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Spatially nonuniform magnetoelastic oscillations (standing waves) are analyzed for the case of a 
normally magnetized ferromagnetic plate near the magnetic spin-flip transition. The local and 
average magnetic susceptibilities in a uniform time-dependent field are calculated with allowance 
for elastic and spin relaxation. Conditions are found for excitation of trigonometric and 
hyperbolic waves and some new resonances are predicted. Amplification of NMR by 
elastomagnetic waves is considered. 

INTRODUCTION toelastic waves influence the NMR properties of a film; we 

When a magnetoelastic interaction is present, one finds will see that they provide another channel, in addition to 

that a uniform time-dependent magnetic field h( t)  can ex- uniform forced oscillations in the magnetization, through 

cite spatially nonuniform oscillations in the magnetization which the magnetic field can affect the nuclear spins. - 
M of a ferromagnetic plate which appear as a component of 
the coupled magnetoelastic waves. Unlike ordinary spin- 
wave resonance, excitation can occur even in the absence of 
surface magnetic anisotropy, because the magnetoelastic 
coupling depends only on the boundary conditions. It 
should be stressed that such magnetoelastic waves [excited 
by a uniform field h ( I )  ] can be generated at frequencies both 
above and below the gap wO in the spin-wave spectrum. In 
either case, a uniform field can excite acoustic waves when 
the frequency of the field h( t )  divided by the plate thickness 
takes on ~ertain values. 

A systematic theory of magnetoelastic wave excitation 
under these conditions was first developed by Tiersten in 
Ref. i However, the magnetoelastic effects associated with 
spontaneous symmetry breaking2 were neglected there and 
in subsequent work. These effects give rise to a magnetoelas- 
tic gap in the spectrum of the quasimagnon (spin-wave) 
mode and to a softening of the quasiphonon (acoustic) mode 
near the magnetic spin-flip transition. These effects are in- 
significant far from the transition and can legitimately be 
neglected there, but near it they can produce qualitatively 
new behavior. One of our goals in the present paper is to 
examine this in more detail. 

It is also of interest to calculate and study in detail the 
magnetic susceptibility of a ferromagnetic plate in a field 
h( t)  for various frequency ranges (this was not done in Ref. 
1 ). This will enable us to find the conditions needed for exci- 
tation and elucidate the role played by trigonometric and 
hyperbolic functions, respectively. In our case the trigono- 
metric and hyperbolic waves have a distinctive resonance 
where their spectral branches cross (this occurs at an imagi- 
nary frequency, since the wave vector for the hyperbolic 
waves is imaginary). 

By considering the spontaneous symmetry breaking, we 
succeed in finding a precise condition for the frozen lattice 
model to be valid; this model has been used previously to 
analyze magnetoelastic oscillations (see the reviews in Refs. 
2,3).  The critical film thickness, below which the magnetoe- 
lastic gap in the spin-wave spectrum disappears, can be 
found by analyzing the susceptibility of a film as the thick- 
ness tends to zero. 

The paper closes with a discussion of how the magne- 

ENERGY AND GROUND STATE 

We consider a ferromagnetic plate bounded by the 
planes z = L and z = - L, with zll [OOl 1. The crystal struc- 
ture is cubic, and the magnetization M, and the wave vector 
k of the oscillations are also parallel to the z axis: 
M,,IIH,(lkllz. The total energy density (magnetic, elastic, 
and magnetoelastic) is then given by 

1 dM dM 
F (r) = 2 E'a2Mo-Z--- + Z~l~MO-Z(iM,2My2+ . . .) 

a z  a z  

Here the dots indicate terms which are obtained from the 
first term in the parentheses by cyclic permutation of the 
indices x ,  y, z; H = { h ,  e - ""' ,h, e - ""' ) ,H0) is the magnetic 
field, which includes in addition to H,, the uniform alternat- 
ing field he - ""';eaR = (du, /axR + du,/ax, )/2 is the de- 
formation tensor, where u is the displacement vector. The 
significance of the various constants is clear. 

Because of the magnetoelastic interaction (the terms B, 
and B, in ( 1 ) ) , spontaneous deformations eaB'"' are present 
in the ground state, which is obtained by minimizing the 
total energy JF(r)dY; their explicit form is given, e.g., in 
Ref. 3. The ground state is stable if 

8-No- 4n.MoS2K/M,>0, ( 2 )  

where K = K, + B,*/(C,, - C,,) - B22/2C44 is the mag- 
netic anisotropy constant, after renormalization for the 
magnetostriction. Equality in (2)  holds at the spin-flip tran- 
sition, at which the state with M,,((z becomes unstable. We 
will seek solutions having the form of small oscillations 
AM r {M, ,My ) and he,, = {(dux /az, au, /az)  about the 
ground state which are generated by the field h e  " " I ,  with 
allowance for the boundary conditions. 

BOUNDARY CONDITIONS AND THE SUSCEPTIBILITY: 
GENERALSOLUTION 

Because of the assumed symmetry of the system (and 
hence of the ground state), the problem reduces to solving 
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the coupled equations of motion 

for the cyclic variables M,  = M, + iM, and u .  = u, 
+ iu,. Here r and v44 are the damping parameters for the - 

magnetic and elastic subsystems, respectively. We first find a 
solution for zero damping ( r  - 7744 = 0 )  and then indicate 
how the result changes when r# 0 and r/44 # 0. 

Linearizing in the cyclic variables, we find that Eqs. (3 )  
reduce to the inhomogeneous system 

Here D=a/az ,  w, = E1/M, is the exchange frequency, 
w, s / a  = (C44/pa2)"2 is a characteristic frequency com- 
parable to the Debye frequency for the elastic subsystem (s is 
the speed of sound), and 

is the ferromagnetic resonance frequency (uniform preces- 
sion frequency); 5,) = ye and wME = yB,2/MoC4,. We 
have 5, = 0 and o, = wME at the spin-flip transition. 

Equations (4 )  must be solved subject to suitable bound- 
ary conditions. We will assume that there is no surface mag- 
netic anisotropy' and no surface strain; these give the bound- 
ary conditions 

DM,  I ,=,,=0, ( 6 )  

and 

respectively. Note that we specifically consider the condi- 
tion (6), under which a field he- '"' with h = const cannot 
excite nonuniform oscillations M,  in a purely magnetic 
system. If such waves are generated in our case, it follows 
that they must be due entirely to the magnetoelastic interac- 
tion. 

The substitution 

reduces the inhomogeneous system (4 )  with homogeneous 
boundary conditions (6) ,  (7 )  to the homogeneous equation 

(10) 
with inhomogeneous boundary conditions 

We may discard the f sign in front of w in ( 10) and 
suppress the + subscripts on $ [and also on h in Eq. ( 1 1 ) ] by 
formally setting $= $-, h -h- for w > 0 (right-polarized 

oscillations) and * I / + ,  h - h + for w < 0 (left-polarized os- 
cillations). Inserting 

in ( l o ) ,  we then get a dispersion equation which can be 
solved to give two solutions for k = k (w) :  

The general solution for $ has the form 

where the constants C, are calculated from the boundary 
conditions ( 11 ) . The final result for the forced component of 
the oscillations $, proportional to h, is found to be 

f= i (%Eyh)  cos klz/ki sin ~ ~ L - c o s  klz/kz sin kzL - 
00-61 A (kt) -A  (k2) , (13) 

where 

and k,,k, are given by Eqs. ( 12). Substituting this expres- 
s ionforginto  ( 8 )  and (9)  w i t h h = h - , o > O  ($-$-),or 
with h - h +, w < 0 ($= $+ ), we obtain the magnetization 
and deformation for the right- and left-polarized waves, re- 
spectively. 

We see from Eqs. ( 8 )  and (13) that the first term in 
M +  gives the homogeneous part of the magnetization, 
which has a resonance at the spin-flip transition frequency 
<do, while the second term (proportional to $) gives the inho- 
mogeneous component. In addition to the resonance at wo, 
the latter has resonances at frequencies for which 

It has the crucial property that it vanishes when no magne- 
toelastic interaction is present (w,, = 0) .  

Whether the nonuniform oscillations are trigonometric 
or hyperbolic depends on the sign of k in ( 12) for each of 
the terms in (13).  It can be shown without difficulty that k: 
> 0 for all frequencies - ,X < w < ,X , whereas k > 0 for 
w>w,andk: <Oforw<w, (sothat -k~=f2>0 ,cos (k ,z )  
-coshVi), k,sin(k,L) - -fsinh(jL) and k ; ' 
cos(k,L) - - f ' c o t h V Z ) .  

In the first case (w > w,,),$ is a superposition of two trigo- 
nometric waves cos(k,z) and cos(kg),  while in the second case 
( W  < 0") it is a combination of the trigonometric and hyperbolic 
waves cos(k,z) and cosh(fi). 

We observe finally that according to Eqs. (3),  the damping 
can be treated by making the replacements 

in Eqs. (4),  ( 5 )  and then in Eqs. (8)-(14). In this case the 
resonance condition ( 15) applies to the real part ReA (k ) .  

DISPERSION CURVES AND THE AVERAGE SUSCEPTIBILITY 

Figure 1 shows the curves k ,,, (w) found using ( 12) near 
and at the spin-flip transition (a: 6 2 w,, , and b: 6,, = 0, 

21 62 SOV. Phys. JETP 67 (1 O), October 1988 A. A. Lugovol and E. A. Turov 2162 



FIG. 1. Dispersion curves k :,, = k : '(0) near (a )  and at (b)  the transition 
point (rj , ,2wM, and 4, = 0, respectively). The left- and right-polarized 
waves are labeled L and R, respectively; T, H stand for trigonometric and 
hyperbolic. 

w,, = w,, , respectively). Frequencies w > 0 and w < 0 corre- 
spond to right- and left-polarized waves. The curves in the upper 
and lower halfplanes (k, - - f > 0 and < 0, respectively) cor- 
respond to trigonometric and hyperbolic waves. The dashed 
lines show the dispersion curves for noninteracting waves 
(w,, = 0).  We note that hyperbolic waves are generated only 
below the ferromagnetic resonance frequency, w <ao. 

We will now analyze the resonance between the inhomo- 
geneous trigonometric and hyperbolic waves, given by Eq. ( 15), 
in somewhat greater detail for several frequency ranges. The 
average susceptibility 

(17) 

can be calculated from Eqs. (8) and ( 13) (x-X- for w > 0 and 
X-X+ for w <O). 

We first simplify this result in the limit of very thick films, 
for which jLk ,,, / 4 1 (for thick plates, L- a, the inhomogen- 
eous term in ( 17) vanishes). Expanding A (k ,  )-A (k,) as a series 
in these variables, we find from ( 17) that 

Here 

is the minimum frequency for transverse standing elastic waves 
in a plate of thickness 2L. If 

Eq. ( 18) gives 

This result coincides with the homogeneous susceptibility (no 
magnetoelastic gap); thus in the present case the gap disappears 
and the frozen lattice model' breaks down for ferromagnets of 
finite dimensions when (20) is satisfied. 

Let us further consider the frequencies for which 

which excludes an interval of length 5 in the immediate 
vicinity of the frequency Go, which according to Fig. 1 corre- 
sponds to magnetoacoustic resonance. (The case wz5, will be 
considered separately.) We let the plate thickness 2L be arbi- 
trary and consider three frequency intervals satisfying (21). 

1. w < 5, (this includes negative frequencies). In this case, 
using (2 1 ) and ( 12) we find that 

( a k , ) 2 = ~ 2 ( ~ o - ~ ) / ~ D Z ( n o - ~ )  >O, (22) 

S inceBk ,  and ( A ( k , ) l ~  (A(k2)(,  we obtain from (17) that 

Y O  { WME x=-- 1+ 
oo-o Lk,  (ao-o)) ctg Lki 

We thus have a resonance of trigonometric waves at frequencies 
satisfying 

where n = 0, 1,2, .... . We note that (24) does not apply if n is so 
large that (21) is violated. 

Equation (24) gives the quasi-acoustic mode for coupled 
magnetoelastic waves; the mode frequency is seen to be dimen- 
sionally quantized (the plate thickness 2L must be an integral 
multiple of the number of halfwaves). 

In the present case, Eq. (23) for x again describes both 
right-polarized (X =x_ ,w > 0)  and left-polarized waves 
(XIX+, with w replaced by - w ) .  

2. o > w,,. In this case k ,  and k, must be interchanged as 
compared with case 1; Eqs. ( 12) thus gives [cf. (22) ] 

(ak,) 2- (a-QO) /WE>O, 

(~k,)~-o~(o-w~)/0~~(0-Q0)>0. 

An approximate expression for x again follows from (23) 
with k ,  replaced by k,, and the values k,, corresponding to the 
resonance frequencies, by the analog of (24): 

3. 5, < w < w, =Go + uME. For frequencies in this narrow 
range which still continue to satisfy (21 ), Eq. (25) remains valid 
for k : and k :, except that now 

Replacing k ,  by k,  and k, by - 1$ we find from (23) that 

where 

Hyperbolic waves are thus excited, and there is no thickness- 
dependent resonance. 

For thin films (Lf 1 ) Eq. (27) leads to the previous result 
( 18), as it must, while for thick plates (coth (LA - 1 ) we have 
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For frequencies in the interval 5, < w < o, considered, in all 
three cases the susceptibility for a film in a uniform field is less 
than for a thick plate because of the magnetoelastic interaction. 
It is even possible for x to change sign, so that the dispersion 
curve goes from positive to negative. This occurs, for example, in 
the thin-film limit described by Eq. ( 18). 

We point out that Eq. (23) for X, with k, replaced by k, 
from (25 1, can be specialized to the spin-flip transition, at which 
5, = 0 (0, = WME 1. The same holds for the case when k : 
= -f2<0,forwhich~isoftheform (27) (with5,=0). 

Finally, let us consider the magnetoelastic resonance region 
5,zw, where the spin and elastic branches of the spectrum 
cross. If we assume that the interacton is strong enough so that 

(this is always the case close enough to the spin-flip frequency), 
we find from Eqs. ( 12) and ( 17) that 

The distinctive feature of this case is that the trigonometric 
and hyperbolic excitations enter on an equal footing and their 
contributions to x are identical. They also have a distinctive 
resonance when the equality 

ctg Lf=cth Lf (29) 

is satisfied. This equation is easily solved graphically; there are 
infinitely many roots at intervals of n-/L on thefaxis. The first 
(smallest) root occurs when Lf > .rr, for which coth Lf is nearly 
equal to unity. We may thus approximate (29) as cot(Lf) = 1, 
which has the roots Lf = ( n  + 1/4).rr, n = 1,2,3, ... . The wave- 
length A of the corresponding trigonometric component [the 
first term in the numerator in ( 13) ] of the nonuniform resonant 
excitations satisfies 

Since in this case the frequency is already specified by the 
condition w =Go, we see from (29) that resonance can be 
achieved only by varying both w and 6,. For a specified w = 6, 
there are certain thicknesses for which (29) is satisfied. 

RESONANT SUSCEPTIBILITY WITH DAMPING 

A detailed description of the resonance naturally requires a 
consideration of the damping. This is easily done by making 
replacements analogous to ( 16) to the expressions for k,  and k,, 
separating the real and imaginary parts, and substituting the 
resulting values into the expressions for X. 

In what follows we present results for X, with damping 
included, near the resonance frequencies in a form uniformly 
valid for all frequencies satisfying ( 15) (including w < 0), except 
for the interval 5,) < w < wO. The final result is 

where 

S=WL [(ii)O-o)/((i~o-o) I"', 

and the quantity 

describes the damping and gives the width of the resonance line 
when Iwlg6,. This formula is obtained by substituting into Eq. 
(23 ) for x (there are two cases, w < 6, and w > w,) the values 
for k,, k2 found as indicated above from Eqs. (22) and (25); one 
then expands cot(LkI ) or cot(Lk2) near the resonance frequen- 
cies given by Eqs. ( 24) or ( 26). To first order we need consider 
the damping only in the resonant factor cot (Lk, ) [or cot (Lk,) ] 
in the denominator in (23) and retain terms linear in the damp- 
ing parameters r and T ~ ~ .  

The resonance frequencies are given by 

In particular, near the spin-flip transition (5, = 0) Eq. (32) 
gives the two roots 

where 

The first root w- corresponds to resonance of right-polarized 
waves (for h = h - ) and the second ( jw + I ) to resonance of left- 
polarized waves ( h r h + ). 

In the low-frequency region, for Iw 1 46,#0 we have two 
roots of equal absolute value 

which give identical frequencies for right- and left-polarized 
fields h. 

We recall that if the susceptibi1ities~- =,y andx, =X for 
w > 0 and w < 0, respectively, are known, the relations 

can be used to find the constants of the tensor xa8 for a linearly 
polarizsd field h. 

We further remark that at a resonance corresponding to the 
nonuniform (magnetoelastic) part of the susceptibility 
Ax=xME = xME' + ixME", the latter may significantly exceed 
the homogeneous component. Thus if w <5,,, (30 gives 

where w = 5,, (2n + 1) is the resonance frequency, 
Q(w) = (Am/@) - I is the quality of the plate, andxo = yM,/w,, 
is the homogeneous (dynamic) susceptibility. For a fixed w [res- 
onance is then achieved by changing 5,, = w/(2n + 1 ) 1, (36) 
must be replaced by 

XM;'/XO=~OMEQ(*.O)/~~' ('a+ 1 ) ' ~ .  (37) 

Here Q(5,) = Q(w)w/6,, is the Q-factor at the frequency 6,). 
Considering for example the fundamental (n = 0) mode in 

yttrium-iron garnet (YIG), with a,, = 8.10' s- ', and using 
the value Q = 2.10' at the frequency 5, J2n-z 1 GHz (Ref. 4), 
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we obtain 

This decreases as (2n + 1 ) - 2  with increasing mode number. In 
the other case of fixed h,, (so that resonance is achieved by 
changing w), (36) shows that the height of the peak decreases 
with n as w - ~ -  (2, + 1 ) -,. 

MAGNETOELASTIC MODES AND NMR 

We have seen that due to the magnetostatic interaction, 
nonuniform oscillations in M can be excited by a uniform field h 
at low frequencies (below the ferromagnetic resonance frequen- 
cy a,), a fact which has important consequence for NMR stud- 
ies. This is because the NMR frequency w, is generally much 
less than w,, and under these conditions the gain coefficient of 
the RF field,5 which determines the intensity and is due to ho- 
mogeneous magnetization oscillations (l;lo = Ax,, whereA is the 
hyperfine interaction constant) can be much less than the gain 
associated with the inhomogeneous (magnetoelastic) oscilla- 
tions: rlME = AxME. In this case the NMR signal is due primar- 
ily to the magnetoelastic excitation channel. This is true in par- 
ticular when the NMR frequency w, equals one of the 
resonance frequencies for the magnetoelastic oscillations in the 
plate, as considered above and described in general by Eq. ( 15). 
Thus for YIG (w, = 4.10's-'1 the estimate (38) for~&,/x,  
gives lvME/rlOI ~ 3 '  lo3. 

The large NMR gain from the magnetoelastic channel in 
YIG stems from the high value of q, for this material (the 
linewidth Aw is small). However, the ratio 1 /%I =. lo2 re- 
mains quite large even for pure metallic iron at room tempera- 
ture, for which the film thickness is less than the skin depth 
S -- 10V3 cm in this case Aw and w,, are roughly 100 and 5 
times larger than in YIG, respectively. 

We note that when w, coincides with one of the magnetoe- 
lastic resonance frequencies [given, e.g., by (35) 1, one should 
observe an abrupt increase in acoustic generation at this frequen- 
cy in addition to the NMR peak. 

CONCLUSIONS 

The magnetoelastic interaction thus provides an indepen- 
dent mechanism for excitation of spatially nonuniform magneti- 
zation waves in plates (films) even when no surface magnetic 
anisotropy is present. (Magnetic anisotropy could also be in- 
cluded in the analysis without any fundamental difficulty.) 
These waves are superpositions of trigonometric and hyperbolic 
waves, which contribute equally to the total susceptibility near 
the magnetoelastic resonance frequencies. 

The existence of a magnetoelastic gap in the spin-wave 
spectrum is responsible for the presence of an interval 
h, < w < w, in with the specific frequency dependence ofx. For 
thick plates (L f > T ) ,  we see from (27) that at these frequencies 
x increases as (u, - w ) -'I2 for o - wO and as (w - 5,,) - ' I2  

when w-h,. [Werecall that Eq. (27) is validonly when (21) is 
satisfied. ] 

For thin films satisfying (20), the magnetoelastic gap dis- 

appears and the frozen lattice model2*' thus breaks down. Ac- 
cording to this model, the homogeneous oscillations in M corre- 
sponding to the quasimagnon magnetoelastic mode do not alter 
the magnetostriction deformations cap, which are frozen-in and 
remain equal to their spontaneous values ea0"' in the ground 
state. 

For frequencies w < h, and w > w, there should be a thick- 
ness-dependent resonance in ferromagnetic plates with intensity 
given by (30). Although there is some resemblance to spin-wave 
resonance, the fact that magnetoelastic waves are present at low 
frequencies w gw, should permit resonance to be observed 
(both directly and by means of NMR) in large single-crystal 
specimens as well as in the thin films where ordinary spin-wave 
resonance is typically found. 

Evidence for a resonance of this type has been observed in 
Dy and Tb easy-plane rare-earth ferromagnets at microwave 
frequencies (cf. Ref. 6 and the literature cited therein), i.e., at 
frequencies an order of magnitude less than the magnetoelastic 
gap for these materials (a,, =. 1012 s- I ) .  However, a more de- 
tailed analysis would require a theory and treats the case when 
M, lies in the easy plane and also includes the skin effect. 

We note in closing that evidence for some of the magnetoe- 
lastic effects considered above in NMR systems has already been 
observed in antiferromagnetic FeBO, with a weak ferromagne- 
tic moment.'."t would be of interest to observe and analyze 
such effects for ferromagnets also, particularly near the spin-flip 
transition [for example, resonances at the frequencies given by 
Eqs. (33) and (34)l. 

Magnetic excitation of ultrasound at the ferromagnetic res- 
onance frequency oO was recently detectedy in amorphous F e B  
films ( 18-29 at. %B),  which have a large magnetostriction 
(w,, = 1.7- 10' s - I ) .  This suggests that magnetoelastic mode 
resonance with frequencies u < w, and their associated NMR 
signals might also be observed in amorphous ferromagnets. For 
the film studied in Ref. 9 (L=. 1000 A),  hw= ~LW-7. lo%-' 
at w,--ho = 5.9.10"' s- '; Eq. (37) thus gives (x&,/x,I 
= 1 vM, /vO 1 =. 50/ (2n f 1 ) * (the frequencies here are compar- 

able to the NMR frequency for "Fe nuclei). The boundary con- 
ditions in the experiment in Ref. 9 differed from ours-the spins 
were free on one surface and fixed on the other. However, our 
formulas can be modified without difficulty to cover that case. 
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