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The Ginzburg-Landau equations are used to analyze some mechanisms for the interaction of 
vortices with a twinning boundary. It is shown that under certain conditions the pinning force 
may depend nonmonotonically on temperature. 

1. The compounds Y ,Ba2Cu30, &, which are super- 
conducting at high temperatures, are known to have a pro- 
nounced twinning structure. The twinning occurs during the 
structural transition from the tetragonal to the orthorhom- 
bic phases, which occurs at high temperatures well above the 
superconducting transition T, .  The presence of twinning 
planes was found by Khaikin and Khlyustikov' to increase 
Tc in tin, and a similar increase was subsequently noted in 
other crystals (In, Nb, e t ~ . ~ . ~ ) .  The question thus arises of 
how twinning planes alter the superconducting properties in 
high-temperature superconductors. A square-root tempera- 
ture dependence H,, - ( T - T, ) ' I 2  near the Curie point Tc 
was reported in Ref. 4; this dependence is characteristic for 
localized superconductivity near a twinning plane. Two dis- 
continuities in the heat capacity for a single crystal were 
observed in Ref. 5, a large one at 89 K and a smaller one at 93 
K. This was interpreted in Ref. 6 as indicating two supercon- 
ducting transitions, one to a state with localized supercon- 
ductivity (on the twinning plane) at 93 K, the other to a bulk 
superconducting state at 89 K. 

In any event, twinning boundaries are planar defects. If 
such defects are numerous enough (separated by a mean 
distance of -300-1000 A),  they should greatly influence 
the pinning of Abrikosov vortices. Anisotropic pinning of a 
type consistent with pinning at twinning boundaries has in 
fact been observed in several experiments in which the criti- 
cal current was measured.'.' In what follows we will consid- 
er some vortex-boundary interaction mechanism from the 
standpoint of the Ginzburg-Landau equation. 

2. We consider vortices parallel to a twinning plane 
(more precisely, oriented along the C axis). The Ginzburg- 
Landau functional neglecting any effects of the twinning 
plane, can be written in the form9 

Since we will be interested in type I1 superconductors with 
Ginzburg-Landau parameter x )  1, the self magnetic field of 
the vortex can be neglected. 

Equation ( 1 ) assumes that the superconducting prop- 
erties are isotropic in the ab plane; if this is not the case, the 
factor 1/4m in the gradient term must be replaced by the 
effective mass tensor. The principal axes of this tensor will 
then be oriented differently on either side of the twinning 
plane, and its components will change discontinuously 
across the plane. However, it is easy to show by explicit cal- 
culation that this does not cause vortex pinning; this is be- 

cause the symmetry of the twinning plane ensures that noth- 
ing is changed upon reflection in the plane. If the twin is 
isolated, one can make a linear change of coordinates which 
leaves the boundary fixed but takes the effective mass tensor 
into a multiple of the unit tensor (i.e., for which the problem 
becomes isotropic). In a symmetric twin we can use two 
such transformations applied symmetrically with respect to 
the twinning boundary. This leaves the boundary fixed while 
the mass tensor goes over to the same scalar tensor in both 
twins. The boundary thus no longer figures in the problem, 
i.e., the vortex energy is independent of the distance from the 
boundary and hence there is no pinning. We note that this 
argument is valid only if the anisotropy can be described by 
an effective mass tensor. Although this is the case where the 
Ginzburg-Landau theory applies, this assumption may be 
incorrect at low temperatures. In this case the pinning asso- 
ciated with anisotropy should decrease rapidly with heating. 
In what follows we consider some pinning mechanisms for a 
superconductor isotropic in the ab plane. 

3. The transport and superconducting properties vary 
in a thin layer near the twinning boundary. If the layer width 
is assumed much smaller than the coherence length { ( T ) ,  
then the boundary acts only through the boundary condi- 
tions of the Ginzburg-Landau equations. In the general case 
(assuming, however, symmetry about the boundary) these 
conditions are of the form'0.'' 

Here the x coordinate is normal to the boundary, and the 
subscripts 1 and 2 denote values of $ and d$/ax along the 
different directions from the boundary. The coefficients L ,  , 
and L,, must be found from the microscopic equations. 
First, however, it is helpful to recast these conditions in the 
slightly different form 

in which the physical significance of the coefficients A and a 
is highlighted. The coefficient A determines the increase in 
T, at the b ~ u n d a r y , ' ~ - ' ~  while a corresponds to the barrier 
transparency and can be calculated micr~scopically.'~ For 
low transparency we have 

I 

a-76 (3) u0/3n'T. I cos 0D (cos 0) d (eos 8). 
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where v, is the Fermi velocity and D the transmission coeffi- 
cient. In the opposite limiting case of high transparency, 

(the last formula has been written for the pure case, and R is 
the reflection coefficient). For high transparency we have 
a-0, and we see from (2)  with d$l/ax = A$, 
small. 

We note that a is proportional to the coherence length 
6, and is independent of temperature. Also, d$/dx-$/ 
{(T), where {(T) oc r-'I2, r = (Tc - T)/T,. The dimen- 
sionless coefficient a/l thus tends to zero as T- T,, i.e., the 
barrier transparency becomes less important near Tc . In the 
opposite limit a/{) 1, the vortex interacts with the bound- 
ary as well as with the surface of the specimen. In this case it 
is again helpful to introduce a time-independent dimension- 
less parameter p = a/{rlt2 characterizing the transparen- 
cy. We will consider below the case when a/c = &-It2 < 1, 
which always holds for temperatures near the critical point, 
and which for high transparencies is valid whenever the 
Ginzburg-Landau equations apply. Since twinning boun- 
daries in crystals are usually quite transparent,'"he as- 
sum~tion that B is small is resonable. In this case the discon- 
tinuity in the order parameter at the boundary is small and 
the latter can be handled using perturbation theory. 

Depending on its sign, the coefficient A in (2)  either 
decreases the order parameter (as at an interface with a nor- 
mally conducting metal) or increases it near the boundary, 
giving rise to a localized superconductivity at temperatures 
above the superconducting transition up to a value T,, 
where (T, - T,)/T, = ro = A  27,7/4m; in Eq. (1)  we have 
a = - T/T, where we assume that r, 4 1. The second situa- 
tion is of greatest interest, and we consider it below. At tem- - 
peratures r3r0 the order parameter increases slightly near 
the boundary, so that perturbation theory again applies. Un- 
der these conditions, the two pinning mechanisms (due to 
transparency and to changes in T, ) may be analyzed sepa- 
rately. 

4. We first analyze how boundary transparency affects 
the vortex pinning. In calculating the vortex-boundary in- 
teraction energy, it is helpful to modify the Ginzburg-Lan- 
dau functional ( 1 ) so as to obtain the boundary conditions 
(2) .  This can be done by replacing the factor 1/4m in ( 1) by 
C(x)/4m, where C(x) = 1 outside the boundary and is very 
small in a narrow region close to it, so that 

Indeed, near the boundary we need retain only the term con- 
taining the large derivative in the Ginzburg-Landau equa- 
tions: 

Integrating, we get 

Integrating again across the entire boundary, we obtain ( 2 )  

To calculate the energy change due to boundary effects, 
we need to consider how the order parameter changes near 
the boundary. Writing $ = tlr, + a$, where $, is the order 
parameter for the vortex in the absence of the twinning 
boundary, and taking the variation of the modified func- 
tional ( 1 ), we obtain 

The first integral in this expression is equal to zero by 
virtue of the unperturbed Ginzburg-Landau equations. To 
evaluate the second integral, we use the fact that the region 
of integration and the value of C inside it are small. The 
energy per unit length of vortex is then found to be 

4. rn 2 +m 

Here the y coordinate is along the boundary and 
r = (x,: + y2) ' I 2  is the distance from the boundary to the 
center of the vortex, located at (0, x,). The vortex solution 
tj,, = ( l ~ l / b ) " ~ ~ ( r ) e x p ( i r p )  for the order parameter must 
be substituted into (4)  [herep(r) is the normalized absolute 
value of the order parameter:p( co ) = 1, and rp is its phase]. 
We calculate the force acting on the vortex by expressing a 
and b in terms of the critical field H C 2  = 4n-a2/b and the 
coherent length = (ma) '12/2: 

Far from the boundary ({<x,<R ) this is equal to 

The pinning force is strongest at distancesx, -6; to cal- 
culate it we must find the vortex solutionp(r) numerically. 
The result is 

We note that the force is always attractive. The critical 
current stripped by the vortex from the boundary is equal to 

Here @, is the flux quantum, c the speed of light, and j, the 
depairing current in the superconductor. We note that the 
temperature dependence jc, -r2 differs from that ofj, by a 
factor TI'*. This is because the barrier transparency has less 
influence on the superconducting properties as T- T, . 

5. We now study how the higher order parameter near 
the twinning boundary effects the vortex pinning. Boundary 
conditions of the type (2 )  with a = 0 can be by 
adding the term 
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to the Ginzburg-Landau functional. ~alcul-sting the vortex 
energy as before, we get 

t i ~ - - y l l  .h ( r )  ('6 ( x )  dx dy. 

The force acting on the vortex is equal to 
m 

for distances 64x04A we have 

The maximum force is 

This force is repulsive, and the critical current is 

The quantities f, and j,, are expressible in terms of measura- 
ble parameters, and the results can be compared quantita- 
tively with experiment. We note that jc2 varies more slowly 
with temperature ( a 7 )  than does j,,. For T 5 r0 the critical 
current jc, exceeds the depairing current, and perturbation 
theory does not apply. For r)ro there is a slight increase in 
the order parameter at the boundary. For T-T,, this in- 
crease is comparable to the order parameter far from the 
boundary. For 7 4 r o ,  the order parameter at the boundary is 
much larger than far away from it, hence it becomes very 
difficult for a vortex to penetrate the boundary. At these 
temperatures the critical current may be comparable to the 
depairing current. 

We now examine the combined effects of the two pin- 
ning mechanisms. One force f, is attractive while the other f, 
is repulsive, and they have different temperature depen- 
dences: f, a ?, f, a T. Thus, a vortex that is attracted to the 
boundary at low temperatures will be repelled by it at higher 
temperatures. Although the two forces have the same spatial 
dependence X X , - ~  far from the boundary, these depen- 
dences differ at distances -6, so that the maximum pinning 
force 

does not vanish. The temperature curve f,,, ( T )  [and also 
jc ( T )  ] should be nonmonotonic with a discontinuous slope. 
The total pinning force can be written as 

The factor in braces does not depend on temperature; the 
entire temperature dependence of the pinning force is de- 
scribed by the universal function 

which is plotted in Fig. 1. The discontinuity occurs at 
r1 = 1.86701/2 /p  and the maximum lies at T, = 1 .  1 4 ~ ~ " ~ / p .  

FIG. 1. Plot of the functionAt) giving the temperture dependence of the 
pinning force: t = P ( T -  T, )/T,,"~T,. 

As already noted, all of these formulas are valid for T)T, 

(under our assumptions f l ~ , " ~  4 1, SO that T,, 7,) 7,). 
We remark that if an external force (due, e.g., to a 

transport current) acts on the vortex and there is a tempera- 
ture above which attraction to the boundary is replaced by 
repulsion, then it is easy to see that upon heating, the vortex 
will cross the boundary and end up on the side where the 
external and repulsive forces point in the same direction, i.e., 
it will escape across the boundary. This cannot happen when 
the temperature is decreased: the force exerted by the bound- 
ary on the vortex will then always point opposite to the exter- 
nal force. 

6. It is not yet known whether a localized superconduct- 
ing state actually forms on twinning boundaries in high-tem- 
perature superconductors, or whether the boundaries mere- 
ly influence the charge carrier transport. Decorating 
techniques can be used to elucidate the influence of twinning 
planes on vortex pinning. It was found experimentally l h  that 
vortices are attracted to the boundaries at 4 K. It would be of 
interest to verify whether the attraction is replaced by repul- 
sion at higher temperatures, and also to measure the tem- 
perature dependence of the critical current for niobium 
twins,"or which the existence of localized superconductivi- 
ty may be regarded as well established. 
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