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The properties of a system at a second-order phase transition in the vicinity of an inhomogeneous 
defect whose inhomogeneity is of the form R ( r )  = R /r" are investigated. It is shown that the 
effective dimensionality of the defect varies smoothly with a, which leads to a local change in the 
critical behavior. For a certain value of a, the critical exponents exhibit a local violation of 
universality near the defect. Conditions are formulated for the appearance of anomalous behavior 
ofthe system correlation functions. 

1. INTRODUCTION 

Let us investigate a d-dimensional system described by 
the Hamiltonian 

H=H.+LH,=~ e ( r ) d r + J  Aw(r)dr (1) 

with il a small parameter. The energy density ~ ( r )  and per- 
turbation density w(r)  are local quantities that depend on 
the microscopic variables which describe the system. 

Suppose that the Hamiltonian H, leads to a phase tran- 
sition at a temperature T =  T,. The theory of similarity' is 
based on the assumption that near a critical point there exists 
a set of strongly fluctuating fields A, (x) .  When we perform a 
similarity transformation the quantities A, transform ac- 
cording to the following rule: 

A, O.X) = ~ . - ~ j ~ , l ~  (XI. (7-1 

The scaling dimensions A, completely determine the critical 
exponents of the system, which in turn describe the behavior 
of thermodynamic quantities near the critical point. 

According to the operator-algebra any 
local quantity A ( x )  can be represented in the form of a linear 
combination of the quantities A, (x ) :  

This implies that the set {A,  (x ) )  is complete, i.e., the follow- 
ing reduction relations hold: 

obtains in the eight-vertex Baxter The exact solu- 
tion to this model demonstrated for the first time the possi- 
bility of a violation of the universality hypothesis; the expla- 
nation of this interesting fact was given by Kadanoff and 
Wegner.(j 

In Ref. 7, using the example of the two-dimensional 
Ising model with a line defect, the critical properties of a 
system near a defect with dimensionality d '<d  were investi- 
gated. The conclusions formulated above also remain valid 
in this case: in particular, the condition that there appear a 
continuous dependence of the critical exponents will be 
weakened for A, = d '<d. For d ' < d the symmetry of the 
system necessarily changes as a consequence of the breaking 
of translational invariance. Nevertheless, violation of the 
universality hypothesis will, as previously, be an exceptional 
event. This is because the existence of a quantity with inte- 
gral dimensionality d ' in the algebra should be anticipated 
only in the case where the system has a special symmetry; in 
the general case there is no such operator in the algebra. This 
fact is evident from the results of numerical calculations of 
the critical exponents of model systems.' 

In this paper we will investigate the critical properties 
of a system near a defect where the microscopic parameter R 
of the perturbation is a function of the coordinates R = R ( r ) ;  
we show that as we vary the form of the function R( r ) ,  we 
can ensure that the relation A, = d ' is effectively fulfilled. In 
this case, the system will exhibit critical behavior near the 
defect which is nonuniversal. 

Our problem consists of determining how the scaling 
dimensions A, change as we switch on the perturbation AH,. 
This problem was investigated in Ref. 1; the results of this 
investigation led the authors to conclude that when the 
quantity o ( x )  is expanded in a series of the form (3) ,  the 
scaling dimension of the perturbation A, is determined by 
the most singular operator in the expansion. For A, < d and 
if the presence of the perturbation changes the symmetry of 
the system, then switching on the perturbation leads to a 
change in the critical exponents of the system. For A, > d, 
the critical exponents remain unchanged. For the case 
A, = d, switching on the perturbation leads either to scale- 
invariant behavior of the correlation functions or to contin- 
uous dependence of the critical exponents on the microscop- 
ic parameters of the perturbation. Just such a situation 

2. MODEL OF A DEFECT WITH "FRACTIONAL" 
(4)  DIMENSIONALITY 

Let us investigate a d-dimensional system near a critical 
point determined by the Hamiltonian ( 1 ). We will assume 
that the perturbation is caused by the presence of a homoge- 
neous defect of dimensionality d *. In this case the perturba- 
tion itself has dimensionality d ' ( d  * < d '). We will define the 
function R ( r )  in the following way: 

i. ( r )  = h ~ ( r ) ,  

z ( r ) = [ ( x , - - , ) ' + ( x , , . + z ) l f . .  . +(~~.)'j-~ ?, ( 5 )  

where x , ,  ..., x, are axes of a Cartesian coordinate system. 
The coordinate axes x,, ..., x, are chosen in such a way that 
axesx,, ..., x,, span the subspace of the perturbation in which 
the defect subspace with axes x,, ..., x,, is embedded. The 
integration in the first term of (1) is carried out in a d-di- 
mensional space, while the second term involves a d  '-dimen- 
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sional subspace integration. The subspace of dimension d ' 
will be assumed to be homogeneous and isotropic in the ab- 
sence of the defect. In Eq. ( 5 1, A is by assumption small, so 
that is valid to expand for small A. 

Let us illustrate the model under study here with sever- 
al examples. For d * = 0, d ' = d = 3 we are dealing with a 
point defect in a three-dimensional lattice. Here the case 
a+  w corresponds to an intrinsic point defect which for 
a - 0  "smears out" into a defect with d '  = 3. For d * = 1, 
d ' = d = 3 we have a line defect whose dimensionality 
changes from 1 (a -+ cc ) to 3 ( a  -0) .  We also can investigate 
the case d ' < d in this unified scheme. 

Therefore, the initial point of our investigation is a 
Hamiltonian of the following form: 

The integration over each Cartesian coordinate x ,  is limited 
from below by the lattice constant, which we take equal to 1. 

In the absence of the perturbation, the system exhibits a 
phase transition at the temperature T,. In this case, relations 
derived from the theory of scale invariance and the operator 
algebra ( 4 )  are valid for the correlation functions of the sys- 
tem. In addition, we will assume that these correlators are 
translation-invariant and isotropic in the space of the pertur- 
bation. 

The basis for our study of the model formulated above is 
the method developed by Polyakov for use in quantum field 
theory.' A discussion of this method was given in Ref. 1, 
where it was applied to the theory of critical phenomena; the 
case d * = d ' = d was treated in this reference. 

3. CALCULATION OF THE CORRELATION FUNCTION 

Let us investigate the two-point order parameter corre- 
lation function 

where the system Hamiltonian is defined by Eq. (6) .  Near a 
critical point of the unperturbed system we expand Eq. (7 )  
in a power series in A: 

where the double angle brackets denote the irreducible part 
of the multi-point correlation function. The integration in 
(8)  is carried out over all r, in the space with the perturba- 
tion dimension d '. 

The local value of w( r )  can be expanded in a series with 
respect to the fundamental components of the operator alge- 
bra ( 3 ) :  

We will confine ourselves here to the most singular operator. 
identifying it from here on as the perturbation operator 
o ( r )  . The most singular operator is the one with the smallest 
scaling dimension A,. It is possible to distinguish the var- 
ious types of reduction relations (4)  as a function of the 
specific type of perturbation operator o ( r ) .  Let us discuss 
two of the most important. We limit ourselves to the most 
singular operator on the right side of (4) :  

cp (0) o (r)  =aip(0) lrI-Aw, 

o(0)o(r)=blol(O) Irl-Am; 

w (0) w (r) =a2& (0) 1 r 1 -  

o (0) E (r)  =bzw (0) Ir[-Ae,  

In the first case the perturbation operator o ( r )  behaves like 
the energy density operator ~ ( r ) ,  in the second case it be- 
haves like the order parameter cp(r). For d * = d ' = d such 
perturbations do  not change the system symmetry, and con- 
sequently the critical exponents also do not change. There- 
fore such perturbations were not discussed in Ref. 1. In the 
present paper we assume d * < d ' or d ' < d. In this case the 
system symmetry must necessarily change as a recull of 
breaking of translation invariance. Therefore perturbations 
with the reduction relations (9 )  and (10) are of the mo\t 
interest. 

The change in the correlation function caused by 
switching on the perturbation has the following form to first 
order In A: 

6 ~ " '  (R, h )  =-A) ((9 (O)p(R) o (r) ))z (r) dr. (11)  

For definiteness we will direct the vector R orthogonal to the 
defect subspace d *. Depending on the configuration of the 
points 0, R, r, there exist three regions with different contri- 
butions to the variation of the correlation function (8 ) :  

( a )  IRI > lrl 
(b )  /RI > IR - r /  

( c )  lrl, IR - rl > R 
Let us first investigate the contribution from the region ( a )  
to the integral ( 8 ) .  We apply relation (9)  to the product 
p(O)w(r) :  

6~::: ( R ,  h) a -hG (R, 0) / I r / -*.z (r) dr. (17)  

Substituting (9)  into (12) and evaluating the integral so 
obtained in a spherical coordinate system, we obtain an esti- 
mate of the contribution from region ( a ) .  We then calculate 
this integral separately for the different values d * and d '; ilr 

all cases we obtain the following estimate: 

where 

The contributions from ( b )  and (c )  are estimated analo- 
gously; in order of magnitude they coincide with ( 13). 
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In this way we arrive at the conclusion that the pertur- 
bations we are investigating, i.e., with inhomogeneities of the 
form z(r) = ( r (  - " , change the critical properties of the sys- 
tem near the center of the defect; these changes are analo- 
gous to a perturbation with dimensionality d,, . 

For d,, c A the correction SG'" under study is small 
compared to G(R,O), because all distances are by assump- 
tion large compared to unity. In this case the critical expo- 
nents of the system remain unchanged. 

For d,, > A the expansion parameter (8)  becomes 
large. The expansion itself is difficult to augment by any 
further analysis. In this case the critical exponents change. 
This implies either that the phase transition near the defect 
belongs to another universality class or that the temperature 
T, for this region is not critical. A schematic state diagram is 
given in Fig. 1. In region I the critical exponents of the un- 
perturbed system coincide with those of the perturbed sys- 
tem, while in region I1 they do not coincide. 

The most interesting case is d, = A,. In this case we 
can calculate the change in the critical exponents to linear 
order in A. In order to do this, it is necessary to sum the 
leading logarithms in the expansion (8).  For the case under 
discussion, i.e., d,, = A,,, we will concentrate our attention 
on the more restrictive case 0 <a < d ' - d *, i.e., 

The cased,, = d * = A, > d ' - d * is analogous to the case 
a = 0, which was previously discussed in Ref. 7. 

Thus, 

The basic contrib~~tion to (8)  is given by regions of values of 
the arguments U,R,r,, ..., r, , which are pairwise close to one 
another.:' By assumption, the vector R is orthogonal to the 
defect subt,.ace; tr~erefore the largest contribution is given 
by those configurations in which only the arguments 
O,r,, ..., r, approach one another. So as to carry out the calcu- 
lations in an easily-visualized way, we will introduce a 
graphical illustration of the terms of the expansion (8).  Fol- 
lowing Ref. 1, we will associate circles with the quantities 
(p(r) and crosses with the quantities w ( r ) .  We enclose with- 
in the oval those pairs of points separated by distances which 
are smaller than all other distances; applying the relation 
(9) of the operator algebra to these pairs, we carry out the 
integration over one of the arguments. Two typical configu- 
rations are shown in Fig. 2. Let us compute the contribution 
from configuration (a )  : 

FIG. 1 .  Phase diagram for the critical behavior of a system near a defect of 
"fractional" dimension. 

FIG. 2. Graphical illustration of the terms in the expansion ( 8 ) .  

where Sd.,. (a) is a numerical coefficient which arises in 
calculating the intergral 

lrll 

dr 
(18)  

For d * = 0, Sd ,, (a) = Sd, is the surface of a sphere of unit 
radius in the d '-dimensional space. Substituting (5)  into 
( 18), for the other typical values of d ' and d * we find 

where r(a) is the gamma function. Calculation of the con- 
tribution (b)  shown in Fig. 2 is analogous to ( 18): 

n z  (r,) drl . . . dr "-,. 

The expression in (20) is logarithmically small com- 
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pared to that in ( 17). From this it is clear that the contribu- 
tion to the leading logarithm approximation is given only by 
those configurations in which the quantity p (0 )  is present in 
operator pairs which approach each other. Continuing the 
procedure for calculating ( 17), in the leading logarithm ap- 
proximation we obtain the contribution of the nth term in 
the expansion ( 8) : 

For the correlation function we are led to the following re- 
sult: 

Thus, the critical exponent of the order parameter cor- 
relation function near the defect center is found to be a con- 
tinuous function of the microscopic parameter A. In this 
case, to first order, 

A,=A,O+halS,,-d. ( a ) .  (23) 

Analogous calculations for the correlation function 
( (w (0)w (R) ) )  lead to the result 

According to investigations presented earlier,' for 
d ' = d * = A, weshould expect that in general there will be a 
violation of scale invariance in the system; a continuous de- 
pendence of the critical exponents on the parameter A is ex- 
pected only for b ,  = 0, for which case scale invariance is 
preserved. In the case we investigated i.e., d '  - a = A, 
( d  '#  d *) the system exhibits acontinuous dependenceofthe 
critical exponents on the parameter A independent of 
whether b,  = 0 or b,  #O. However, in the general case of 
b,  #O, in addition to a continuous dependence of the critical 
exponents on the parameter /2 we should also expect a break- 
ing of scale invariance, because the critical exponents (23) 
and (24) are not related to each other. This can indicate, in 
particular, that the temperature T, is not critical for the re- 
gion near a defect of "fractional" dimensionality. 

If the behavior of the perturbation operator w(r) is 
analogous to the order parameter, in particular if the corre- 
lation function of an odd number of operators w(r) equals 
zero for temperatures T ) T,, then as operators approach 
each other the reduction is implemented according to the 
rule ( 10). In this case, the expansion (8)  for the correlation 
functions contains only even terms: 

((a (0) w (R) w (.I) . . . 0  (rzn) )) 
n 

Here the first-order and leading logarithm contributions to 
the correlation function for the configuration shown in Fig. 
2 are determined by their sum: 

Continuing this procedure, we obtain the following 
expression for the correlation function near a defect: 

where 

Thus, even in this case the critical exponents for the 
order parameter correlation function are functions of the 
microscopic parameter A. Further calculations show that to 
first order in A the scaling dimension of the energy density 
operator is unchanged. 

4. VIOLATION OF SCALE INVARIANCE 

So far, we have shown that for d,, = A ,  the system 
exhibits a local nonuniversality of the critical indices. If in 
addition to this the condition A ,  = d * i.e., n = d ' - d *, is 
satisfied, then we have combination of the two conditions for 
anomalous behavior of the correlation function. Let us see 
what this leads to. Let 

$ I 

A,=$, a=d'-d*, 

carrying out the reduction of the operators according to (9) .  
The contribution to the leading logarithm approximation 
will, as previously, be determined by the configuration 
shown in Fig. 2 (a).  In comparison, the configuration shown 
in Fig. 2(b) will be logarithmically small. Computing the 
integral ( 18) for a = d ' = d *, we obtain 

where 

In the leading logarithm approximation, the nth term of the 
expansion (8)  is written in the following form: 

- (-A) .a,Sd, <cp (0) cp (R) 61 (r,) . . . (rn-,) )) ./ 
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As a result of these recurrence calculations we obtain 

Calculations are carried out analogously for the case 
where the perturbation operator behaves like an order pa- 
rameter, and the reduction of operator pairs is accomplished 
according to Eq. ( 10) : 

+(A,o-A,o+a)-'] InZ R).  

Therefore, in both cases the order parameter correla- 
tion functions exhibit non-scale-invariant behavior when the 
condition A, = d * = d'  - a holds. 

5. CONCLUSION 

Thus, the investigation presented here has shown that 
introducing a defect of "fractional" dimension into the sys- 
tem can cause a local change in the critical properties of the 
system. This situation obtains if the effective dimensionality 
of the perturbation (14) which causes this defect is larger 
than its scaling dimension (d , ,  > A, ). In the opposite case 
(d,, <A, ) the critical exponents of the system near the de- 
fect remain the same as they do far from it. An interesting 
situation arises for d,, = A, : in this case, the local critical 
exponents are continuous functions of the microscopic per- 
turbation parameter A; this indicates that there is local viola- 
tion of the universality hypothesis. Such a situation can oc- 
cur in the general case, and not only for the case of a special 
symmetry-a characteristic of the defect models investigat- 
ed earlier whose dimensionalities were integers. lS4s7 In this 
case, if the perturbation operator is analogous to the energy 
density operator, then locally not only the universality hy- 
pothesis but also the similarity relation between critical ex- 
ponents is violated. This may indicate, in particular, that the 
temperature T, is not critical for the region around the de- 
fect. 

If the perturbation operator is analogous to the order 
parameter, then the similarity relations, at least to linear 
order in /Z ', are not violated. 

A very interesting situation is the case A, 
= d * = d ' - a. Herethecorrelation functionsofthesystem 

near the defect behave in a non-scale-invariant way, with an 
unusual dependence on distance. It is interesting to study the 
correlation functions of a two-dimensional Ising model with 
line and point defects with inhomogeneity exponents a = 1, 
and also the n-vector models of magnets, in the context.9-" 
Study of these and other models allow us to better under- 
stand the way such situations arise, and also to identify by 
means of experimental observations the phenomenon of lo- 
cal nonuniversality of the critical exponents. 
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