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It is shown theoretically that a new method for the spectroscopy of the electron-phonon 
interaction in metals can be based on transverse focusing of nonequilibrium electrons [V.S. Tsoi, 
JETP Lett. 19,70 ( 1974) ] that have experienced strong electron-phonon relaxation in the dirty 
vicinity of an emitter contact. The results are used to explain recent experiments that have 
revealed the phonon structure of a transverse focusing line [P. C. van Son, H. van Kempen, and 
P. Wyder, Phys. Rev. Lett. 58,1567 ( 1987); V. V. Andrievskii, E. I. Ass, and Yu. F. Komnik, 
JETPLett. 47,124 (1988)l. 

1. INTRODUCTION 

The method of trajectory focusing of electron fluxes in 
metals subjected to transverse' and longitudinal2 magnetic 
fields is essentially ballistic and extremely sensitive to carrier 
relaxation. The use of point contacts for the injection of elec- 
tron beams into a metal makes it possible to focus high-ener- 
gy carriers with a controlled amount of the excess energy. 
These two circumstances determine the potentialities of the 
focusing method in studies of the processes of relaxation of 
"hot" electrons in conductors. Already the early experi- 
ments on longitudinal focusing have revealed nonlinear de- 
pendences of the signal on the emitter current, attributed to 
the energy dependence of the mean free path of carriers3 and 
to the thermal heating of electron f l u x e ~ . ~  The possibility of 
investigating the electron-phonon interaction (EPI) by the 
method of transverse electron focusing was first pointed out 
in Ref. 5 and the influence of weak EPI processes on the 
transverse electron focusing was investigated theoretically 
in Ref. 6. An investigation of transverse focusing of a spatial- 
ly localized energy distribution of nonequilibrium carriers, 
formed as a result of relaxation of a primary monoenergetic 
beam, was described in Ref. 7. If the trajectory radius is 
energy-dependent, this distribution is transformed into a 
spatially inhomogeneous one which can be determined by 
investigating the dependence of the collector voltage on the 
applied magnetic field. However, this procedure meets with 
difficulties due to the extremely short mean free paths of the 
high-energy electrons in the usual metals (1 - 10 - 5  cm) . In 
semimetals of the bismuth type the low density of states and 
the high permittivity increase considerably the mean free 
paths.' This is clearly the reason for the observation of non- 
linear behavior in the case of transverse electron focusing 
reported in Ref. 9. 

In spite of the obvious attraction of the method of trans- 
verse focusing in investigations of inelastic relaxation of ac- 
celerated electrons, the first major progress has been made in 
studies of the intrinsic electrical conductivity of extremely 
small point contacts, less than the characteristic length of 
the electron energy loss. Point-contact spectroscopy '&I2  is 
now recognized worldwide as a simple and effective method 
for investigating relaxation processes in solids. 

Very recently new experiments were reported which 
have continued the investigation of the transverse focusing 
of "hot" electrons begun in Ref. 5. A reduction in the ampli- 
tude of the electron focusing signal as the emitter injection 

current increases in silver and a maximum of the focusing 
signal at excess electron energies equal to a characteristic 
phonon energy were reported in Ref, 13. Such a dependence 
of the amplitude of the electron focusing line on the emitter 
voltage was convincingly explained in Ref. 13 by the role of 
the electron-phonon relaxation destroying the ballistic na- 
ture of the cyclotron motion of electrons. The most interest- 
ing results were obtained recently in a study of effects non- 
linear in the emitter current and observed in the case of 
transverse focusing of electrons in bismuth. l 4  Andrievskii et 
a1.I4 observed a reproducible structure of maxima in the de- 
rivative of the electron focusing signal with respect to the 
emitter current, which could be compared readily with mul- 
tiple and combination frequencies of relaxation phonons in 
bismuth. These experiments demonstrated convincingly the 
potentialities of the electron focusing method in studies of 
phonon relaxation in metals and semimetals. 

We shall develop a theory of relaxation phenomena in 
the course of transverse focusing of electrons in a metal. Our 
formulation of the problem is distinguished by the need to 
allow for a strong spatial inhomogeneity of the contamina- 
tion, giving rise to a difference between the rates of relaxa- 
tion processes occurring in the emitter and in the cyclotron 
trajectory in the interior of a metal. Experiments reported in 
Ref. 15 yielded directly the I, representing elastic scattering 
of electrons in an emitter contact, and it was shown that this 
length was three orders of magnitude less than the corre- 
sponding length in a bulk metal. It therefore follows that the 
two parameters L /I, and b /A ,  -- b /(1,1, ) ' I 2  [L is the dis- 
tance between the emitter and the collector, b is the size of 
the emitter contact (see Fig. 2 below), and I, is the mean 
free path in the case of the electron-phonon scattering], re- 
flecting the role of the relaxation processes along a trajectory 
and at a contact can be in an arbitrary ratio, giving rise to two 
types of relaxation nonlinearities. We shall consider sepa- 
rately these relaxation mechanisms and show that the effects 
reported in Ref. 13 are largely due to the trajectory relaxa- 
tion of electrons, whereas the phonon structure of the elec- 
tron focusing signal observed in Ref. 14 is associated with 
the discrete nature of the phonon relaxation of carriers di- 
rectly in an emitter contact. The relationships obtained in 
the present study demonstrate that it should be possible to 
reconstruct the EPI function from the dependence of the 
electron focusing signal on the emitter current, which would 
provide the basis for a new cyclotron method for the spec- 
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troscopy of the EPI in conductors. A special feature of this 
method, based on detection of the contribution of small elec- 
tron groups focused in the collector, is the high directiona- 
lity which makes it possible to study relaxation of specific 
electron states. 

In studies of nonlinear effects in transverse focusing of 
electrons the problem of the nature of nonequilibrium elec- 
trons injected by a point contact becomes of primary impor- 
tance. Investigations of the geometric nonlinearity effect 16s17 

have shown that electrons injected into bismuth are charac- 
terized by a considerable (of the order of the Fermi energy 
E ~ )  excess energy, but this energy is several times (and 
sometimes by an order of magnitude) smaller than the maxi- 
mum possible energy eV ( V is the voltage across the emit- 
ter). On the other hand, there is no thermal broadening of 
the peak. Investigations of the Shubnikov oscillations of the 
emitter resistance" have demonstrated directly the low de- 
gree of thermal heating of an electron gas in a junction. 
When these data are taken as a whole, we find that the pro- 
cesses of electron-phonon relaxation in an emitter may be 
very significant, whereas reabsorption of the phonons emit- 
ted by electrons in a contact is weak." Consequently, we 
shall consider a model in which the emitter is a dirty channel 
(Fig. 1): 

( b  is the channel diameter and 2d is its length), where the 
electron-phonon relaxation length A, is arbitrary and there 
are no phonon reabsorption processes. The emission of 
phonons in this channel determines the profile of the energy 
dependence of the distribution function of carriers injected 
from the dirty channel into the pure metal. The electron 
focusing signal makes it possible to determine this electron 
energy distribution and to reconstruct the energy depen- 
dence of the inelastic relaxation lengtha,. The hypothesis of 
a low transparency D of a tunnel barrier ( D  g li /2d) in the 
plane of contact between two conductors (heterocontact 
emitter structure2' was used, for example, in the experi- 
ments reported in Refs. 1,5,9, 14, 15, 17, and 18) has made it 
possible to postulate an abrupt change in the electrical po- 
tential in the heterojunction plane and thus simplify greatly 
the mathematical analysis of the problem without distortion 
of the principal features of the effect. 

A calculation of the electrical potential p at a measur- 
ing contact P as a function of the magnetic field H and the 
voltage V applied to an emitter A will be made using the 

FIG. 1 .  Model of the emitter: a long "dirty" channel with a tunnel barrier 
characterized by a low transparency D. 

FIG. 2. Schematic representation of the observation of electron focusing 
(I is the source of the current and V is a voltmeter). 

standard geometry of the transverse electron focusing effect 
(Fig. 2).  

2. FORMULATION OF THE PROBLEM AND THE COMPLETE 
SYSTEM OF EQUATIONS 

The complete system of equations describing the prob- 
lem consists of the kinetic equation for the nonequilibrium 
electron distribution function n (r,p) 

and the electrical neutrality equation 

Here, e, r, and p are the charge, coordinate, and momentum 
of an electron; ~ ( p )  and v = M a p  are the energy and veloc- 
ity& (E)  is the Fermi distribution function; E and H are the 
intensities of electric and magnetic fields. The collision inte- 
gral I, ( n )  describing the elastic scattering of electrons by 
impurities, assumed to be isotropic, is 

where f i  = 1 and W P ,  /277 is the square of the modulus of the 
matrix element of the elastic scattering, governing the trans- 
port elastic relaxation time: 

Inelastic EPI processes are included in the collision integral 

-n(p) [ l--n(p+ q) lNqa16 ( e  (p+q) --E(P) -oqa) 
+ [n(p-q) [ l - - n ( ~ ) l  Nqa-n(p) [l-n(p-q)] (Nqa+ 1)) (6)  

. ~ ( E ( P - Q ) - E  (p)+oqU)). 
Here, the summation is carried out over the numbers a of the 
branches of the phonon spectrum; w: is the square of the 
modulus of the matrix element of the EPI. The system of 
equations (2 ) - (3  ) should generally be supplemented by the 
kinetic equation for the determination of the phonon distri- 
bution function N," of phonons with the dispersion law w;. 
However, we shall consider only the case of low tempera- 
tures and assume that the phonons are in equilibrium [at 
T = 0 we have to substitute N :  = 0 in Eq. (6)  1 .  
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The distribution functions of electrons nu,, < 0 incident 
on the surface of a metal r = r, and of electrons reflected by 
this surface nun > 0 are related by the boundary condition 

which automatically ensures that there is no flow of the cur- 
rent (v, is the velocity component normal to the surface). 
The momenta p and p satisfy the conditions of specular re- 
flection, which conserve the energy of a carrier ~ ( p )  = ~ ( p )  
and of the projection of its momentum p, = p, on a plane 
which is in contact with the surface at the point r = r,. The 
integral operator describes the diffuseness of the elastic pro- 
cesses of the scattering of electrons by the outer surface of a 
metal. 

If the inequality ( 1 ) is satisfied, the function describing 
the distribution of electrons n in the emitter can be regarded 
as dependent only on one coordinate z and, without violating 
the generality of the solution of the problem, the condition 
which must be satisfied by the function n(z,p) on the surface 
of a contact between the metals z = 0 can be written in the 
form 

where D(p) is the probability of electron tunneling across 
the heterojunction at z = 0. The momentum p is related to 
the momentum fi of electrons incident on thez = 0 boundary 
and of electrons transmitted by this boundary p under condi- 
tions that the energy [ ~ ( p )  = ~ ( p )  = ~ ( p )  ] and the compo- 
nent of the momentum p, = p, = p, tangential to the z = 0 
boundary be conserved. 

The problem can therefore be separated into two parts: 
1 ) determination of the distribution function n (z,p) for a 
dirty point contact; 2)  calculation of the distribution func- 
tion of electrons n(r,p) in a pure metal, satisfying the effec- 
tive boundary condition in the z = d plane: 

where 

R is a two-dimensional vector in the z = s plane; S,  is the set 
of vectors lying in the emitter plane (z = d, x2 + y2 < b 2/4). 
Knowing the function n (r,p), we can use the electrical neu- 
trality equation to calculate the distribution of the potential 
on the surface of a sample. 

If a tunnel barrier is characterized by a low transparen- 
cy D 4  li /d 4 1, then the Boltzmann equation (2)  can be lin- 
earized with respect to a small (proportional to D) correc- 
tion f to the Fermi distribution function f, 
[n(r,p) =A,(&) + f(r,p)].  In the case of a dirty metal 
(emitter) the function f can be represented as an expansion 
in powers of the short elastic electron relaxation time T i (&)  

(Ref. 21): 

The functionT(z,~) averaged over the direction of the mo- 
menta satisfies the equation 

where 

li (E)  = v(&)ri (E), and V(E)  is the modulus of the electron 
velocity. 

The boundary conditions at the heterojunction z = 0 
and at the boundary between pure and dirty metalsz = d can 
be obtained from Eq. (8)  and from the condition of continu- 
ity of the distribution function f(r,p) in the z = d plane by 
using a diffuse expansion of Eq. ( 10) and averaging over the 
electron momenta. These boundary conditions are of the 
form (see also Ref. 15 ) 

Using the diffuse expansion of Eq. ( lo ) ,  we can easily show 
that the boundary condition given in Eq. ( 13) in fact means 
that the current (proportional to the transparency D)  inject- 
ed in the z = 0 plane is independent of the elastic scattering 
length of electrons li. This condition is physically self-evi- 
dent in the limit of low transparency of a tunnel barrier 
D (Ii /d 4 1 assumed above. It should also be noted that the 
boundary condition ( 14) ensures continuity of the electric 
current at the boundary between pure and dirty metals if we 
allow for the fact that in the pure metal this current is gov- 
erned by the function3 whereas in the dirty region the cur- 
rent is expressed in terms of the gradient combination li af / 
az. 

It is not possible to obtain the solution of the problem 
for an arbitrary relationship between the lengths of elastic 
and inelastic electron scattering, and also between them and 
the geometric dimensions b, d, and L describing the experi- 
mental setup. Therefore, we shall consider the most interest- 
ing limiting cases. 

3. TRAJECTORY RELAXATION IN THE CASE OF 
TRANSVERSE ELECTRON FOCUSING 

Let us assume that the length A, = (lil,, ) ' I 2 ,  repre- 
senting the inelastic relaxation of carriers in a dirty metal is 
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considerably greater than the emitter channel length and the 
value of I ,  is comparable with the distance L between the 
emitter and collector. In this case we can simplify Eq. ( 1 1 ) 
by dropping the electron-phonon collision integral and the 
solution of this equation satisfying the boundary conditions 
ofEqs. (13) and (14) is 

1 d-z 
f o ( z , e ) = ~ ( T + - ) .  1, 

If in the case of a pure metal the elastic mean free path is 
li ) L, then in the emitter-collector region the carriers move 
along ballistic trajectories, which may have kinks due to the 
electron-phonon interaction. The main contribution to the 
maxima of the focusing lines is made by the group of effective 
electrons representing a small fraction - ( 1 e V I/&, ) ' I2  ( b  / 
L ) 3 1 2 ~  of all the emitter-injected carriersL6 [x = min((b / 
L )  I", ( le V ) ' I2) ] ; here and later we shall assume that 

1 e V / /EF < 1. Since in our problem the nonequilibrium part f 
of the carrier distribution function is a "sharp" function of 
the momentum, and since we are planning later to analyze 
the amplitudes of the maxima of an electron focusing line, we 
can ignore the incoming terms2' in the collision integrals of 
Eqs. (4 )  and (6)  and writedown the solution of Eq. ( 2 )  for a 
pure metal in the form 

where 
1 

r ( t )  = J' v ( t t )  atr, 

t is the time of motion along a trajectory in a magnetic field, 
and A (r,p) ( t  is the time at which an electron is last reflected 
by the surface of a sample; 

F ( r  - r ( t ) )  is an arbitrary function of the characteristic 
which is found using the boundary condition of Eq. ( 9 )  (see, 
for example, Ref. 22). Without analyzing the procedure for 
solving the equation of electrical neutrality and separating 
the nonmonotonic part @ ( H )  of the dependence of the po- 
tential at the measuring contact on the magnetic field (see 
Refs. 23 and 24), which describes the electron focusing line, 
we give the final result: 

where 

AR(&,T, p, ) is the displacement of an electron along the 
surface of a conductor in a time T, between two successive 
collisions with the surface, and p ,  is the projection of the 
momenta along the magnetic field direction. The function 
A ,  ( E )  is the partial contribution made to the focusing signal 
by electrons of energy E, which are scattered in the bulk and 
on the surface of the metal; A ,  assumes its maximum value 
after n specular reflections by the boundary carriers that can 
reach the collector having experienced an extremal displace- 
ment AR,,, (&) for a given energy &. Each of the terms 
p'"' (L,H) in the sum of Eq. ( 18) describes the amplitude 
and profile of the nth transverse electron focusing line. 

If l ev  < b / L  << 1, when the geometric nonlinearity 
effects are we find that in the main approxima- 
tion in terms of the small parameter b /L the position of the 
nth electron focusing maximum on the scale of the magnetic 
field H, can be found from the condition 

where T,,,, (&,;pYrr)  is the time of motion of a carrier with 
the Fermi energy along a trajectory with an extremal dis- 
placement AR,,,, . Using Eqs. ( 18) and ( 19), we can easily 
show that the ratio of the first and second derivatives (with 
respect to the emitter voltage V) of the amplitude p,,,, of the 
nth electron focusing line is 

The function G,,,, (w), defined by the expression 

is the "cyclotron" EPI function representing the probability 
of electron-phonon scattering for a selected group of elec- 
trons characterized by the extremal size of the electron orbit 
in the momentum space. It should be stressed that in Eq. 
(22) the angular brackets represent averaging with respect 
to p' within the limits of the Fermi surface, whereas p is the 
momentum on an extremal trajectory which depends on the 
duration of motion t. The relationship given by Eq. (21) 
demonstrates that the cyclotron method can be used to in- 
vestigate the EPI of certain electron states. 

When electrons with an excess energy /eV I 2 w, (w, is 
the phonon Debye frequency) are focused in a metal, the 
derivatives occurring in Eq. (21) are small because the in- 
elastic electron-phonon mean free path I, is short. Al- 
though Eq. (21) is finite only in the limit I,, -0, in practice 
it is very difficult to determine and the transverse electron 
focusing is effective as a method for the spectroscopy of the 
EPI only in the initial part of the spectrum where 
I,, (eV) 2 L. In the case of semimetals such as bismuth, theo- 
retical' and e~perimental' . '~ investigations have shown that 
even at excess electron energies 1 e V I > w, the mean free path 
I ,  is fairly long (I, -- l o p 2  - 10-"m), so that focusing 
experiments can be used to reconstruct completely the "cy- 
clotron" EPI function of Eq. (22).  If b /L 4 /e  V I/&, < 1, the 
phonon nonlinearities of the electron focusing signal are 
manifested against the background of the geometric nonlin- 
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earity effect which shifts the focusing line (when the polarity 
of the emitter voltage is such as to retard the electrons) and 
also gives rise to an additional term a;(&, +eV)/a, 
(E, + e V), which describes the change in the amplitude of 
the peak and occurs on the right-hand side of Eq. (2  1 ) . 

4. INELASTIC RELAXATION OF ELECTRONS IN THE 
EMITTER 

1. We shall first consider weak relaxation of electrons 
through interaction with phonons in the emitter when 
A, s d .  We shall also assume that relaxation of carriers tra- 
versing a ballistic trajectory is unimportant, i.e., 

and in the expression for the partial amplitude A,, given by 
Eq. ( 19) we can substitute v, = 0. When the inequality of 
Eq. (23) is satisfied, the electron-phonon collision integral 
in Eq. (1 1) can be allowed for using perturbation theory. 
The inelastic correction3 to the distribution function& of 
Eq. ( IS) has the following value for the emitter aperture 

We shall consider the specific case when e V> 0. If the elec- 
tron distribution function in the emitter is substituted in the 
form of the sumf,(d,~) +f, ( d , ~ )  into the expression for the 
potential across the measuring contact given by Eq. ( 18), 
the inelastic correction to the electron focusing signal at the 
nth maximum is given by 

where Y(E)  is the density of electron states on the ~ ( p )  = E 

surface. Such a model describes well the process of, for ex- 
ample, inelastic relaxation of carriers by interaction with 
optical and intervalley phonons in semimetals, because in 
these materials the interaction of electrons with phonons is 
"localized" in small regions of the momentum space 
Aq-pF <q, (p, is the Fermi momentum in a semimetal 
and q, is the Debye momentum of phonons) . In this connec- 
tion we should mention that experimental studies of the non- 
linear effects in the case of electron focusing reported in 
Refs. 5, 9, 14, and 17 were carried out on bismuth. 

Since the maximum energy of the electrons injected in 
the channel is E, = E, + e V, it follows that the distribution 
functionysatisfies the obvious relationship7(& > E, ) r 0. On 
the other hand, if E <E,,  we have f#0 .  Therefore, at the 
boundary of the nonequilibrium band, E = E , ,  there is an 
abrupt change in the distribution function A;,=?(&,, - 0). 
The magnitude of the change is calculated in the Appendix 
[see Eq. (A2) 1 where it is also shown that a discrete struc- 
ture of the energy relaxation process results in reproduction 
of this discontinuity at energies E,, = E,, - nw,,. The exact 
expression for the discontinuity Af,, -- A~(E ,  ) is fairly cum- 
bersome [see Eq. (A6) ]. However, it can be simplified when 
the inelastic relaxation length of electrons in the emitter 
A ( & )  depends weakly on the energy. If the characteristic 
change M zw0(dA (&)/a&) in the relaxation length A ( E )  

satisfies the inequality 

the ratio of the discontinuities of the distribution function at 
z = d is given by the expression 

Similarly, if eV/&, < b  / L  < 1 ,  the second derivative of the 
amplitude of the electron focusing line with respect to the 
emitter voltage is 

and contains the EPI function g(w) [g (o )  r g ( w , ~ ,  ), 
v, = U(E, ) 1. The "background" independent of Vcan easi- 
ly be separated on the basis of the signal amplitude beyond 
the phonon spectrum (eV> w, ). It should be pointed out 
that the function g(w) does not contain the geometric form 
factor, which appears in the theory of point-contact spec- 
t r o ~ c o ~ y ; " ~ ' ~  this is due to the fact that the dependence of the 
amplitude of the electron focusing line on the shape of a 
contact is much weaker than the corresponding dependence 
of the resistance. 

2. IfA, 2 d, then perturbation theory cannot be applied 
to the electron-phonon collision integral. It is not possible to 
solve the integrodifferential equation ( 1 1 ) for arbitrary as- 
sumptions about the EPI function. We shall consider a mod- 
el in which an allowance is made for the interaction with 
phonons of specific frequency; i.e., the EPI function is 

It is clear from Eq. (29) that the energy structure of the 
distribution function depends strongly on the parameter 
d /A,. In the limit of weak electron-phonon relaxation the 
largest discontinuity of the distribution function is Af, and is 
due to the energy edge of tunnel injection at E,, = E, + eV. 
Successive phonon replicas of the discontinuity are propor- 
tional to powers of the parameter ( d  /A, ) *  [see Eq. (29) 1, 
which reflect the low probability of the processes of succes- 
sive emission of phonons in a channel. The most probable are 
one-phonon scattering processes discussed in subsection 1 of 
the present section. In the case of strong electron-phonon 
relaxation ( d  /A, % 1 ) the number of nonequilibrium elec- 
trons falls exponentially with energy, so that discontinuities 
of the distribution function are strongest at lower energies. 
Therefore, the dependence of the jump Af, on its number is 
an important qualitative criterion of the intensity of the elec- 
tron-phonon relaxation process at a point contact. 

Substituting the expression for the function 7 a t  z = d 
into Eq. ( 181, and differentiating with respect to the voltage 
V, we obtain 

If b  / L  W ~ / E ,  < e V / E ~  < 1, the maxima of the derivative of 
Eq. (30), which appear in fields defined by the relationship 
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are separated on the magnetic field scale and their positions 
make it possible to find the phonon frequency w,. The rela- 
tionship (3 1 ) reflects the spatial separation of the cyclotron 
orbits corresponding to different values of E, (trajectories 1 
and 2 in Fig. 2). The existence of specific phonon relaxation 
energies is the result of discrete selection of the magnetic 
fields H,,, ensuring focusing of the relevant electrons in the 
collector. The ratio of the amplitudes of the derivative of the 
focusing signal at neighboring minima in the range w ,<~ ,  is 
(Fig. 3) 

In accordance with Eq. (29), the approximate equality (32) 
can provide direct information on the energy dependence of 
the inelastic electron scattering length A,. 

Generalization of the result (30) to the case of two 
phonon frequencies w,, and w,, presents no fundamental 
difficulties, but it does lead to very cumbersome analytic 
expressions. We can show that the derivative d p  /d V has ex- 
trema in fields Hk,ij which are related to the combination 
frequencies iw,, + jwo2 by 

It is this system of maxima of the derivative with respect to 
the emitter current representing the electron focusing signal 
that was reported in bismuth in Ref. 14. 

We now consider the case of an extremely strong inelas- 
tic relaxation of electrons in the channel, when the following 
inequality is satisfied: 

In this case the processes of multiphonon relaxation are con- 

FIG. 3. Qualitative dependence of the electron focusing signal dp/dVon 
the magnetic field in the case when b / L  <o,/e, < eV/&, < 1 under condi- 
tions of strong (1, < d )  and weak (A, > d )  electron-phonon relaxation in 
the emitter. The fields corresponding to the maxima H ,  ( E ,  + eV - ko, ) 
= H,,, satisfy Eq. ( 3  1) .  

centrated in the direct vicinity of the tunnel injector at z = 0. 
Electrons crossing the tunnel barrier acquire abruptly an 
excess energy eV, which directly after the passage of the bar- 
rier falls to a value AE = eV - Nw, ( N  = [ e  V/w,] ) because 
of phonon emission. Consequently, all the electrons injected 
into a band of energies [E,,E, + e V] are concentrated in an 
energy interval [E,,E, + eV - No,] where the threshold 
electron-phonon relaxation mechanism is impossible. 
Further transport of charge in the channel occurs subject to 
conservation of the electron energy and is described by the 
diffusion equation d y/c?z2 = 0. The boundary condition at 
z = 0 describing multiphonon relaxation reflects conserva- 
tion of a partial flux of electrons with the specific energy as a 
result of a relaxation transition accompanied by the emission 
of a phonon of frequency w, (Ref. 26). This condition, in 
combination with the injection condition of Eq. ( 14), leads 
to 

The boundary condition at the other end of the channel, 
where z = d, is given by Eq. (13), exactly as before. The 
solution of the problem is a function 

Y 

Using this function in Eq. ( 18) for the potential on the mea- 
suring contact' and differentiating p( V) with respect to the 
emitter voltage, we obtain 

The derivative in Eq. (37) is a maximum in fields 
H, ( E ~  + eV - Nu,) satisfying Eq. (20) when 
E = EF + eV- Nw,. An increase in the voltage shifts the 
maximum of c?p /dV toward higher magnetic fields right up 
tothevalue V= V*,suchthateV* - Nw, = w,.At V =  V* 
the maximum disappears in a magnetic field H,  (E, + w,), 
but simultaneously a maximum H, (E,) in the magnetic 
field appears. As V is increased, maxima appear at 
H = H ,  (E,) shift along the magnetic field scale to 
H = H, ( E ~  + a,),  and disappear at d p  /dV periodically. 

5. TRANSVERSE FOCUSING UNDER CONDITIONS OF 
TRAJECTORY AND EMITTER ELECTRON-PHONON 
RELAXATION 

In the preceding section we demonstrated that the elec- 
tron-phonon relaxation process in the emitter results in a 
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periodic rise of the signal ap /aVassociated with redistribu- 
tion of the electron energies. On the other hand, allowance 
for the electron relaxation on a cyclotron trajectory of mo- 
tion from the emitter to the collector reduces the value of 
ap /a Vas the excess carrier energy eV increases. Therefore, 
we can expect the simultaneous action of these two factors to 
give rise to a nonmonotonic dependence of the electron fo- 
cusing signal on the emitter voltage. This is particularly in- 
teresting in connection with the experimentally detected13 
nonmonotonic behavior of ap /aV as a function of V. We 
shall consider the limiting case when 

These inequalities correspond to strong relaxation along a 
ballistic trajectory (see Sec. 3)  and also make it possible to 
allow for the relaxation process in the emitter using pertur- 
bation theory (see Sec. 4.1 ) . Calculations fully analogous to 
those in Secs. 3 and 4 yield 

where the function A ,  ( E )  is described by Eq. ( 19). The rela- 
tionship (39) can be simplified greatly in the case of metals 
characterized by eV-w, gc, (it should be noted that the 
experiments reported in Ref. 13 were carried out using sil- 
ver). The dominant dependence on the voltage V in 
d p  yax/dV is governed by the energy dependence of the elec- 
tron-phonon relaxation time I,. This dependence can be 
separated explicitly by measurement of a normalized quanti- 
ty (ap  ?( V)/dv, cap. (o)/dV)-I. IfeV/EF g b  /L,weob- 
tain 

where 
e 

and the EPI functions G,,,, (w) andg(w) aredefined by Eqs. 
(22) and (12). 

FIG. 4. Schematic representation of the dependence of the amplitude of 
the electron focusing signal dpm"" /dVat its maximum on the emitter vol- 
tage Vin the case of relaxation of electrons by interaction with phonons in 
the emitter and along a ballistic motion trajectory. 

The interpolation relationship (40) yields the correct 
asymptotic expressions in the cases when eV$w, and 
eVgw,, where o, is the characteristic phonon frequency at 
which the EPI function g(w ) has a maximum. We then have 

In the range of intermediate values of eV the relationship 
(40) describes qualitatively the dependence d p  ?( V)/dV 
and approaches the exact description as g(w) in Eq. (39) 
approaches the 6-function form. Only two terms in Eq. (40) 
contain exponential factors which depend on the relaxation 
length at shifted energies I ,,,, (eV) and I ,,,, (e V - E*). If 1 ,,,, 
( E )  is a decreasing function of the energy, we reach the con- 
clusion that in spite of the weakness of the relaxation in the 
emitter ( d  /A, < 1 ), the second term may be responsible for 
the considerable contribution to the EPI signal in the range 
of excess energies eV- w,, where the relaxation-induced 
suppression of the first term is significant. This contribution 
depends nonmonotonically on the emitter bias V, increasing 
at low voltages (evgw,) and falling exponentially in the 
range of high values of V ( e  V> a,). The energy dependence 
of the signal ap y(  V)/aV is shown qualitatively in Fig. 4. 
The dependence of the EPI signal dq, yo"( V)/aV obtained 
in this way is in good agreement with the experimental re- 
sults of Ref. 13. 

6. CONCLUSIONS 

Investigations of the nonlinear electrical conductivity 
of metallic point contacts in the presence of a magnetic 

extend greatly the opportunities for studying the 
EPI in metals. Our results show that the method of trans- 
verse focusing of electrons makes it possible to study the 
electron-phonon relaxation processes. Such relaxation of 
high-energy electrons reduces the focusing signal represent- 
ing the scattering of carriers by phonons in the course of 
motion on a cyclotron orbit. It is possible to study the EPI 
for selected electron groups characterized by extremal di- 
mensions of the cyclotron orbits [Eq. (21 ) 1. If we compare 
these results with the potentialities of point-contact spec- 
troscopy in the absence of a magnetic field,I0-l2 we reach the 
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conclusion that the method of transverse relaxation is highly 
directional and stresses the contribution of specific electron 
states to the relaxation process. 

The ability to use the method of electron focusing by a 
magnetic field is important in the study of the electron- 
phonon relaxation processes which accompany successive 
emission of more than one phonon (multiphonon relaxa- 
tion). At first sight this possibility is in conflict with the 
ballistic nature of the method (even a one-phonon process 
removes an electron from the number of those that reach the 
collector) and is realistic under conditions of spatial local- 
ization of the relaxation phenomena occurring in a strongly 
contaminated vicinity of the emitter contact. When one- 
phonon processes are important, the second derivative of the 
focusing signal with respect to the emitter voltage is related 
in a simple manner to the thermodynamic EPI function [Eq. 
(26) 1, which differs from the corresponding function for 
point c o n t a ~ t s l ' ~ ' ~  by the absence of the transport form fac- 
tor of the electron-phonon scattering process. This is due to 
the fact that the focusing method is not based on the trans- 
port effects, but on the distribution of the density of nonequi- 
librium electrons injected from the point contact. Our analy- 
sis shows that strong relaxation of electrons in the emitter is 
accompanied by successive emission of more than one 
phonon by "hot" electrons, giving rise to discontinuities in 
the energy distribution of carriers. Discrete relaxation by 
interaction with phonons gives rise to a system of maxima in 
the case of the first derivative of the amplitude of the trans- 
verse focusing line with respect to the voltage. Analysis of 
the resultant structure makes it possible to determine the 
energy dependence of the inelastic relaxation length and of 
the frequency of relaxation phonons in metals with low car- 
rier concentrations. 

Point electrical contacts, which are small strongly con- 
taminated regions, allow transverse focusing of electrons by 
a magnetic field to be ulitized as a method for investigating 
spatially localized strongly nonequilibrium states of quasi- 
particles in a solid. 

The authors are grateful to V. G.  Peschanskiy and V. S. 
Tsoi for discussing the results. 

APPENDIX: DETERMINATION OF "PHONON JUMPS" OF THE 
DISTRIBUTION FUNCTION OF ELECTRONS IN THE EMITTER 

In the case of relaxation due to interaction with disper- 
sion-free phonons [Eq. (27)]  the integrodifferential equa- 
tion ( l l ) is replaced by a system of differential-difference 
equations2': 

where 

N = [ e  V/w,] is the maximum number of phonons which an 
electron can emit. 

The magnitude of the first jump Af, =T(E, - 0 )  of the 
electron distribution function can be found by direct solu- 
tion of Eq. ( A l )  and the boundary of a band and, after 

allowance for the boundary conditions of Eqs. ( 13) and 
( 14), this magnitude is given by 

1 d-z 
Afo-f (ev-0, z) = D (ev) [- ch - 

2 h-(ev) 

The nonlocal (with respect to the energy) nature of Eq. 
( A l )  is responsible for the appearance of the jumps Af,, of 
the distribution function at discrete energies E, = E, - nw, 
The magnitudes of these jumps Af,, satisfy a recurrence rela- 
tionship which can be derived using the Green's function 
G(&;z,zl) of the operator = {a 2/dz2 - A - - 2 ( ~ ) )  [see Eq. 
(A1 ) and the boundary conditions of Eqs. ( 13 ) and ( 14) ] : 

where 

It should be noted that since the functions Af, and G are 
essentially positive, the jumps Af, of the functionT(z,~) are 
also positive. 

The solution of the recurrence relationship of Eq. (A3) 
can be simplified greatly in the limit /,/A, 1. In the zeroth 
approximation with respect to the parameter li /A, at all the 
internal points of the channel (d - z> li ) we obtain an equa- 
tion 

which makes it possible (as is readily shown) to write down 
the solution of the recurrence equation of Eq. (A3) at z = d 
in the form 

n 
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The coefficients B :"' satisfy algebraic relationships 

ch-' (dlh- (8,) ) 
a t k  = 

h--' ( 8 i )  ( 8 k )  

' 

It follows from Eq. (A8) that ifA- is independent of energy, 
then a, - w . However, we can easily show that in the limit 
A- ( E ~  ) -A- (E, ) the combination y = a,, + ski remains 
finite. Consequently, the magnitude of the jump Af, of Eq. 
(A6) is governed by a sum 

which-as can be shown on the basis of Eq. (A7)-is equal 
to S, = yn - ' and is also finite. If eV&nwo, then in the func- 
tions which occur in Eq. (A6) we can ignore the dependence 
on the relaxation frequency wo(R + (E)  -A- ( E )  = A, ) and 
Afn is given by the expressicn 
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netic field. 
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