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A range of characteristics of anisotropic collisional relaxation of atomic polarization moments is 
considered: collisional interconvertibility of the polarization moments of various ranks, the 
dependence of the relaxation rate on the projections of the polarization moments on the 
anisotropy axis, and multiexponential nature of transient relaxation processes involving atomic 
states withj = 1,3/2, and 2. The symmetry properties of the matrix describing anisotropic 
collisional relaxation are identified and the numerical values of its elements are calculated by 
numerical integration of the impact-parameter-method equations for the investigated atom with 
neutral particles and ions. The results can be used in a quantitative description of collisional 
relaxation of various atomic states and of fine and hyperfine multiplets under conditions of 
extreme and partial anisotropy of the distribution of the relative velocities of the colliding 
particles. 

INTRODUCTION 

Relaxation of atomic states in gases under the influence 
of atomic collisions characterized by some preferred direc- 
tion of the particle collisions exhibits a number of character- 
istics which distinguish it from the case of isotropic (ran- 
dom) collisions. The physical pattern of anisotropic 
collisional relaxation is much more elaborate than that of 
isotropic relaxation. For example, in the case of isotropic 
collisions the polarization moments of different ranks decay 
independently of one another (without mutual conversion) 
and all the components of the polarization moment of a giv- 
en rank decay at the same rate.'.' However, in the case of 
anisotropic collisions the polarization moments of different 
ranks are interconvertible and the relaxation rate depends 
strongly on the projection of the component of the polariza- 
tion moment on the anisotropy axis. The most striking ex- 
ample of interconvertibility of the polarization moments is 
the transfer from alignment to ~rientation,~-'O which corre- 
sponds to a transition from the linear polarization of light to 
the circular polarization. Another example is the establish- 
ment of alignment of nonuniform populations of narrow- 
multiplet sublevels as a result of intramultiplet mixing under 
the influence of anisotropic Interconvertibi- 
lity of alignment and orientation is also responsible for a 
transient process characteristic of anisotropic relaxation: 
quantum polarization beats.14 The dependence of the pro- 
cess of relaxation on the projection of the polarization mo- 
ment along the anisotropy axis is manifested in particular by 
the appearance of the linear polarization of light as a result of 
different rates of decay of the longitudinal and transverse 
alignments. l5  

Anisotropic collisional relaxation was first calculated 
in Ref. 3 for an atomic state with angular momentum j = 1 
by numerical integration of equations describing the impact 
parameter in the case of the 1/R ti (collisions of the investi- 
gated atom with neutral atoms of different gas) and 1/R 
(collisions of the investigated atom with ions) interaction 
laws. Similar calculations had been carried out5.I6 for atomic 
states with j = 1 and 2. The results of the latter calculations 
were reported in relative units, which made it difficult to use 
them in practice. More refined calculations of anisotropic 

relaxations in the j = 1 case were reported in Refs. 6 and 17. 
An atomic state with angular momentum j = 1 is as yet 

the only case for which detailed numerical characteristics of 
anisotropic collisional relaxation are known. For this value 
of j the ordering of an electronic state of an atom is charac- 
terized solely by the polarization moments of the first and 
second ranks (orientation and alignment). In the case of 
higher values of the angular momentum the polarization 
moments have higher ranks (x = 0, 1, . . . , 2  j) and the an- 
isotropic collisional relaxation pattern exhibits an even 
greater variety and the number of its quantitative character- 
istics (independent elements of the relaxation matrix) in- 
creases. 

We shall report the first calculations of the elements of 
the matrix describing anisotropic collisional relaxation of 
atoms in the case when j = 3/2 and 2. This makes it possible 
to extend the range of validity of the theory of anisotropic 
collisional relaxation by applying it to various spectral lines 
of atoms and atomic ions. 

MATRIX OF ANISOTROPIC COLLlSlONAL RELAXATION OF 
THE POLARIZATION MOMENTS 

We shall consider an ensemble A of atoms which are in 
an electronic state characterized by an angular momentum j. 
Individual atoms in this ensemble are described by the wave 
functions 

where +hi, are the eigenfunctions of the operator of the 
square of the angular momentum j 2  and its projection J, 
along a fixed axis z of a laboratory coordinate system, and 
the whole ensemble is described by a density matrix 

where the bar denotes averaging over the ensemble. 
The polarization moments describing the ordering of 

the angular momenta of the electron shells of atoms in the 
ensemble A correspond to an expansion of the density matrix 
(2)  in terms of irreducible representations of a group of 
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three-dimensional rotations and are described by the expres- 
sions 

The ranks of the polarization moments have the values 
x = 0, 1, . . . , 2 j and their z projections have the values 
q =  - %  , - % +  1 , . . . ,  x -  1 ,x .  

We shall assume that the atoms in the ensemble A col- 
lide with perturbing particles B (rare-gas atoms or ions) and 
that these collisions are extremely anisotropic (so that the 
relative velocity v of each collision is exactly parallel to the z 
axis). Then, in view of the axial symmetry, the collisions 
retain the z projections of the polarization moment, but they 
result in mixing of the polarization moments of different 
ranks: 

( t )  = - ER:'~,'~ ( t )  

The dot denotes the time derivative, due to collisional pro- 
cesses. 

Since the action of anisotropic collisions on the ensem- 
bleA not only has its own symmetry axis (z  axis), but its own 
symmetry planes passing through this axis, it follows that 
the elements of the relaxation matrix R r1 may couple only 
those polarization moments p; and pt' which belong to the 
same irreducible representation of the symmetry group 
C ,  ,,. If q  = 0, this leads to the selection rule 

which shows that R I"'' = 0, where x and x ,  are numbers of 
different parity: anisotropic collisions mix only those of the 
longitudinal components of the polarization moments p," 
andp,"' which have ranks of the same parity. (If qf 0,there is 
no such selection rule and the values of R ,""I are generally 
speaking different from zero for any x and x, . ) 

We can find elements of the matrix R ,""I  by calculating 
the change in the state of an atom A when it collides with an 
incoming particle B. We shall introduce two Cartesian sys- 
tems of coordinates with the origin at the nucleus of the atom 
A: a system x ,  y, z with the axes parallel to the corresponding 
axes in the laboratory coordinate system and a system2, j, 2, 
in which the 5 axis coincides with the z axis, whereas the 2 
a n d j  axes are rotated about the z axis by an angle p, so that 
the trajectory of a particle B, regarded as rectilinear, lies in 
the 22 plane and passes by the nucleus of the atom A at a 
distance equal to the impact parameter B (Fig. 1 ) . 

We shall use to denote the eigenfunctions of the 
operators i2 and j, written in the coordinate system 2, j ,  5, 
and we shall employ S for the scattering matrix in the same 
coordinate system. We shall assume that the collision begins 
at a time t = - co and it ends at a time t = + C O .  If we 
describe the wave function of the atom A [Eq. ( 1 ) ] in terms 
of the function we find that 

In view of the well-known property of spherical functions in 
the case of rotation about the z axis, we can show that the 

FIG. 1. Coordinate axes x,  y, and z are parallel to the axes in the labora- 
tory system; axes? a n d j a r e  rotated about thezaxis by an angleq; axes? 
and z coincide. An atom A being investigated is located at the origin of 
the coordinate system and a perturbing particle B flies past it along a 
strong line BC, parallel to thezaxis and lying in the22 plane. The anglea 
represents the instantaneous position of the particle B on its trajectory; 
the section ACof length b is the impact parameter. An axis z belongs to a 
"slave" coordinate system. It rotates by an angle n during the collision 
time. Axes y, j, k, and 2 are not shown. 

coefficients in Eqs. ( 1 ) and (6 )  are related by 

c, ( t )  =e'm'Pcm ( t )  . ( 7 )  

The coefficients of the expansion of the wave function (6 )  
change as a result of collisions in accordance with the law 

where elements of t h e ~ m a t r i x  depend on the impact param- 
eter b and on the collision velocity u, but are independent of 
the angle p. Using Eqs. ( 7 )  and ( 2 ) ,  we find that the changes 
in these coefficients correspond to the contribution to the 
change in the density matrix of the A atoms in a given j state, 
which is 

Since atoms in the ensemble A undergo collisions with the B 
particles for all possible values of the angle p, the contribu- 
tion described by Eq. (9 )  should be averaged over this angle. 
The average contribution of one collision to the change in 
the density matrix of the ensemble A is 

We shall use N to denote the density of the perturbing B 
particles. The number of collisions per unit time which occur 
within a given interval b, b + db of the impact parameter is 
2~Nubdb.  The contribution of all the collisions to the change 
in the density matrix of the A atoms is given by the equation 

Using the transformation ( 3 ) to go over from the elements of 
the density matrix to the polarization moments, we obtain 
from Eq. ( 1 1 ) , subject to Eq. ( lo), the following equation 
for the changes in the polarization moments of the ensemble 
of atoms A under the influence of anisotropic collisions: 
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The coefficient in front of the quantity pi1  on the right-hand 
side of Eq. ( 12) represents an element of the relaxation ma- 
trix R ,""' defined in accordance with Eq. (4).  Therefore, we 
obtain the following explicit expression for the elements of 
the matrix of the anisotropic collisional relaxation of the 
polarization moments, expressed in terms of the elements of 
the scattering matrix: 

When we allow for the behavior of the Clebsch-Gordan coef- 
ficients when the signs of all the lower indices are reversed, 
the above expression yields the following asymmetry proper- 
ty of the relaxation matrix: 

In the next section we shall show that in the case of rectilin- 
ear trajectories the scattering matrix has the symmetry prop- 
erty 

Using Eq. ( 13),  we find that the elements of the matrix of the 
anisotropic collisional relaxation process do not change as a 
result of transposition of the upper indices: 

We note that the matrix R describes relaxation of an isolated 
electronic state with a given value of j, without collision- 
induced transitions to other electronic states. This corre- 
sponds to the situation when the number of atoms in a given j 
state is not affected by collisions: n, = 0. The number of 
atoms is related to the polarization moment of zeroth rank 
by the expression n, = ( 2 j  + 1  ) L'2p:. Using the relaxation 
equation ( 4 ) ,  we find that the condition for conservation of 
the number n, of particles in a given electronic state can be 
written in the form 

This condition is satisfied for all values of the electronic po- 
larization momentsp,". Hence, it follows that the coefficients 
in front of all the polarization moments on the right-hand 
side vanish so that the elements of the relaxation matrix be- 
come R ? = 0  for all values of x .  Allowing for the symmetry 
properties of Eq. ( 16) ,  we can write this result in the form 

The symmetry properties of the R matrix of Eqs. ( 1 4 )  and 

( 16) ,  and also the selection rule of Eq. (5 )  and the property 
of Eq. ( 18) mean that the number of independent elements 
of the matrix is considerably lower than the total number of 
its  element^.'^"^ 

DESCRIPTION OF COLLISIONS 

We shall introduce a "slave" coordinate system 5, J, 2, 
obtained by rotation of the coordinate system 2, j ,  Z by an 
angle a about they axis. The 2 axis of the slave system is 
directed along a line joining instantaneous positions of the 
colliding particles A and B. During the collision this axis 
rotates by an angle T. The eigenfunctions of the atom A, 
corresponding to quantization of the angular momentum 
alo?g the axis of the slave coordinate system, will be denoted 
by *,", 

Writing down the wave function of the atom A in the 
form 

we find that changes in the coefficients 2, in the course of a 
collision are described by the following system of equations 
derived within the framework of the impact parameter 
methodL9: 

. dc, 
I - - - = -  d t  ) m t )  i ?n, G j  1 ) , t .  ( 2 0 )  

Here, W,,, is the energy of the interaction between the atoms 
A and B, calculated for the case when the projection of the 
angular momentum of an electron shell of the A atom along 
the line AB is m. We shall assume that this energy is de- 
scribed by an expression corresponding to the first nonvan- 
ishing term of the multipole expansion: 

where R ( t )  is the time-dependent distance between the par- 
ticles A and B. The case n = 6  describes the van der Waals 
interaction of neutral atoms A and B and the case n = 3 de- 
scribes the interaction of an ion B with the quadrupole mo- 
ment of an electron shell of an atom A. 

The angle a is related to the time t measured from the 
beginning of the collision: 

ctg a=-vtlb. ( 2 2 )  

If instead of the time t we use the angle a, we can reduce the 
system of equations ( 2 0 )  to 

SYMMETRY OF THE SCATTERING MATRIX UNDER TIME 
REVERSAL 

The system of equations ( 2 3 ) ,  valid in the model of 
rectilinear trajectories, shows that the scattering matrix ex- 
hibits time-reversal symmetry [Eq. ( 15)  ], which leads to 
the symmetry property described by Eq. ( 16)  for the aniso- 
tropic collisional relaxation matrix. We shall now prove this. 
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The system of differential equations (23) behaves as a 
matrix which transforms the values of the quantities Z, (0) 
given for a = 0 into their running values Zm ( a ) .  Denoting 
the matrix of this transformation by U, we find that the gen- 
eral solution of the system for arbitrary initial values of 
i., (0)  can be described by the expression 

The elements of the matrix Urn,, (a)  with a fixed value of 
the index m, form, in particular, the solution of the system 
z, (a) = Urn,, ( a ) ,  which corresponds to the initial condi- . - 
tlon 2, (0)  = Urn,, (0)  = S,,, . 

In the slave coordinate system the scattering matrix is 
related to the U matrix by 

If the system of equations (23) is subjected to complex con- 
jugation, transposition of the indices in accordance with the 
scheme m -. - m, and transformation a +IT - a ,  the result 
is a system of equations 

dr-; (n-a)  C, sinn-' a = . 
i - = . - c-, (n-a)  

da bn-'Au 

i =. + - [ (j+m+l) '"(j-m)",c-,-, (a-a) 
2 

- (i-m+l)'h (j+m)"';',+, (n-a)  1. ( 2 6 )  

Hence, it follows that in the case when a certain set of ener- 
gies i.:' (a) satisfies the system of equations (23 ), the same 
system is satisfied also by a second set which is ZE'(a) 
= z"', (T - a ) .  If the first set is assumed to represent a 

particular solution z:' (a) = Urn,, ( a ) ,  we find that the sec- 
ond solution is described by 

( 2 )  c, ( a )  =UI,.+,,, (n -a) .  (27) 

At the point a = IT this solution satisfies the condition 
='*'(IT) = Ui(C m,m,  (IT) = S - ,,,,. It therefore follows from Cm 

Eq. (27) that in the general solution of the system (24) the 
quantities Z,, (a) are expressed in terms of their values speci- 
fied at the point a = IT: 

Assuming that a = 0, we obtain 

Next, the relationship between the matrix U and the inverse 
scattering matrix is 

- -1  
u:~.-~, ( n )  =Smm,. (30) 

Using Eq. (25), we obtain 

Applying now the unitary property of the 5 matrix, we find 
that it has the following symmetry property 

Since the 2 axis of the slave coordinate system for a = IT is 
rotated by an angle a relative to the Z axis, the scattering 
matrix expressed in the coordinate system 2, j, Z is 

It follows from the last two expressions that in the case of 
rectilinear trajectories the matrix does indeed have the 
symmetry property described by Eq. (15) and the R matrix 
has the symmetry property described by Eq. ( 16). 

QUANTITATIVE CHARACTERISTICS OF ANISOTROPIC 
COLLlSlONAL RELAXATION OF ATOMIC STATES WITH/= 1, 
3/2, AND 2 

iT 

The elements of the scattering matrix S,,, in the slave 
coordinate system were calculated by numerical integration 
of the system of equations (23) subject to the initial condi- 
tions zm (0)  = S,,, . Then, using Eq. (33), we calculated 
from Eq. ( 13) the values of the elements of the relaxation 
matrix R :"I. All the calculations were made on a computer. 
In solving the system of equations (23) ths precision was 
monitored using the unitary property of the Smatrix. Calcu- 
lating the integrals in Eq. ( 13), we went over from integra- 
tion with respect to the impact parameter b to integration 
with respect to the Massey parameter, defined by (for a 
l /Rn interaction law) 

where AC is the absolute value of the difference of the quan- 
tities Cm occurring in Eq. (21) and corresponding to the 
maximum (m = j) and minimum (m = 0 or 1/2) values of 
the projection of the electron angular momentum of an atom 
A on a line joining the colliding particles A and B. 

A detailed numerical solution of the system of differen- 
tial equations (23) was obtained in the range O<B,, < 100 of 
the Massey parameter (in steps ofB, , amounting to 0.02 for 
B, 90.1 and 0.2 for B, > 0.1 ) . In the case of large Massey 
parameters (B, > 100) it was replaced by the adiabatic ap- 
proximation obtained by crossing out the quantities Zm + , 
and Z, _ , on the right-hand side in the system (23). 

The elements of the anisotropic collisional relaxation 
matrix R ,""I calculated by this method for electronic states 
with angular momenta j = 1,3/2, and 2 are listed in Table I. 
(The results for j  = 1 were obtained earlierI5 and are includ- 
ed for the sake of comparison.) This table includes only the 
independent elements of the relaxation matrix. Their num- 
ber for j = 1, 3/2, and 2 is 6, 14, and 26, respectively. The 
other elements of the R matrix can be determined from the 
resultsinthetableusingEqs. (5) ,  (14), (16),and (18).The 
elements of the relaxation matrix are expressed in the follow- 
ing units: 

We shall now turn to the characteristics of anisotropic 
collisional relaxation, which follow from numerical values 
of the elements of the R matrix. 

The diagonal elements of the matrix R ,""determine the 
rates of decay of the polarization moments under the influ- 
ence of collisions. Collisional decay of the longitudinal com- 
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TABLE I. Elements of the anisotropic collisional relaxation matrix R ;"' for electron states j 
= 1, 3/2, and 2. 

ponent of the orientation occurs in all the cases consid- 
ered in our calculations ( j  = 1, 3/2, and 2; n = 6 and 3) 
approximately 2.5 times faster than the decay of the trans- 
verse component p i .  This means that the orientation vector 
induced by some external agency (for example, by a light 
pulse) not only does not decay in the course of anisotropic 
relaxation, but rotates across the anisotropy axis: in the 
course of decay the longitudinal component disappears first 
and then only the transverse component remains. 

In the case of the polarization moment of the second 
rank (alignment) the component p: inclined at an angle of 
45" to the anisotropy axis decays in all cases 1.5-2 times 
faster than the longitudinal component p i .  The transverse 
alignment component pi  for j = 1 decays much faster than 
the longitudinal component p i .  This suppresses linear polar- 
ization of light along this anisotropy axis when an ensemble 
of relaxing atoms is illuminated with unpolarized light. l 5  An 
increase in the angular momentum jequalizes the decay con- 
stants of the longitudinal and transverse alignment for an 
interaction law with n = 6, whereas for n = 3 the sign of the 
difference between these decay constants is reversed (the 
longitudinal alignment begins to decay faster). In the case of 
the polarization moments of the third and fourth rank it is 
difficult to find any definite relationship governing the val- 
ues of the corresponding elements R i3 and R :of the relaxa- 
tion matrix, but the anisotropic nature of the relaxation pro- 

cess manifested by the dependences of these elements on the 
projection q is manifested quite clearly. 

The off-diagonal (in respect of x and x , )  elements of 
the relaxation matrix R ,""I describe collisional interconverti- 
bility of the polarization moments of different ranks: align- 
ment and orientation ( p: and p: ) orientation and hexade- 
capole alignment ( p :  and p: ), orientation and octupole 
orientation ( and p i ,  p: and p: ), alignment and octupole 
orientation ( p: and p: , p i  and p i  ), alignment and hexade- 
capole alignment (pi and p: , p: and p':, p i  and p i  ) , and also 
interconvertible hexadecapole alignment and octupole ori- 
entation ( p: and p i ,  where q = 0, 1,2,  or 3 ) .  

Classification of the components of the polarization 
momentsp," in accordance with irreducible representations 
of the symmetry group C ,  is given in Table I1 and it dem- 
onstrates in the general case of an arbitrary value of j, the 
division of these components into a set of concurrently relax- 
ing quantities. We must bear in mind that in the case of two- 
dimensional irreducible representations E the quantities p t  
andp" , form independently relaxing sets (the value of the 
projection of the polarization moment q is conserved during 
relaxation). 

One further property of the relaxation matrix should be 
noted here. It follows from the definition of the polarization 
moments (3) ,  after allowance for the Hermitian nature of 
the density matrix a, that 
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TABLE 11. Classification of the polarization moments of an ensemble of atoms in a state with 
an angular momentum j, described in terms of irreducible representations of the symmetry 
group C ,  " . 

Note. Here, [ j ]  denotes the integer part of the number j. 

Irreducible 
representation 

p-;'= (-1) qpqZ. (36) as a function of time is described by 

Hence, and from Eq. (4 ) ,  it follows that the relaxation ma- 
trix elements satisfy the relationship 

X X ,  XX,. 

R, =R-, . (37) 

Components of polarization moments 
belonging to given irreducible 
representation 

Combining this result with Eq. ( 14), we have 

~ ~ l ~ i ~ l i ~ i ~ ~  of repetition 
of irreducible representation 

It is therefore clear that the off-diagonal (in terms of x )  
matrix elements R 71, responsible for the interconvertibility 
of the polarization moments of different ranks, are all either 
purely real or purely imaginary: the former applies in the 
case when the sum ( x  + x ,  is even) and the latter applies 
when this sum is odd. 

Among the processes of interconvertibility of the polar- 
ization moments the most important is the transition from 
the alignment p:, which is inclined at an angle of 45" with 
respect to the z axis and is induced by anisotropic collisions, 
to the transverse orientation pi (accompanied by the transi- 
tion from the linear to the circular polarization of light). The 
effectiveness of this transition is described by the matrix ele- 
ment R 12. In the case of collisions with neutral particles 
(when n = 6)  i f j  = 3 / 2  or 2 ,  this matrix element represents 
about 60% of its value in the case when j = 1, so that an 
increase in the angular momentum of the electron shell re- 
duces slightly the collisional transformation of alignment 
into orientation. In the case of collisions with ions (in the 
n = 3 case) the matrix element R i 2  falls rapidly in absolute 
value on increase o f j  and vanishes fo r j  = 2  (within the lim- 
its of the calculation error). 

It is clear from Table I that the off-diagonal (in terms of 
x )  matrix elements R ,""I are systematically smaller than the 
diagonal elements R y'. Then, in special cases some of the 
off-diagonal elements are very close to zero (R :"or j = 3 / 2  
or 2 and n = 3; R i 2  for j = 2 and n = 3; R for j = 2  and 
n - 6 ) .  

Collisional interconvertibility of the polarization mo- 
ments is responsible for the complex multiexponential na- 
ture of relaxation of these moments under anisotropic colli- 
sion conditions. The components of the polarization 
momentspt become grouped into concurrently relaxing sets 
and collisional relaxation of the values in each set considered 

where the number of the exponents A, is equal to the number 
of the quantitiesp," in a given set. I f j  = 2 ,  we have the follow- 
ing sets of concurrently relaxing components of the polariza- 
tion moments: and p i ;  pi and p i ;  p; , p:, p:, andp:; p:, 
p: , and p i ;  p: and pf:; p: . Similar sets are obtained in the 
j = 3 / 2  case by crossing out the components of the polariza- 
tion moment of the fourth rankp:, and the sets correspond- 
ing to j = 1 are obtained by dropping the components of the 
polarization moments of the fourth and third ranks p: and 

P;. 
The multiexponential nature of relaxation of the polar- 

ization moments can be observed directly in transient pro- 
cesses (for example, in the case of free decay after pulsed 
excitation). The functions p," ( t )  may then vary nonmono- . . 
tonically with time and under certain conditions, if among 
the exponents A, there are complex values, there may be 
even damped oscillations (polarization beats-see Ref. 14). 

For example, in the specific case of interconvertibility 
of alignment and orientation, free decay of the polarization, 
moments under the influence of anisotropic collisions is de- 
scribed (for j = 1 ) by the equations 

where in view of Ref. 16 we have R :' = R ;'. The solution of 
these equations is given by the expression with p = 2. The 
exponential decay constants are then 

the radicand in Eq. (40) is negative and the exponential de- 
cay of the alignment and orientation is accompanied by their 
oscillations at a frequency w. Turning back to the numerical 
values of the elements of the R matrix given in Table I, we 
find that this polarization beat regime is obtained in the j  = 1 
case for the law of interaction with n = 6, but not for the law 
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of interaction with n = 3. We can give also other examples 
when concurrent relaxation of the polarization moments in 
time is in the form of damped oscillations (for example, re- 
laxation of the transverse alignment p: together with the 
component of the octupole orientation p i  when j = 3/2 and 
n = 6). It should also be pointed out that a strongly non- 
monotonic time dependence of the polarization moment can 
occur also in the absence of beats (when all the A, are real). 

In the case of rectilinear trajectories it follows from Eq. 
( 18) that collisional creation of the polarization moments p," 
with ?t #O from a populationp~ of an isolatedjlevel is impos- 
sible. (The role of bending and splitting of trajectories in 
such processes is considered in Ref. 20.) The situation 
changes drastically when the total angular momentum F of 
an atom consists of a relaxing electron angular momentum j 
and a nonrelaxing angular momentum (for example, nu- 
clear spin momentum) i, and when the multiplet of levels 
originating from a given electronic state j is sufficiently nar- 
row for effective collisional mixing. In this case the order of 
the total angular momentum F = j + i of an ensemble of 
atoms is described by "large" polarization moments: 

pQK (FP,)  = (- 
-i 

M M , n m ,  
[L ",, Q 

PP1XP 

" 1  

where a,,, is the density matrix for projections of the angu- 
lar momentum i. Anisotropic collisional relaxation of large 
polarization moments occurs subject to selection rules for 
the projections Q and the ranks K, and subject to similar 
selection rules for ?t and q in the case relaxation of an isolated 
j level. However, it is important that in the case of levels of a 
( j, i) multiplet there are no selection rules of the type ( 18), 
so that generally speaking the matrix elements coupling 
large polarization moments characterized by K # O  and the 
populations of the multiplet levels p: (FF) differ from zero. 
This is explained by the fact that in the course of relaxation 
the populations of the individual components of a multiplet 
are not conserved: only the total population of all the levels 
of the multiplet is conserved. Therefore, in the case of the 
individual components of a multiplet we can no longer write 
down the conditions (17) for conservation of the popula- 
tion. 

This collisional creation of order under the influence of 
anisotropic collisions in the case of intramultiplet mixing 

was considered in Refs. 11-13 and 17 in connection with the 
creation of alignment of narrow multiplets in hyperfine and 
fine structures. It is important to note that in this case the 
relaxation matrix of large polarization moments pi (FF,) 
(matrix R F1) is obtained from the anisotropic collisional 
relaxation matrix R 7' of pure electron polarization mo- 
ments by suitable addition of the angular momenta on the 
basis of kinematic considerations. The relationship between 
these matrices is given by 

R:"' (FF,; I.;(;) = 2 (-- 1)"' ( 2 i  + 1) 
m , l  
PY 

[ (ax  -+ 1)  (2x1 $ 1) ( 2 K  t I ) (= ,  + 1) 

where F * = F , + F , - F - F , + K  + K , - I - p + Q  + g  
and the quantities in the braces represent the 6 jand 9 j sym- 
bols. 

In view of the above conclusions, the elements of the 
anisotropic collisional relaxation matrix R ,""I listed in Table 
I are suitable not only for the calculation of the various char- 
acteristics of anisotropic relaxation of an isolated electronic 
state with a given value of j, but also for the description of 
similar characteristics of multiplets which appear on addi- 
tion of a relaxing electron angular momentum to a nonrelax- 
ing nuclear spin momentum i (or in the case of narrow fine- 
structure multiplets when a nonrelaxing electron orbital 
momentum 1 is added to a nonrelaxing electron spin momen- 
tum s).  

The quantities R 71 listed in Table I correspond to the 
extreme anisotropic case of collisions of the particles at rest 
A with a monokinetic beam of particles B, parallel exactly to 
the z axis. It is easier to consider a partly anisotropic case in 
which these idealized conditions are not satisfied. Let us as- 
sume that the function describing the real distribution of the 
relative velocities v = v, - v, has an axial symmetry and is 
of the form f(v,O), where 0 is the angle of tilt of the vector v 
relative to thez axis and v is the absolute value of this vector. 
If we represent collisional relaxation of the distribution of 
the velocities f(v,O) in the form of a sum of an infinite num- 
ber of extremely anisotropic relaxation processes corre- 

TABLE 111. Constants of isotropic collisional relaxation of electronic states j = 1, 3/2, and 2. 
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sponding to monokinetic distributions, we find that the ma- 
trix of partly anisotropic collisional relaxation is described 
by the following expression containing elements of the ma- 
trix R y~ and of Wigner's D function: 

x f ( u ,  0) R~;,~' ( v )  sin 8 d0 drp d11. (44) 

The isotropic relaxation matrix of the polarization mo- 
ments subjected to collisions along random directions can 
also be expressed in terms of the extremely anisotropic relax- 
ation matrix R ,""'. In the isotropic case the polarization mo- 
ments relax under the influence of collisions in accordance 
with the law 

The isotropic collisional relaxation constants of the po- 
larization moments occurring in the above expression are 
found by averaging the relevant elements of the R matrix 
over the index x :  

Table I11 gives our calculated isotropic collisional re- 
laxation constants for the electronic states with j = 1, 3/2, 
and 2 corresponding to the anisotropic collisional relaxation 
matrices R ,""I listed in Table I. These constants y" are some- 
what larger than those calculated earlier (for n = 6 )  when 
j = 1 (Refs. 21-24), j = 3/2 (Refs. 25-27), and j = 2 
(Refs. 24 and 28), differing from the latter by 5-10%. This 
clearly due to the fact that in the cited papers a detailed 
numerical integration of the system of equations (23) was 
carried out in a narrower range of values of the Massey pa- 
rameter B, and in the calculations made by us. 

CONCLUSIONS 

The results reported above can be used in quantitative 
calculations in a wide range of phenomena associated with 
anisotropic collisional relaxation of atomic states in the case 
of extreme anisotropy (as in beam experiments) and also in 
the case of partly anisotropic velocity distributions. This in- 
cludes the problem of anisotropic relaxation of atomic states 
in the case of monochromatic excitation when the anisotro- 
py is due to the Doppler and also an interesting 
group of problems of anisotropic relaxation in a plasma 
when the anisotropy is due to the drift of ions or electrons. In 
particular, in the case of a plasma one can expect collisional 
alignment of nonequilibrium populations of levels of spec- 
tral m ~ l t i p l e t s " . ~ ~ - ~ ~  (self-alignment of ionic and atomic 
states) and collisional orientation from alignment (self-ori- 
entation of the angular m ~ m e n t a ) . ~ ~ . ~ ~ . ~ ~  Investigations of 
these processes can give valuable information on the ion drift 
velocity in a plasma and on the rate constants of various 
elementary processes.36 

The knowledge of numerical values of elements of the 
anisotropic collisional relaxation matrix for various values 

of the electron angular momenta j makes it possible to 
extend greatly the range of quantitative applications of the 
theory of anisotropic collisional relaxation to various atomic 
states and fine or hyperfine multiplets under conditions of 
extreme or partial anisotropy of the distribution of the rela- 
tive velocities of the colliding particles. 
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