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An analysis is made of a novel physical effect in the form of free and forced precession of an 
optically induced quadrupole moment in a weak magnetic field in the absence of a light-induced 
magnetic moment. The problem is solved for the ground state of an atom allowing for the 
hyperfine splitting and the Doppler broadening. It is shown that the bounded nature of the light 
flux gives rise to qualitatively new behavior of the precession relaxation processes. It is suggested 
that this effect can be observed by utilizing a different novel physical effect associated with the 
self-rotation of the plane of polarization of light in a weak magnetic field. 

1. When atoms are oriented in the ground state by a 
circularly polarized optical field, a magnetic moment is in- 
duced in the Abrupt application of an external 
magnetic field H results in free precession of an induced 
magnetic moment around the direction of H and the fre- 
quency of such precession is the Larmor value R (Refs. 4- 
6). Such a simple and clear precession pattern is observed 
only if the moment of the ground state is J = 1/2. If J> 1 or 
in the case of hyperfine splitting of the ground state F> 1 the 
application of a magnetic field induces not only a magnetic 
moment, but also multipole moments of higher rank, x > 1, 
which precess at frequencies qR, where 1 q / <x. For example, 
a quadrupole moment ( x  = 2) gives rise to two frequencies 
in the spectrum: R and 2R. Hyperfine splitting complicates 
the spectrum because of the difference between theg,, factors 
of the hyperfine components ( n  is the number of the compo- 
nent). Precession relaxation is usually attributed to depolar- 
izing collisions'in the ground state the rates of which are y: 
- 10 ' - lo2  s- '  (Ref. 4 ) .  

In the case of orientation by a laser field the rates y; are 
low compared with all the characteristic frequencies of the 
problem. Therefore, relaxation of precession is then gov- 
erned by other processes, principal among which is a transit 
effect related to the time of interaction of an atom with a 
beam of light ? = r,/ i7, where r ,  is the transverse size of the 
beam and E is the average velocity. Clearly, 1 and we 
can then ignore the depolarizing collisions. However, we are 
not allowed to make the simple substitution y: - l/? and 
thus correct the problem,7 because this substitution postu- 
lates a priori that the relaxation process is exponential. We 
shall show below that a finite interaction time results in a 
slower decay of the precession: a I/?. In addition to the re- 
laxation processes, we shall draw attention to a novel phys- 
ical effect of free and forced precession of an optically in- 
duced quadrupole moment in a magnetic field when there is 
no induced magnetic moment. We shall consider the reso- 
nant interaction of an atom with a linearly polarized light 
beam. An external magnetic field is assumed to be so low 
that we can ignore the Faraday and Hanle effects: R < y, ki7, 
where 2y is the rate of relaxation of the upper resonating 
level and kE is the Doppler width. The third condition, 
which guarantees the absence of a magnetic moment, is the 
low intensity of the optical field y ? ~  < 1 when y?> 1; G is the 

saturation parameter described by Eq. ( 7 )  below. For exam- 
ple, in the case of alkali metals these conditions can be satis- 
fied if the intensity of a light beam is within the range 
mW/mm2<I<10-1 mW/mm2. The intensity of the radi- 
ation emitted by cw tunable dye lasers makes it possible to 
satisfy this condition easily. In this approximation in respect 
of the field, there is an additional novel physical effect asso- 
ciated with the self-rotation of the plane of polarization,' 
which could be used to study the precession of the quadru- 
pole moment. 

2. We shall now formulate the p r ~ b l e m . ~  In the quan- 
tum part of the problem we shall consider a resonant interac- 
tion of a gas of atoms with a given linearly polarized field E. 
The resonating levels of these atoms, one of which is the 
ground state, are split by the hyperfine interaction. It is as- 
sumed that the optical density of a gas is 1ow:xI < 1 ,  wherex 
is the linear absorption coefficient and I is the length of the 
cell, obeying the condition r,/l< 1, so that we can ignore all 
types of collisions and self-consistency with the electrody- 
namic part of the problem. The gas of atoms can be described 
by the formalism of the density matrix expanded in terms of 
irreducible tensor operators (x, q representation9). The re- 
lationship between the characteristic frequencies in our 
model corresponds to the usual experimental conditions5-': 
the Doppler broadening ki7 and the hyperfine splitting of the 
ground state a,,, should be greater than y and the hyperfine 
splitting of the upper level should obey a,,, 2 y. This rela- 
tionship between the frequencies allows us to consider the 
upper level as virtual and active in a redistribution of atoms 
between the magnetic sublevels of the ground state (optical 
self-pumping) as a result of which an induced quadrupole 
moment appears for atoms in the ground state. The popula- 
tions of the upper level can be ignored in view of l/y?< 1. 

The electrodynamic part of the problem is used to de- 
tect precession of a quadrupole using oscillations of the po- 
larization characteristics of radiation transmitted by a cell 
containing a gas. Therefore, we shall consider the boundary- 
value problem relating the initial linearly polarized field at 
y = 0 to the transmitted field at y = I. The solution of the 
boundary-value problem can be obtained using perturbation 
theory for a given polarization (susceptibility) of a medium 
when the field component E ' is orthogonal to E. We shall use 
a coordinate system ( x ,  y, z )  with a suitable basis ( e l ,  e,, e,) 
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where the direction of propagation of a wave is given by the 
unit vector e,, the initial polarization is given by the unit 
vector e,, and the direction of the magnetic field h is de- 
scribed by the spherical angles 6 and p. In this system of 
coordinates the radiation field transmitted by a medium is 
elliptically polarized and is characterized by a single com- 
plex vector 

( e ~  cos $+el sin $) 4- i tg a  (e, cos $-e, sin I)) 
Ic= (I+tg2 a )  '!' 

, (1)  

where $ is the angle of rotation of the plane of polarization 
and a is the ellipticity angle." In the model under discus- 
sion, we have a, $< 1 and the component E ' is proportional 
to the quantity $ + ia, which in the boundary-value prob- 
lem is related to the susceptibility component x,, by 

3. The approximations used in the formulation of the 
problem allow us to write down the kinetic equation for the 
polarization moments pj;' of the ground-state density ma- 
trix: 

where 

The notation for the irreducible tensor products and the 
3jn symbols follows Ref. 11. The summation in Eqs. (4)  and 
(5) is over the hyperfine structure of an excited state with an 
index m. The constants C,, in Eqs. (4)  and ( 5 )  and the 
value of g ,  in Eq. (3)  give the dependences of the dipole 
moment of the d and g factors of the ground state on the total 
moments F, the nuclear spin I, and the electron moments J, 
and J, (0  refers to the lower state and 1 refers to the upper 
state): 

I Ja Fn 
g. = ( - - l ) F n i J o + ' t l  go(2Fn+1) { } . 1 F,, J , ,  

The saturation parameter G and the spectral components 
A,, obtained using the hyperfine splitting and the Doppler 
shift are described by the following expressions: 

(frequencies are measured from the field frequency a). The 
terms A"' and A i2', in Eqs. (3)-(5) describe optical pump- 
ing of the ground state, i.e., the arrival in the ground state 
A'" as a result of spontaneous emission and departure from 
the ground state A(2), because of an external field. 

Equation (3)  contains dimensionless functions f(r) ,  
p ( t ) ,  and 7 ( t )  which describe, respectively, the transverse 
distribution of the intensity in a light beam f(r) ,  the time 
dependence of the intensity p(r) ,  and the time dependence 
77(t) of the magnetic field intensity. 

We derived the kinetic equation (3)  bearing in mind the 
following points. The right-hand side of Eq. (3)  generally 
depends on all the polarization momentsp~' .  Since the solu- 
tion of Eq. (3)  should be obtained in the first order with 
respect to the saturation parameter G, the polarization mo- 
ments on the right-hand side of Eq. (3)  are assumed to be 
equal to the initial values8 (corresponding to adiabatic acti- 
vation of the interaction): 

where N'") are the equilibrium population numbers of the 
hyperfine structure of the ground state. For this reason the 
unit field vectorsp in Eq. (3)  are equal to their initial values 
(CL = e3). 

We can see from Eq. ( 3 ) ,  as stressed above, that the 
adopted approximation gives only the polarization moments 
of the even rank ( x  = 0 or 2)  forp;:'; the odd moments can 
appear only in the next approximation in terms of G. 

4. The solution of the kinetic equation (3) can be repre- 
sented by a sum of the free solution (8)  and the forced solu- 
tion pr '  describing all the precession effects. We shall now 
give the expression describing the forced solution: 

xexp{-iqSl,(t, t ' )  ). (10) 

Here, C f; ,,,, are Clebsch-Gordan coefficients which ap- 
pear because of double rotation of the coordinate system and 
h, = h, ( 6 , ~ )  are unit spherical functions (Fig. 1 ). 

In a linearly polarized field using the geometry of Fig. 1, 
we find that 

The scalar component of this tensor ( x  = 0 )  corresponds to 
a redistribution of the population numbers of the 
ground-state levels by the optical field: 
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FIG. 1 

The quantity t in Eq. ( 10) is independent of the magnetic 
field and of the level number n, but in the phase space (v, , r )  
it governs the interaction time of atoms with the light beam. 
The time dependence o f t  A: is determined by modulation of 
the intensity of light. We shall determine - the ensemble-aver- 
age interaction time ( ( t  A $ ) u I  = tr ,  for a constant intensity: 

This time depends on two factors: the distribution of the 
intensity in the light beam and the equilibrium distribution 
of the velocities of the gas atoms. For example, for a Maxwel- 
lian distribution of the atoms and a Gaussian beam, 
f ( r )  = exp( - p2)  and p = r/ro, we have 

where I o ( x )  is a modified Bessel function; we shall consider 
this particular case below. The characteristic features asso- 
ciated with atomic beams will be discussed separately. It 
should be noted that the asymptotic form of Eq. ( 13) in the 
rangeps  1 is independent of the beam profile: T,  a l / p .  

The light-induced quadrupole moment proportional to 
{e:'3) o e13'),,, = S,, (+) ' I 2  rotates, as is clear from Eq. 
( 9 ) ,  in a magnetic field, which means that p::' has compo- 
nents with q#O that depend on the magnetic field in Eq. 
( 10).  The interaction times t :; of Eq. ( 10) depend on the 
hyperfine level number n via the g, factors of Eqs. ( 6 )  and 
( 1 1 ) and also depend in a dual manner on the magnetic field: 
the index L is governed by the rank of the tensor constructed 
from a unit vector of the magnetic field and the intensity of 
the magnetic field gives rise to a strong anisotropy of the 
"interaction times" depending on q  because of the oscilla- 
tions in Eq. ( 10).  By analogy with Eq. ( 12),  we shall define 
(t:,;')", =&:lfL): 

The steady-state problem of rotation of the induced quadru- 
pole moment of an atom in a magnetic field and of the polar- 
ization of light transmitted by a cell is solved in Ref. 8 for 
static fields r ]  = p  = 1.  We shall now consider the processes 
governing the precession of the quadrupole moment. 

a) Free precession 

We shall assume that the intensity of light remains con- 
stant: p = 1.  We shall consider transient processes that are 
induced by the "switching on" of a constant magnetic field. 
The rate of this switching-on process is high compared with 
l/?, so that ~ ( t )  is represented by the Heaviside step func- 
tion. The vector components of the interaction times T:' 

then become 
t 

(n) dt' ( t )  = j  T exp(-iqgnQtl) < f ( r - v L t l )  >, 
o - 

dt' + e x p { - , i y g . ~ t )  (f (r-v,tf) ( 1 5 )  
I 

In addition to the monotonically varying first component, 
which governs the steady-state solution obtained in Ref. 8, 
Eq. ( 15 ) includes also a correction oscillating at frequencies 
qq, 0 and describing free precession. It is important to note 
that the harmonics created by oscillations of the quadrupole 
moment (x = 2 )  contain q  = + 1 ,  + 2  of each of the Lar- 
mor frequencies R, = g,R. We shall determine the main 
precession frequencies by considering the example of the D 
lines of alkali metals ( J ,  = 1 /2 ) .  The g factors are now de- 
scribed by 

Oscillations of the quadrupole as a result of transmission of 
linearly polarized light through, for example, sodium vapor 
( I  = 3 / 2 )  are observed at four frequencies: 

where H is expressed in oersteds. 
The precession relaxation process is described by the 

following time dependence of the amplitude: 

dt' 
A ( t )  = J --- ( ~ ( T - v J ~ )  )vl 

t 

In a typical situation corresponding to Eq. ( 13) the asymp- 
totic behavior of the oscillation amplitudes at times fst is 
independent of r and is of universal form 

In the opposite limiting case of t <;, we have A ( t )  = r,. 
In the first part of this paper we have mentioned that it 

is not possible to model the finite size of a beam by the simple 
substitution yz - l / t .  In Eq. ( 1 8 )  such a substitution is 
equivalent to ( f )  ,L -.exp{ - t /? 1, and it is easy to show 
that in this case the behavior of A ( t )  = exp{ - t  /?) differs 
qualitatively from that described by Eq. ( 19).  This qualita- 
tive difference is manifested largely in the form of forced 
precession resonances and examples of such resonances will 
be considered later. 
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b) Modulation of the intensity of pump light 

We shall now assume that the intensity of light varies 
with time in accordance with p = 1 + a cos vt (v<  y )  and 
the magnetic field is constant: 7 = 1. This corresponds to the 
excitation of forced precession of the quadrupole moment by 
modulation of the intensity of light. We shall write down the 
expression for the time dependences of the vector interaction 
times ?:'( t )  in the resonance case when I A( 9 1, where 
A = (v  - (qR, 1):: 

andB = sign(q0, ). 
The frequency dependences 7:) (A) of the precession 

amplitude of Eqs. (21 ) and (22) are independent of the 
beam profile and differ qualitatively from the Lorentzian 
and the dispersion profiles obtained using a model of expo- 
nential decay of the optical orientation. Figure 2 shows, for 
the sake of comparison, the dependences rL,"'(A) and 
Re L(A), and r:,"'(A) and Im L(A) ,  where L(A)  (dashed 
curve) has the Lorentzian profile characterized by y = l/?. 
The functions 7::' and 75,"' have important singularities at 
zero: the derivative drL,"'/dA has a discontinuity and 
drS,"'/dA is infinite. Asymptotes of the functions rL,"'(A) 
and r:"' (A) depend onp if A % 1, as deduced from Eqs. ( 10) 
and (14). I fp  = 0, they are described by 

c) Modulation of the magnetic field amplitude (parametric 
resonance) 

We shall carry out a similar analysis for the case of con- 
stant intensity of light (p = 1) and an alternating magnetic 
field 7 = 1 + a cos vt. In contrast to forced precession, 
which is due to modulation of the light intensity, when a 
resonance may be observed at one frequency v, = IqR, 1 ,  in 
the present case we find from an analysis of Eqs. ( lo),  ( 11 ), 

FIG. 2 
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and ( 14) that the resonance oscillations of the quadrupole 
appear if we select the rf magnetic field frequency to be 
v, = - qll, /k ( k  is an integer) (if qR, < 0, we have k > 0, 
whereas for qR, > 0, we have k < 0) .  Each frequency v, of 
the magnetic field oscillations corresponds to a discrete se- 
ries of frequencies of the oscillations of the quadrupole mv,. 
In the case when la/ < 1, which is of practical interest (when 
the amplitude of the rf field is small compared with the static 
field H ) ,  the term with m = 1 (first harmonic) in this series 
corresponds to the highest amplitude. We shall now give the 
expression for the component 7 r ' ( t )  in this limiting case - 
when [A, 14 1 and A, = ( Y  - vk ))f: 

T:) (t) = (-ak)"I exp (ikvt) (T(,:: + ib~(a;: ) . 

The spectral dependences ~2,"; and ~ $ 2  are then identi- 
cal with Eqs. (21)-(23) if we make the substitution A- A,. 

5. This precession of the quadrupole moment leads to 
modulation of the intensity, angle of rotation, and degree of 
ellipticity of a light beam transmitted by a cell. In particular, 
the susceptibility component x,, governing the rotation an- 
gle $ and the elllipticity a [Eq. (2)  ] can be expressed in 
terms of solutions of the kinetic equation for pi;'. The time 
dependence p:a'(t) for each type of precession is described 
by the behavior of the components of interaction times 
r in ) ( t )  considered above. We shall write down the expres- 
sion forx,,  for an arbitrary relationship between the hyper- 
fine splitting and the Doppler width for the atoms: 

Here, N is the density of the atoms. 
Before discussing the results of averaging over the ve- 

locities in Eq. (25), we should note that if we ignore the 
hyperfine splitting of an excited state (when the value of A,,, 
is the same for all m), we can sum in Eq. (25) over m and the 
answer, irrespective of the value ofpi"' is proportional to a 6j 
symbol: 

which according to the selection rules does not vanish only if 
J, > 1. Hence, we can draw the important conclusion that 
rotation of the plane of polarization of light and, consequent- 
ly, the ability to record in this way the precession of the 
quadrupole of the atoms with J, < 1 and possible only if we 
allow for the hyperfine splitting (for example, in the case of 
alkali metals with J, = 1/2). 

We shall average over the velocities in Eq. (25) in the 
special case when the Doppler width is much greater than 
the characteristic magnitudes of the hyperfine splitting 
Am+ = max{w,,, ) and Ao- = max{w,,, 1. It is conven- 
ient to write down the result in terms of the orthonormalized 
quantity c,, [see Eq. (2) 1 which is independent of the gas 
density and the cell length: 
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+ 

I - ( - I lL  
Im(r.:"' ( t )  ), sin ~ J } B . ,  

2 

where 

  ere 2 is obtained from Eqs. (4)  and (5 )  if A,,, = 0 

in A :1*2'nn'. 

We must stress once again that the polarization charac- 
teristics in Eq. (26) have a time dependence due to the 
precession of the quadrupole as defined in terms of 
( ~ ; ; ) ( t ) ) " .  

We shall analyze the relationship between the angle of 
rotation $=  - x I R e l , ,  and the ellipticity angle 
a = -XI Im l,, for possible special cases. As a rule, the 
characteristic splitting of an upper state Aw + is less than the 
characteristic splitting of a lower state Aw - , so that we shall 
assume that Aw, < Aw-. For atoms with the moment of the 
electron shell of the ground state Jo > 1 in Eq. (26) we find 
that for both Aw < y and Aw+ > y, the angle of rotation $ 
exceeds greatly the ellipticity angle a. In the intermediate 
case when Aw + a y the angles $ and a are of the same order 
of magnitude. 

For atoms with Jo < 1 we have to allow for the hyperfine 
splitting, as pointed out above. If Aw-, Aw, ( y ,  the sum- 
ming over m in the zeroth order with respect to Aw -/y gives 

= 0 in Eq. (27) and the first nonzero correction in re- 
spect of the parameter A w J y  is purely imaginary. This 
means that in this case an elliptically polarized wave without 
rotation of the plane of polarization emerges from the cell. 

If Aw, ) y (when we know that Aw- ) y), the sums in 
Eq. (26) are dominated by the terms with a,,, = w,,, = 0 
and these determine the angle of rotation; we therefore have 
$)a.  

If the hyperfine splitting in the ground state exceeds the 
Doppler broadening, as is true for example of alkali metals, 
the resonant interaction of light occurs only with just one 
ground-state level with a fixed number n*. We then have to 
substitute in Eqs. (26) and (27) the value n = n, = n* 
(a,,, = 0).  A similar situation occurs ifJo = 0 (Fo> 1 ), i.e., 
when the ground state is not split and only the nuclear mo- 
ment becomes oriented. 

We shall conclude by noting that we have ignored a 
typical experimental setup" for the orientation by a circu- 
larly polarized field in order to draw attention to the novel 
physical effect of precession of the quadrupole moment. The 
problem of precession of multipole moments, oriented by an 
elliptically polarized field, will be considered in the future. 
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