 1 - n r I I j i  ( , 

-n -q n 
) ( P R T )  ,, 

n'n 

(10) 

where j, ( i  = 1,2) are the total momenta of atoms in a 
ground state which, in principle, can be different for con- 
secutive interactions with radiation if an atom has a hyper- 
fine structure: n and n' are the values of the projection of the 
total angular momentum. We shall use the notation" 
n,, , ,  = [(2x+ 1 ) ( 2 ~ +  I ) . . . ] ~ ~ ~ .  
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We shall consider later the steady-state case when the 
matrix representing the density of the gas atoms has a con- 
stant polarization moment. In this case the one-particle 
Green functions depend on the difference between their time 
arguments and one can avoid internal integration with re- 
spect to the time variables in Eq. ( 1 ) by adopting the Fourier 
representation the "fast" difference times. When all these 
approximations are allowed for, the current correlator is of 
the form 

<ai l  ( t , )  6i2 ( t , )  > K I Q l '  K 2 Q 2  

= (6i ,  ( t l )  6i2 ( t 2 )  ):;PI; ( S i l  ( t , )  6i2 ( t 2 )  ):;rl; I iZQ2,  ( 11 ) 

X ~;~'p'jzi (P,Rl t l ;  P2R,t2) (Ao)-' I " ~ ' Q ~ '  ( o l R , )  IIi2'Q2' ( 0 2 R 2 ) ,  

(12) 

(6iI ( t l )  hi, ( t , )  >:;PI; K z Q 2  

Integration in Eqs. (12) and ( 13) with respect to R,  
and R, is carried out over a volume V occupied by a beam; 

I K ' Q : ( ~ ,  Ri ) is the spectral density of the polarization ten- 
sor of the radiation at the entry to the cell at a point R,, 
defined as the product of the polarization density matrix and 
the spectral intensity [in the case of the optically thin layer 
under discussion it depends only on the transverse (relative 
to the direction of propagation z) coordinates]; 5, and 5, 
are the quantum efficiencies of the photodetectors. Equa- 
tions (12) and (13) contain the symmetric and antisymme- 
tric correlators of the Wigner density matrix: 

The expressions for the matrices S gQQ. (wP,;xq) and 
A gQQ. (wP,;xq) are given in the Appendix. 

An important difference between Eqs. ( 1 1 )-( 13), re- 
lating the photocurrent correlator to the correlator of the 
polarization moments of the Wigner density matrix, and the 

presence in the former of an antisymmetric density correla- 
tor which vanishes for a gas in equilibrium (see below). 

3. FLUCTUATIONS OF THE POLARIZATION MOMENTS OF 
THE WIGNER DENSITY MATRIX IN THE ABSENCE OF 
RELAXATION 

A description of fluctuations of the polarization mo- 
ments of the Wigner density matrix and a calculation of the 
corresponding correlator must allow for the processes of 
collisional relaxation in the ground state. Using the results of 
the theory of Refs. 10, 12, and 13, we may conclude that the 
correlator of the polarization moment of fluctuations should 
satisfy the same system of kinetic or diffusion equations as 
the polarization moments of the density matrix themselves. 
In various specific situations, such as that of atoms with hy- 
perfine structure in the ground state, the system of equations 
may be quite complex because of the possible processes of 
redistribution of the polarization between the sublevels it is 
difficult to solve analytically. Since our aim is to demon- 
strate the potential applications of the SIF methods in the 
study of atoms or molecules polarized in respect of the inter- 
nal angular momentum, we shall consider experiments in 
which the effects of relaxation are unimportant. In the case 
of atoms in the S state this allows us to consider free motion 
across a beam (in the absence of collisions) and diffusion, 
because the depolarization cross sections are then much 
smaller than the gas-kinetic cross sections. In the case of 
atoms in the states with L # O  and molecules we shall assu- 
meonly free motion, since the depolarization cross sections 
are then sufficiently large. 

When these assumptions are allowed for, the correlator 
of the polarization moments of the Wigner density matrix 
becomes 

In the presence of a strong magnetic field when the fre- 
quency of the Zeeman splitting w, is higher than the rate of 
relaxation r of the polarization moment of the ground state, 
Eq. ( 15) is valid only for the coordinate system with the z' 
axis directed along the magnetic field H,. The polarization 
moments of the density matrix are pY#O only if q = 0. In 
the absence of a magnetic field we have w,( r ,  so that Eq. 
(15) is valid in any coordinate system. Since the average 
time taken by an atom to cross a light beam ;is by definition 
less than the relaxation time r - ', it follows that in a weak 
magnetic field the exponential factor is close to unity and can 
be ignored. 

The derivation of Eq. ( 15) in the case of free motion is 
based on analytic interpretation of the first term of the ex- 
pansion (4)  allowing for the equality (5)  and using expres- 
sions for single-particle Green functions of an ideal nonequi- 
librium gas in terms of the components of the Wigner density 
matrix (see Ref. 14). The function k(P,R,t, ;  P2R2t2) repre- 
sents a correlator of the classical distribution function of an 
ideal gas: 

k (PtRitt; P2R,t2) =no (2nli)  'f, ( P , )  8 (Pl--P2) 

corresponding relationships in the equilibrium case,' is the x 6 (R2-Rl-PI ( t 2 - t l ) / m ) .  ( 16) 
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This result is derived assuming the Maxwellian distribution Allowing for the relationship between the degree of linear 
of the atomic linear momenta: polarizationp, along the x axis and the polarization moment 

P;~ (PRt) =nop?q(R)fo (P) , of the density matrix of the radiation 

jo (P) = (2nfi3/mT)"exp (-P2/2mT), 
(17) 

p,=-2Re DZ2, Q K Q = I K Q  ( )  /3"2100 (0 ) )  (19) 

where no is the concentration of the atoms. Then, since there 
is no relaxation in the course of the motion of atoms across 
the beam, we can ignore the dependence on the spatial coor- 
dinate under steady-state conditions. 

In the case of diffusion when the interaction operator 
does not include the spin variables, the dependence of each 
term and of the whole block (4)  on the quantum numbers ni 
and nl is the same as for free motion, i.e., only the first term 
of the expansion need be retained and the thick lines are 
replaced with thin ones. The sum of the terms of the expan- 
sion (4) subject to Eq. (5)  is independent of the internal 
quantum numbers and determines the correlator of the dis- 
tribution function of a real gas for which we shall use the 
diffusion asymptote: 

k(PIRltl; PzRztz) =nofo(P,)fo(P2) [4nDzIt, 
-till -" exp [- (Rz-R,)2/4021t~-tlll , (18) 

where D is the diffusion coefficient. 
It follows directly from Eq. ( 15) that if we allow for the 

adopted approximations in the case of an equilibrium gas, 
the antisymmetric correlator of the density matrix vanishes. 
In the case of fluctuations of the polarization moments 
which are longitudinal relative to a magnetic field H, we 
again have K :;yj:;O = 0. 

4. DISCUSSION OF POSSIBLE EXPERIMENTS 

By way of example, we shall consider the experimental 
setup shown in Fig. 1. Unpolarized radiation crosses a reson- 
antly absorbing cell containing the vapor of working atoms. 
A beam of this radiation is split by a semitransparent mirror 
M, light then passes through analyzers A, and A,, and is 
recorded with photodetectors Dl  and D,. After passing 
through a delay line the photocurrents are multiplied and 
are subjected to a spectral analysis with a correlator C. It 
should be pointed out that when such a medium is probed 
with resonant radiation characterized by a profile symmet- 
ric relative to the absorption line, the correlator 
(Si, (t,)Si,(t,)) $f1;K2Q2 vanishes. This follows directly from 
Eqs. ( 13 ) and Eqs. (A1 ) and (A2). We shall consider only 
this case. 

We shall assume that the analyzers A, and A, pass only 
radiation with the linear polarization along the x and y axes. 

we find that the measured quantity is the current correlator: 

tai, (t,) ai, (t,) >px.p* = (ai, (ti) 6i2 (t,) )gZQ~;2Qz .  (20) 
Q,,Qs-*z 

If the direction of the magnetic field in the laboratory coor- 
dinate system xyz (Fig. 1 ) is represented by spherical func- 
tions 0 and p, then calculations based on Eqs. (12) and 
(A.  1 ) give 

4 

2 2 %  
x { . . } [311 ,~ ,~oco  (t,-t,) sin4 8 ( I  + cos 49) 

1 1  1 

- i / l ~ z ~ ~ - l c l  (ti-t,) sinZ 8(1 4- cosz 8 - cos 4rp sinz 8) 

The functions c, ( T) in Eq. (2 1 ) are defined as follows: 

where j and j' are the moments of the ground and excited 
states; the function a# (UP, ) is defined by Eq. (A.3); I(w, 
R )  is the spectral intensity of the incident radiation. In the 
presence of a strong magnetic field, wo;s 1 the components 
of the Fourier functions c, (T) represent resonance profiles 
centered on frequencies go,. The nature and width of the 
resonances are governed by the nature of the correlator 
k(P,R,t,; P,R,t), which under steady-state conditions is a 
function of the difference of its arguments T = t ,  - t,. 

A nonequilibrium gas with atoms that have polariza- 
tion moments of even rank represents an optically anisotrop- 
ic medium in which the direction of the optic axis coincides 
with the direction of the polarization In the 

L * 
FIG. 1. Experimental setup for the determination of correlations of the 
transmitted radiation: L is the source of unpolarized radiation; K is a gas 
cell; M is a semitransparent mirror; A ,  and A ,  are optical analyzers; D ,  

Y and D, are photodetectors; r is the delay line; Cis  the correlating system. 
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case under discussion this is the direction of the magnetic 
field. It would be interesting to determine two independent 
correlations of fluctuations of the linear polarization: along 
the optic axis and at an angle of 45" to this axis. If the magnet- 
ic field is weak, wo;i(l, then bearing in mind that 
co(r) ZC, (7) =c2(7), we find the difference between these 
correlations is 

This quantity is proportional to the moment x = 4. This is 
due to the fact that the left-hand side of Eq. (23) represents 
the definition of the correlator (Si, (t ,  )Si, ( t ,  ) ) 22,23, which is 
related to the density correlator K :$;j.. The density correla- 
tor is in its turn proportional to the atomic polarization mo- 
men t~?  in the coordinate system xyz. The angular factor in 
Eq. (23) is proportional to the function d & (0)  and relates 
this moment to the moment pj40 in the coordinate system 
with the z' axis along the magnetic field H,. In a strong 
magnetic field, wo7% 1 Eq. (23) is satisfied only for short 
time intervals t, - t2 4w; '. In a study of the spectrum of 
correlations of the photocurrent in the vicinity of the fre- 
quencies w, and 2wo the moment 3t = 4 appears against the 
background of the total population and alignment. We can 
estimate its value if we have additional information on the 
population and alignment, which can be obtained by conven- 
tional optical detection methods. 

We shall now consider the possibility of detection of a 
polarization moment of odd rank. We shall assume that the 
analyzers A ,  and A, deal essentially with the linear (along 
thex and y axes) and circular polarizations. Bearing in mind 
the relationship between the Stokes parameter g,, represent- 
ing the degree of circular polarization, and the polarization 
moment of the radiation 

as well as Eq. (19), we find that the measured quantity is 
now the current correlator: 

tSi , ( t t )6i ,  (t,) ) p = . ' a = l / ~  (c, ( t , )  Si, (t ,)  (25) 
9=*2 

Consequently, calculations based on Eqs. ( 12) and (A. 1 ) 
give 

8 

I - ( - I ) %  
(61, ( t , )bi ,  (t,) ) p = p i  = p ~ O ( - l ) " r I ~  

X {: : } [ $ C ~ ~ , b O +  (t,-t,) cos 2cp sin2 0 cos 0 

12 
x cos 29 sin2 0 cos 0 - - ~;:,-,b,- (tl-t ,)  sin 29 sin' 01 

L 

(26) 

The functions b 5 ( r )  are defined by 

d o ,  doz  xjsxK Re ojjp (a,, Plz) Re ojj' (02, PZ2) 
- m 

cos q0o't 
x k ( P i R t f , ;  PzRzt,) ( , ) , r=f,-f,, (27) 

sin q o , ~  

where b ,  (T) = 0. As in the case of the functions c, (T), 
defined by Eq. (22), the Fourier components of the func- 
tions b (7) represent resonance profiles centered on fre- 
quencies go,. The functions b ; ( r )  considered in the Four- 
ier approximation correspond to a complex quantity. This is 
not unexpected because the correlator of two different pho- 
tocurrents may be an odd function of the difference between 
the arguments. If the correlator of the photocurrent is mea- 
sured using a spectrum analyzer, by analogy with Ref. 2, 
then only the real part of the correlator is recorded. We can 
show that a determination of the imaginary part of the fluc- 
tuation spectrum in this analyzer requires introduction of a 
delay line for one of the photocurrents and this line should 
induce a delay 7,-n-/2R, where R is the frequency in the 
vicinity of a resonance R - w,. 

If the magnetic field is weak or if we deal with correla- 
tions separated by short time intervals we have w,?< 1, then 
bearing in mind that b 0, (7) = b ,+ (7) and b , (7) -0, we 
obtain from Eq. (26) 

(6 i ,  (ti) Si, ( t 2 )  )Px,12 

This relationship is interpreted by analogy with Eq. (23). A 
signal recorded by the method described above is propor- 
tional to the sum of the density correlators K :$?lo, which is 
proportional to the sum of the polarization moments pj * in 
the coordinate system xyz. The angular factor which occurs 
in Eq. (28) is proportional to the function Re D i, (p,O,O) 
relating the quantity Re p,?' to the polarization ,noment p:' 
in the coordinate system with the z' axis along the magnetic 
field. In the case of the nonzero magnetic field we can esti- 
mate the moment pjO from an analysis of the correlation 
spectrum at the frequency w, if we have additional informa- 
tion on the degree of orientation. 

We shall conclude this section by noting that in these 
calculations we are dealing with a specific fast atomic transi- 
tion j-j' ( j and j' are the total angular momenta of the 
ground and excited states). In the case of atoms character- 
ized by a hyperfine structure these momenta are the sum of 
the total electron and nuclear momenta. If the hyperfine 
structure of an excited state is "masked" by the Doppler 
broadening, as is found frequently, Eqs. (A.l)  and (A.2) 
should be supplemented by summation of the values of the 
momentum j' of the excited state. If the total electron angu- 
lar momentum of the ground state is j,, = 1/2 (alkali 
atoms), we can easily show that it is not possible to use the 
SIF method to observe the polarization moment of rank 
x >  2 for the hyperfine structure sublevels of the ground 
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state. The SIF method can then be used to record the orienta- 
tion and alignment. It should be mentioned that under these 
conditions we can detect only the orientation if we use con- 
ventional optical methods. 

NUMERICAL ESTIMATES. CONCLUSIONS 

The potentialities of SIF experiments are limited pri- 
marily by fluctuations of the shot background l e ~ e l . ~ . ~ , ~  We 
can observe informative correlations only if the amplitude of 
the relevant resonances is considerably higher than the aver- 
age value of these fluctuations. In the experiments consid- 
ered here, when two photodetectors are used, the average 
value of the shot background vanishes because of the lack of 
correlation between the relevant Poisson photoabsorption 
processes. However, in real experiments the observations 
last a finite time. Using the general theory of the spectra of 
random processes," it is easy to show that in a spectral ana- 
lyzer with a pass band A, if the observation time is T a zero 
shot background level in the spectrum of a photocurrent cor- 
relator is achieved to within 

T-'itT (w) iZT ( - 0 )  -e  (iiiZ/TA)'IZ, (29) 

whereiT(w) and ir(w) are the running spectra of the realiza- 
tions for the first and second detectors in a finite observation 
time T (Ref. 17). The ratio of the amplitude of such informa- 
tive correlations to the level of fluctuations of the shot noise 
is described by a dimensionless parameter 

where I = nooJ is the dimensionless optical thickness; o, is 
the absorption cross section of resonant photons; L is the cell 
length; J i s  the density of the photon flux in a probe beam; T ,  

is the characteristic time of the investigated correlations. In 
the case under discussion the value of T, is of the order of the 
time 7 taken by an atom to cross the light beam. The estimate 
represented by Eq. (30) is obtained on the assumption that 
the probabilities of photon absorption by the first and second 
detector are the same and amount to 1/2. Reliable detection 
of a resonance is possible when A is much less than T; I .  

Substituting in Eq. (33), by way of parameters, the values 
5,-52- 1, 1-0.1, J- 1015 ~ m - ~ . s - '  (when the radiation 
source intensity is I- 1 mW/cm2), 0,- lo-" cm2, 
T,  -Ap'- 10-'s (transit regime in the case of a beam with 
the transverse size a-0.1 cm), and T- 10 s, we obtain for 
the parameter r ]  an estimate v- 10. There is therefore a con- 
siderable reserve in respect of the signalhoise ratio, which is 
necessary for experimental detection of the predicted reson- 
ances. 

We shall conclude by noting that in experiments carried 
out at room or higher temperatures the SIF method has a 
technique for recording the polarization moments of higher 
rank which may prove useful in studies of the polarization of 
cesium atoms I3'Cs as a result of the Dl  transition, as well as 
atoms of rare-earth elements and molecules. In the case of 
alkali metals it is possible to achieve a resolution of the hy- 
perfine structure of the excited states necessary for the obser- 
vation of higher-rank polarization moments by performing 
experiments on atomic beams. At room temperature the SIF 
method can be recommended as suitable for detection of the 
alignment in the ground state of alkali atoms. 

The authors are grateful to E.B. Aleksandrov and 
Yu.M. Golubev for valuable discussions. 

APPENDIX 

The matrices S EQQ. (UP,; xq) and A EQQ. (UP,; xq)  oc- 
curring in the correlators of the photocurrents described by 
Eqs. ( 12) and ( 13 ) are defined by considering the interac- . 
tion of radiation with a medium in the first order of perturba- 
tion theoryt4 16: 

) i 

I 
(-4.2) 

Here j = j, and j2 are tbe angular momenta of the ground 
state, j' is the total anguiar momentum of the excited state, 

k = U/C, dJ1, is a reduced matrix element of the dipole mo- 
ment, P, is the component of the momentum of an atom 
along the direction of the wave vector kllz;; yf, and yj are the 
reciprocals of the lifetimes for j and j. 
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