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Using the magnetooptic method, we have obsc~rved and investigated surface magnetism-i.e., 
macroscopic magnetic transition layers caused by the magnetic anisotropy of the surface region- 
on the natural nonbasal facets of single-crystal iron borate (FeBO,) . This anisotropy is a 
consequence of the altered symmetry of the environment of magnetic ions at the surface. Erasure 
of this surface magnetism at type ( 1014) surfaces takes place in a field H,, z 1.6 kOe. We 
construct a theory which allows us to compute the surface anisotropy energy at the ( 1014) and 
( 1120) facets; this theory correctly reflects the symmetry of the magnetic anisotropy, and the 
calculated value of the field H,, is in order-of-magnitude agreement with the measured fields. 

1. INTRODUCTION 

Surface magnetism, a phenomenon which is caused by 
the presence of surface-induced anisotropy, has been ob- 
served and investigated on the nonbasal type ( 100) facets of 
hematite. ' The appearance of this surface magnetic anisotro- 
py at the nonbasal facets of a-Fe,O, is caused by the altered 
symEetry of the environment of magnetic Fe3+ ions at the 
surface compared to the bulk. The field at which the surface 
magnetization goes into saturation is -20 kOe. Magnetoop- 
tic studies of the rare-earth orthoferrites reveal a strong shift 
in the spin-reorientation transition temperature at the sur- 
face in the high-temperature region, which indicates the ex- 
istence of surface magnetism in these  crystal^.^ The possibil- 
ity of surface magnetism was pointed out long ago by NCe13; 
however, experimental observation of surface anisotropy 
was hindered by its relatively small magnitude. Favorable 
conditions for investigating surface anisotropy are found in 
weak ferromagnets with the easy-plane type of magnetic ani- 
sotropy, in particular a demagnetization field energy which 
is small compared to the usual ferromagnetic energies be- 
cause of the smallness of the resulting magnetic moment and 
the near-absence of magnetic anisotropy in the basal plane. 
The latter circumstance leads to an increased role for surface 
anisotropy in the magnetization process for weakly ferro- 
magnetic crystals. These conditions are well satisfied in he- 
matite above the Morin point and in rare-earth orthoferrites 
near the spin reorientation transition temperature. 

In Ref. 4 a study was made of the domain structure in 
single-crystal iron borate FeBO,, a weak ferromagnet with 
the easy-plane type of magnetic anisotropy. On natural non- 
basal facets of FeBO, there was observed a labyrinthine do- 
main structure similar to the domain structure of thin-film 
single-magnetic-domain material. In order for a labyrin- 
thine domain structure to appear it is necessary for a perpen- 
dicular magnetic anisotropy to be present. Because symme- 
try conditions forbid any uniaxial basal-plane anisotropy in 
bulk FeBO, crystals, it is natural to assume that there is 
surface magnetic anisotropy at the nonbasal facets of iron 
borate. 

In this paper we have observed and investigated surface 
magnetism at the nonbasal facets of FeBO, using magne- 
tooptic methods, and have calculated the surface anisotropy 
energy for two types of facets-( 1074) and ( 1120)-assum- 
ing that this energy is due to magnetic dipole interactions 
between Fe3+ ions. The theory we have developed correctly 

reflects the observed symmetry of the surface anisotropy, 
and the calculated saturation field for the surface magnetiza- 
tion coincides in order of magnitude with the measured 
fields. 

2. MEASUREMENT METHODS AND SAMPLES 

The magnetooptic investigation of FeBO, was carried 
out by using the equatorial and polar Kerr effects (EKE and 
PKE). The EKE consists of a change in the light intensity 
reflected from the ferromagnet as it is magnetized; its value 
is proportional to the magnetization component lying in the 
plane of the ferromagnetic reflector which is perpendicular 
to the plane of the incident light. The PKE consists of rota- 
tion of the plane of polarization of reflected light as the crys- 
tal is magnetized; its magnitude is proportional to the com- 
ponent of magnetization perpendicular to the reflecting 
plane. Because the Kerr effect is proportional to the magnet- 
ization, while the depth at which the reflected light origi- 
nates amounts to at most a few tens of fractions of microns,' 
by using magnetooptic effects we can measure the magneti- 
zation curves of thin near-surface layers on the sample. 

In this study we used s dynamic magnetooptic setup 
with automatic recording of the signal, analogous to the one 
described in Ref. 6. Measurements of the volume magnetic 
properties of the crystal were carried out using a balance 
setup, which consisted of a solenoid and two measurement 
coils. The measurement coils are connected opposite one an- 
other and are fitted inside the solenoid, through which an 
AC current flows at a sonic frequency (90 Hz). The signal 
which appears when the sample is inserted in one of the coils 
is measured with a resonant amplifier and is recorded using a 
chart recorder. 

The magnetooptic effect was investigated at the natural 
facets of bulk single-crystal FeBO,. Because application of 
the usual technology for making single-crystal iron borate, 
which involves growth from a solution in a melt, usually 
results in very fine plate-shaped samples whose surfaces are 
parallel to the basal plane, the crystals used in this paper 
were made by gas-phase synthesis, a method which yields 
bulk crystals.' The samples had facets of the following types: 
(1074), ( l l20) ,  (1123), and (OOOl)." For this paper, we 
studied carefully-grown ( 1074) and ( 1 150) facets, of which 
those with areas of 5-20 mm2 had plane mirror surfaces. The 
facet type was determined by the method of optical gonio- 
metry, and refined with x-ray diffraction. Using x-ray dif- 
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FIG. 1. Spectral dependence of the EKE ( 6 )  at the (1074) facet of a 
FeBO, _crystal. The field H is perpendicular to the line of intersection of 
the ( 1014) and (0001 ) planes. From here on, the angle of incidence of the 
light equals 55". 

fraction analysis we checked for agreement of the crystal 
lattice parameters with the data in the literature. The dis- 
agreement of the measured parameters with previously pub- 
lished datas came to less than 0.01%. 

3. EXPERIMENTAL RESULTS 

Figure 1 shows the spectral dependence of the EKE 
measured at a ( 1074) facet of a FeBO, crystal in the range of 
photon energies &J = 2-5 eV. An AC magnetic field with an 
amplitude of H = 400 Oe is applied within the plane of the 
facet in the [o l io ]  direction, which is perpendicular to the 
line of intersection of the (1074) and (0001) facets. The 
spectral dependence of the EKE at nonbasal facets of bulk 
crystals of FeBO, practically coincides with the analogous 
dependences of the EKE measured in Ref. 9 in the range 
h = 2-3.8 eV on platelike crystals of FeBO, whose surfaces 
were parallel to the basal facet. In addition to the peaks ob- 
served earlier at h = 2.8 and 3.5 eV (Ref. 9 ) ,  the EKE 
curve also exhibits features at energies 4.1,4.3,4.6, and 5 eV. 

In Fig. 2 we show the angular dependence of the EKE 
(curve 1 ) taken on the ( 1074) facet at h = 3.3 eV in a field 
H = 50 Oe. The angle2 it the plane of the facet is measured 
from the line of intersection of the planes (1074) and 
(0001 ). Curve 2 gives thex  dependence of the projection of 
the magnetization onto the external field direction in the 
bulk of the sample when it is rotated in the ( 1074) plane; this 
dependence is measured in the same field ( H  = 50 Oe) as in 
Fig. 1. Curve 3 was measured in the same way as curve 2, but 
in a field H = 500 Oe; for this field the sample was magne- 
tized to saturation. The projection of the spontaneous mag- 
netization onto the field for x = n/2 equals 0.75 m, ( m ,  is 
the reduced magnetization of FeBO,, see below), which 
agrees with the calculated value 0.74 m, since the angle be- 
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FIG. 2. Curve 1-angular dependence of the EKE (h= 3.3 eV, 
p = 55') at the (1014) facet; curves 2,3-angular dependences of the 
projections of the bulk _magnetization onto the direction of H as the sam- 
ple is rotated in the ( 1014) plane, in fields H = 50 and 500 Oe, respective- 
ly. The angle x i s  measured from the line of intersection of the ( 1014) and 
(0001 ) planes. 

tween the planes (0001 ) and ( 1014) equals 42". There is 
some discrepancy in the ratios of the magnetization values at 
the maximum and the minimum for curves 2 and 3, which is 
apparently due to differences in the projections of the field 
on the basal plane for the directions x = 0 and x = 7~/2 and 
to difference in demagnetization factors for x = 0 and 
x = 71/2 because of the irregular shapes of the samples. 

It is clear from Fig. 2 that the behavior of the magneti- 
zation at the surface differs sharply from that of the bulk 
magnetization (see, e.g., curves 1 and 2, which were mea- 
sured at the same field). The variation of the projection of 
the bulk magnetization onto the field direction as the sample 
is rotated in the ( 10i4) facet plane is related to the fact that 
the weak ferromagnetic moment in FeBO,, because of sym- 
metry conditions, always lies in the (0001) plane.' There- 
fore, the maximum value for curve 2 is reached for x = 0, at 
which angle the field is parallel to the (0001 ) plane, while its 
minimum is reached for y = n/2, where the angle between 
the field and the (0001 ) plane is maximized. In contrast to 
the case of bulk magnetization, the maximum value of the 
EKE for curve 1 occurs at x = n/2 and the minimum at 
x = 0. From this we can conclude that a uniaxial magnetic 
anisotropy is present at the surfaces of (10i4) facets with 
easy-axis (EA) magnetization along the [428i] axis per- 
pendicular to the line of intersection of the (1074) and 
(000 1 ) planes. 

Figure 3 shows the field dependence of the EKE for the 
difficult-axis (DA) and EA magnetization directions 
(curves 1 and 2, forx = 0 and2  = n/2, respectively). In the 
surface EA direction the magnetization is practically com- 
plete at a field H-  300 Oe [see Fig. 3 (a )  1, while in the DA 
direction the EKE reaches a maximum in a field H-4 kOe. 

FIG. 3. Field dependence of the EKE ( f iw = 3.3 eV) at the ( 1014) 
facet along the DA (curve 1, x = 0 )  and EA (curve 2, x = n/2).  
The dashed curves in Fig. 3 ( a )  denote bulk magnetization curves 
in arbitrary units (curves 1 and l', 2 and 2' correspond to the same 
directions of magnetizing field). Curve 3 is a renormalized version 
of curve 2, as  pointed o g  in the text; curve 4 is the surface magneti- 
zation curve at the (1014) facet along the DA with a critical field 
H,, = 1.6 kOe, calculated using Eqs. (20) and ( 2  1 ). 
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FIG. 4. Field dependence of the PKE (a)  at the ( 1074) facet for h = 3.3  
eV, which is proportional to the component of the magnetization normal 
to the facet; Hl(1014).  

As we ought to expect, for x = 0 the maximum value of the 
effect exceeds the EKE in the x = a/2 direction. 

The magnetization of a FeBO, crystal is determined by 
the component of the external field lying in the basal plane, 
i.e., the plane in which the resulting weak ferromagnetic mo- 
ment is located. For magnetization along the EA (X = a/2)  
in the ( 1014) plane, the projection of the field on the (0001 ) 
plane is H cos 42" = 0.74 H, while forx = 0 the field is paral- 
lel to the basal plane. Curve 3 in Fig. 3(b) was drawn using 
curve 2, taking into account the projection of the field H on 
the basal plane (0.74 H) and the fact that the maximum 
~lalue of the EKE along the EA amounts to 74% of the analo- 
gous value of the EKE along the DA. In Fig. 3, we use 
dashed curves to show the bulk magnetization curves in rela- 
tive units along the x = 0 (curve 1 ) and x = a/2 (curve 2)  
directions in the ( 1074) plane. 

In Fig. 4 we show the field dependence of the PKE for 
h = 3.3 eV for the (1074) facet, which is proportional to 
the normal component of the magnetization. The spectral 
dependence of the PKE is close to that of the EKE spectral 
curve in form (see Fig. 1 ) . Saturation of the PKE takes place 
in a field - 300 Oe, which agrees with the results of measur- 
ing the component of magnetization in the ( 1074) plane (see 
Fig. 3 ) . 

The results presented in Figs. 2-4 allow us to conclude 
that there exists a surface magnetic anisotropy on the ( 10i4) 
facet of iron borate, with a critical magnetization field along 
the DA of H,, z 1.6 kOe which was determined from the 
theoretical curve 4 (Fig. 3) calculated in Sec. 5. In the ab- 
sence of a field, the magnetization at the facet surface lies in 
the basal plane along the direction [2130]. In this case the 
magnetization component normal to the facet equals m, sin 
42" = 0.67 m,. The slow approach of curve 1 to saturation 
compared to curve 4 is apparently due to the gradual change 
of the magnetooptic signal from sinusoidal to rectangular 
form in fields close to the saturation field. We also seem to 
observe the persistence effect exhibited by the bulk magneti- 

zation curves as measured by the induction method, because 
the saturation magnetic induction of iron borate at room 
temperature amounts to 115 gauss (Ref. lo),  while the satu- 
ration field for the bulk magnetization curves ( 1' and 2' in 
Fig. 3) amounts to -300 Oe. This effect can also be ex- 
plained by variation of the magnetic induction signal in the 
measurement coil when the magnetic field amplitude is close 
to the saturation field of the magnetization in the bulk. 

In Fig. 5 we show the results of investigations of the 
surface magnetic anisotropy at the (1120) plane, which 
makes an angle of 90" with the basal plane. Surface magneti- 
zation curves are given for two directions: in the plane of the 
facet parallel to the line of intersection of the (0001) and 
( 1 1j0) planes, i.e., the direction [i100] (curve 1 ), and per- 
pendicular to this line, i.e., the direction [ 1 ~ Z O ]  (curve 2).  
These curves were measured using EKE and PKE, respec- 
tively. The dashed curves in the figure denote the bulk mag- 
netization curves in arbitrary units (curves 1' and 2'), corre- 
sponding to the same field directions for which the surface 
magnetization curves were measured. It is clear from the 
figure that surface magnetization takes place in the same 
fields for the two directions; furthermore, there is very little 
difference between the surface and bulk magnetization 
curves, i.e., curves 1 and 1' for magnetization in the plane of 
the facet and curves 2 and 2' for magnetization perpendicu- 
lar to the facet. This implies that there is no detectable sur- 
face anisotropy on the ( 1130) facet, at least to the accuracy 
that we determine the magnitude of the demagnetization 
field ( - 100 Oe). 

4.THEORY OF SURFACE MAGNETISM 

Iron borate-i.e., FeB0,-is a weak ferromagnet with 
the easy plane type of magnetic anisotropy. The space group 
of the crystal lattice symmetry is D :, . The part of the ther- 
modynamic potential of FeBO, which is essential to the fol- 
lowing discussion has the form'': 

where the first term is the exchange energy, the second the 
uniaxial anisotropy, and the third the Dzyaloshinski energy, 
which causes the weak ferromagnetism; the I, ( i  = x,y,z) are 
the components of the normalized antiferromagnetic vector 
1 (1 = ( I ,  - 1,)/21, I= / I l l  = II,I, I ,  and I2 are the sublat- 
tice magnetizations), while them, are the components of the 
normalized ferromagnetic vector m (m = ( I ,  + 1,)/21). 
From here on, the z axis will coincide with the third-order 
axis of the crystal, while the x- and y-axes will lie in the basal 
plane; the x-axis is directed along the second-order axis 

FIG. 5. Field dependence of the EKE ( 6 )  ccurve 1) and PKE 
(a)-(curve 2)  for fio = 3 . 3  eV at the (1  120) facet; the facet 
( 1120)1(0001). ForJhe EKE, H is parallel to the line of inter- 
section-of the (1  120) and (0001) facets; for the PKE, 
H1(  1120). The dashed curves are bulk magnetization curves in 
relative units (curves 1 and l', 2 and 2' correspond to the same 
directions of magnetizating field). 
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while they-axis lies in the symmetry plane of the crystal. The 
constant a can be determined once we know the effective 
uniaxial anisotropy field H, = 3 kOe (a t  T = 4 K) ,  which is 
measured using antiferromagnetic resonance,I2 and the sub- 
lattice magnetization 1 = 520 cgs units ( T  = 0 K; see Ref. 
7 )  : a  = 2IH, = 3.12 X 10' erg/cm3. The Dzyaloshinski con- 
stant is D = 21HD = 1.04X 10' erg/cm" where the Dzyalo- 
shinski field HD -- 100 kOe at T = 4 K.'"he Dzyaloshineki 
interaction changes the effective uniaxial anisotropy field"; 
therefore, if we ignore terms which do not depend on the 
orientation of the vector 1, Eq. (1 )  can be written in the 
following way: 

whereat=: 1.5 a = 4.68 X 10' erg/cm3. The constant a '  is one 
of the parameters which determine the structure of the mag- 
netic transition layer from the surface to the bulk crystal 
(see below). 

Equation ( 2 )  describes the magnetic anisotropy in a 
bulk crystal. In the near-surface region the physical picture 
changes, due to the altered symmetry of the environment of a 
magnetic ion at the surface compared to the bulk. Let us 
compute, as in the case of hematite,' the contribution of 
long-range magnetic-dipole interaction to the surface mag- 
netic anisotropy energy. In what follows, we carry out calcu- 
lations of the surface anisotropy for two types of facets: 
(1074) and (1120). 

The Case H= 0 

The smallest rhombohedron in FeBO, with facets of 
type ( 1074) is illustrated in Fig. 6. The length of this rhom- 
bohedron equals 5.9 A, and the plane angle at the vertex is 
104.2".' The surface anisotropy energy at the (1074) facet 
should be invariant under reflection in the yz symmetry 
plane. Calculations lead to the following form for the surface 
anisotropy energy at the ( 1074) facet at T = 0 K: 

0,i,ii,[~r~/cm']=-0.043 sinz 0 cos2 cp+0.015 sinZ 0 sin" 

-0.032 cos' 0+0.077 sin 0 cos 0 sin cp. ( 3 )  

This expression is obtained by including the magnetic-dipole 
interactions of the Fe3 + ions located within a rhombohedron 
similar to the one shown in Fig. 6, with an edge of 2 0 ~  5.9 
A =  118'4. 

In order to calculate the surface anisotropy energy at 

FIG, 6. Smallest rhombohedron in the FeBO, crystal with facets of type 
(1014). The length of the rhombohedron edge equals 5.3 A. At right is 
shown the coordinate system used. 

FIG. 7,Parallelepiped used to calculate the surface anisotropy energy at 
the (1 120) facet of iron borate, which is due to magnetic-dipole interac- 
tions among the Fe3+ ions. The dimensions of the parallelepip_ed are 4.6, 
8.0, and 14.5 A along thex, y, andzaxes, respectively. The ( 1120) facet is 
perpendicular to the x axis. 

the ( 1120) facet, we used a parallelepiped with dimensions 
4.6, 8.0, and 14.5 A along thex,y, andz axes, respectively, as 
shown in Fig. 7. The planex = const is parallel to the ( 1120) 
facet of the crystal. The surface anisotropy energy at this 
facet should be invariant relative to rotation around the sec- 
ond-order axes. The calculation gives 

c~(~~~~,[er~/crn~]=-0.008 sinz 0 cos2 rpt0.014 sin2 0 sinz cp 

-0.041 cos2 0-0.062 sin 0 cos 0 sin cp. (4 )  

Equation ( 4 )  is obtained by including the interaction of 
Fe3+ ions located in a parallelepiped with dimensions 
92 X 160X 290 A. As a control, we calculated the magne- 
tooptic contribution to the effective uniaxial anisotropy field 
in the bulk crystal; our calculated value was 3.65 kOe, which 
is in good agreement with the results of Ref. 14, i.e., 3.66 
kOe. In this paper we used a special method of summation 
which speeds the convergence of the dipole sums. 

After minimizing Eqs. (3 )  and (4 )  with respect to 8 
and p ,  we determine the equilibrium positions of the vector 1 
at the facet surface without including the bulk crystal anisot- 
ropy: 

0,'=2.64, qOr=n/2 for the ( 1014) facet, 
( 5 )  

0,'-0.72, (pO1=n/2 for the ( 1120) facet. 

Also of interest is the surface anisotropy energy of indi- 
vidual layers of Fe3+ ions ( a , ,  i is  the layer index) located at 
different distances from the surface. In the table we list the 
coefficients which appear in the expression for the energy 
a, ( 8 , ~ )  corresponding to Eq. (3 )  for the facet ( 1074) at 
which surface magnetism is observed. It is clear from the 
table that a, decreases rapidly as the layer index increases. 
Analysis shows that the position of the layer magnetic mo- 
ment which produces an extremum in o, (8 ,p )  lies in the 
symmetry plane of the crystal ( p  = 7~/2) .  In this case o, can 
be written in the following way: a ,  (gi = ~ / 2 )  
= (4)a,sin2(8 - 8; ), where 8; is the angle which deter- 

mines the EA of the ion's magnetic moment in the ith layer. 
From this we can determine the effective field which acts on 
the ion's magnetic moment: H ,  = 2a, /5pB n ,  where n is the 
number of Fe3+ ions in a 1 cm' layer area and 5pB is the 
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magnetic moment of a Fe3+ ion. The values of ai , 8  b , and Hi 
are given in the table. 

The equilibrium values of the angles 8; and p 6 in (5)  
at the surface were obtained without including the surface 
anisotropy of the bulk crystal. When we include this bulk 
anisotropy, the equilibrium angles 0, and p, for the vector 1 
at the facet surface in the absence of an external magnetic 
field are determined by the competition between the surface 
anisotropy energy and the energy of the magnetic transition 
layer; for the case of negligible anisotropy in the basal plane, 
this competition produces a characteristic variation of the 
angle 8 frorr, its equilibrium value 8, at the surface to its 
equilibrium value in the bulk. The thermodynamic potential 
of iron borate including the crystallographic magnetic ani- 
sotropy energy and the exchange energy connected with in- 
homogeneity of the vector 1 can be represented in the form: 

A, dl, A dl, a' 
@ = 2 -[(-) d x  ( )  + f ( )  + , (6)  

where a = x,y,z,A,,A2 are the exchange parameters, and a' is 
the uniaxial anisotropy constant including the Dzyalo- 
shinski interaction. The energy of the surface transition lay- 
er per unit facet area equals: 

L., 

where A is a function ofA,, A,  and the angle of deviation of 
the facet measured from the z-axis, s is the distance into the 
depth of the crystal measured from the surface. The bound- 
ary conditions for the problem of calculating the transition 
layer are: 

where 8, is arbitrary. The form of the function B ( s )  which 
minimizes the energy y, is determined by solving the corre- 
sponding Euler equation. As a result of solving the latter, we 
obtain in particular 

Let us determine yo,, . For FeBO, the effective exchange field 
at T = 0 K is HE = 3 x lo3 kOe;" the exchange constant 
B = H E / I  = 5.8 X lo3 cgs units; A=:B12c2, wherec = 2.7 A 
is the spacing between layers of Fe3+ ions. From this we find 
A - lop6 erg/cm2 and yo,, - 2.2 erg/cm2. In these expres- 
sions we neglect the anisotropy of the parameter A. 

In order to determine the equilibrium magnetic struo 
ture of the transition layer near the facet of the crystal, we 
must find the minimum of the sum of the surface anisotropy 
energies a( ,074) or a(, 13,) and the transition layer energy y, 
as a function of the values of the parameters 8, and p,. The 
solution of the equations d ( a  + ye )/do, = 0 and do/ 
dp, = 0 lead to the following equilibrium values of the an- 
gles: 

0,=n/2, qo=O for the (1014) facet, (10) 

00=n/2, q0=O for the ( 1130) facet. (1  1) 

It is interesting to note that when the bulk anisotropy is in- 
cluded the equilibrium value of the angle p, [see Eqs. ( lo),  
( 11 ) ] at the facet surface changes to ~ / 2 ,  which should be 
compared to the case (5)  (i.e., without including the bulk 

anisotropy). In this case the angle 0 changes so that the mag- 
netic moments of the Fe3+ ions are now located in the basal 
plane. 

The Case H#O 

Let us now investigate the behavior of the magnetic 
transition layer in an external field. For the case of relatively 
small fields (H<HD) the thermodynamic potential for a 
FeBO, crystal in a magnetic field as a function of the angle p 
can be written in the following form: 

where H, is the projection of the field H on the basal plane of 
the crystal, and $ is the angle between the direction of H,  
and thex-axis. The energy of the transition layer in an exter- 
nal field can be written in the following form: 

m 

The Euler equation has the form 

sin x !!E=*-, 
ds 6, 

where 

The boundary conditions are 

As a result of substituting ( 14) into ( 13), we obtain 

A 6, drp 
yo=71sinzxds, ds=-. 

6, 0 sin x 

After an integration we obtain 

where 

The surface anisotropy energy of the facets under dis- 
cussion have the following form for 8 = n-/2: 

a=b cosZ rp,+d sinz cpo=b+ (d-b) sin2 rpo.  (16) 

The angle p, is determined from the equation 

3 (y,+o) /drp,=-y, sin x,+ (d-b) sin Zrpo=O. (17) 

The angle p = n-/2 determines the DA direction for the vec- 
tor 1 for both types of facets studied here (for the vector m, 
the direction of the DA coincides with the x-axis). For mag- 
netization along the DA ($ = 0), we obtain from ( 17) 

-0,83.10-Wt'" sin (n/4-qo/2) + (d -b )  sin 2q0=0. ( 18) 

For the critical field that disrupts the layer, we obtain from 
Eq. (18) as p0-r/2 t 
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TABLE I. 

HCr=2,3.1O5 (d -b )  '. (19) 

At T = 0 K, we have d - b = 0.058 erg/cm2 [see (3) 1 and 
H,, = 800 Oe for the ( 1014) facet, while for the ( 1 120) fac- 
et we have d - b = 0.022 erg/cm2 [see (3 ) ]  and H,, = 110 
Oe. The latter field is comparable in magnitude to demagnet- 
ization fields in bulk FeBO, crystals; therefore it is difficult 
to observe a surface anisotropy with such a critical field. Let 
us determine H,, for the ( 1014) plane at room temperature 
( T =  300 K).  Because AaZ2 ,  H,  mZ, d - baZ2,  while 
Z(O)/Z(T) = 1.47 (Ref. lo) ,  we obtain in place of (18) and 
( 1 9 )  

-0.47. 10-ZH,'" sin (n/4-(po/2) + (df- b') sin 2qo=0, (20) 

Hc,=7.2.10"d'-b')2, (21 

FGe 
14.5 
2.2 
0.2 
0.02 

a, 9 

erg/ 
cm2 

0.2 
0.03 
0.003 
0.0002 

Layer Coefficient (erg/cm2) off; 
index 

f ,  = 8 i n % ~ 0 4  I 1. = sin*eshW I /, = cos2 0 . - sin@cw0dnw I f  - 

where 

::; . 
2.67 
1.36 
0.07 
1.92 

From this we obtain H,, ( T  = 300 K )  ~ 5 0 0  Oe. For the 
( 1 130) facet this field satisfies H,, ( T = 300 K )  -- 70 Oe at 
room temperature. Let us estimate the effective width of the 
transition layer, which is defined as follows: 

1 
2 
3 
4 

For H = 100 Oe 6, = 0.2 p m  at room temperature. 

-0.039 
0.077.10-' 

-0,068.10-"0,018.10-2 
0.046.10-3 

5. DISCUSSION OF EXPERIMENTAL RESULTS 

0,083 
-0,061.10-' 

0.084~10-s 

-0.044 
0.06. 10-2 

0.079.10-4 
0.08.10-~ 

When the values of d ' - b ' are known, Eq. (20) deter- 
mines the dependence of the orientation of 1 at the surface on 
H, when the crystal is magnetized along its DA. For a cer- 
tain critical field H,, the magnetization of the surface layer is 
driven into saturation, in which case p,(H,, ) = r/2. The 
function p,(H) can also be used to solve the inverse prob- 
lem, i.e., determining the value of H,, on the basis of a 
known experimental magnetization curve. 

(1074) facet. The calculated magnetization curve for 
the surface layer with H,, = 1.6 kOe (curve 4 on the same 
figure) agrees well with the experimental curve (curve 1 on 
the same figure) for the ( 1014) facet in its initial and inter- 
mediate regions. The disagreement between the theoretical 
and experimental curves for H-H,, was discussed. above 
(see Sec. 3). The value of H,, for the ( 10i4) calculated us- 
ing Eq. (2  1 ), including the magnetic dipole surface anisotro- 
py energy, comes to - 500 Oe, i.e., three times smaller than 
the experimental value. The DA and EA magnetization di- 
rections coincide for theory and experiment. Hence, includ- 
ing the surface anisotropy due to magnetic dipole interac- 

0.020 
-0.060.10-' 

0,069. loT2 
-0.055.10-~ 

tions of the Fe3+ ions leads to a qualitative explanation of 
the observed physical picture, and gives the correct order of 
magnitude for the field H,, . 

(1120) facet. On the basis of our investigations of the 
magnetization curves for surfaces of ( 1120) type facets giv- 
en in Fig. 5, we can conclude that to the accuracy determined 
by the values of the demagnetization fields ( - 100 Oe), sur- 
face anisotropy is absent at three facets. This agrees with the 
calculated value of the field H,, -7 70 Oe. 

The disagreement between the theoretical and experi- 
mental values of the field H,, for the (1014) facet may be 
due to a partial surface reconstruction, i.e., to a shift in the 
Fe3+ ions at the surface from positions which they should 
occupy corresponding to the bulk crystal structure. Such a 
reconstruction should lead to a considerable change in the 
magnetic-dipole energy of the Fe3+ ions at the surface and 
near it, because the contribution per unit area of the outer 
layers of ions to the surface anisotropy is higher than the 
contribution from the deeper layers. This circumstance is 
well illustrated in Table I. In addition, the surface anisotro- 
py energy may contain contributions from single-ion anisot- 
ropy and the Dzyaloshinski interaction of magnetic ions in 
the near-surface layer. 

In conclusion, we can say that we have added iron bo- 
rate to the list of weak ferromagnets in which surface magne- 
tism has been observed, a list which previously contained 
only hematite and the rare-earth orthoferrites. The origin of 
surface magnetism in these crystals is the change in symme- 
try of the environment of magnetic ions at the surface. The 
significant, and in the case of hematite and iron borate, ap- 
parently decisive, contribution to the anisotropy energy 
comes from magnetic-dipole interactions of the magnetic 
ions. 

"The facet indices refer to a hexagonal coordinate system (see Ref. 7 ) .  
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