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A theory is proposed of the thermoelectric coefficients of a 2 0  electron gas in a quantizing 
magnetic field. This theory explains the nonmonotonic temperature dependence and the order of 
magnitude of the transverse thermoelectric effect observed for a GaAs-Al, Ga l  -,As 
heterostructure. 

INTRODUCTION 

The temperature and field dependence of the transverse 
thermoelectric coefficient' of a 2 0  electron gas in a GaAs- 
Al, Gal -,As heterostructure subject to quantizing magnet- 
ic fields exhibits a number of special features which have not 
yet been explained. Firstly, a nonmonotonic temperature de- 
pendence of the peak value of the thermoelectric coefficient 
is in conflict with the existing theories of thermomagnetic 
effects in an inversion layer,3-9 according to which the peak 
value of the electron thermoelectric coefficient of a 2 0  elec- 
tron gas is independent of temperature: 

where v =  n + 4 in the absence of spin splitting and 
Y = 2n + 1 + f if there is spin splitting of the Landau level 
with index n; k is the Boltzmann constant. 

A second special feature is the anomalously high value 
of a, found experimentally (a, ~ 0 . 1 2  mV/K), ' which is 
two orders of magnitude higher than a, predicted by Eq. 
( 1 ) for the case when Y = 3/2. Allowance for the broaden- 
ing of the Landau levels in Ref. 10 simply increases mono- 
tonically the peak value of the transverse thermoelectric co- 
efficient with temperature.l We therefore have to admit that 
the current theories of thermomagnetic effects occurring in 
inversion layers subjected to quantizing magnetic fields are 
unsatisfactory. As pointed out in Ref. 1, the observed anom- 
alies in the behavior of a, can be explained if we allow for the 
deviation of phonons from local equilibrium (due to entrain- 
ment of electrons by phonons). It should be noted that the 
drag thermoelectric coefficient of a 2 0  electron gas in zero 
magnetic field has already been considered theoretically. ".I2 

We calculate the transverse thermoelectric coefficient 
of a quasi-two-dimensional electron gas due to nonequilibri- 
um of phonons (frictional thermoelectric coefficient) and 
study its temperature and field dependences in quantizing 
magnetic fields in the case of a GaAs-Al, Gal  ,As hetero- 
structure. We assume that the electron gas fills a layer on a 
xy plane and the effective thickness of this layer differs from 
zero and is equal to (2) (quasi-two-dimensional electron 
gas). A magnetic field is applied at right-angles to this layer. 
The phonon system is essentially three-dimensional. 

proximation, 
matrices can 
tion13.'4 

the kinetic equations for one-particle density 
be found from the generalized transport equa- 

where P, are the occupation numbers of one-particle states 
and the Hamiltonian of the electron-phonon system 2F is 

and C, is a Fourier component of the energy of the interac- 
tion of electrons with phonons. In the case of homopolar 
acoustic phonons, we have's,'6 

Here, E, is the deformation potential constant, C,  =ps2 is 
the elastic constant, p is the density of the investigated crys- 
tal, and s is the velocity of sound. 

We assume that the scattering of electrons by the defor- 
mation potential predominates over the scattering by piezo- 
electric vibrations.I6 We define one-particle matricesI3 

and the correlation matrices 

The averaging in Eqs. (7 )  and (8)  is carried out over a Gibbs 
ensemble. 

Using Eqs. (2) ,  ( 7 ) ,  and (8) ,  we obtain 

( i h  $ + el-e.) f 1 2  =z {uz.qh,3'(q) +U,;'ho ( q )  
d t  

3'4 

BASIC EQUATIONS (ih - d + ha.-nu.) N,,, = r( ~ , ~ - ~ ~ h ~ ~  ( q )  -ul2'hj; ( q f )  1. 
We can calculate the surface density of the charge flux if d t  

1.2 

we know the equations of motion of the one-particle electron 
and phonon density matrices. If the amplitude of the scatter- 

(10) 

ing of electrons by phonons is considered in the Born ap- We can similarly write down equations for the matrices (8 )  
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which contain derivatives of h with respect to time. In the 
case of slow processes the time derivatives of h can be ig- 
nored if we consider the adiabatic parameter E + 0 :  

We then obtain 

hi,* ( q )  = (et-e2-hoq+ ie)-' 

u34-q.  I (6.zft.-a.Ifs2) (6qqf+Nqvq)  
14q' 

+ 6 q , m ( f s ~ f t z + f , z ( 6 , t - f ~ ~ )  I. ( 1 3 )  

Substituting Eqs. ( 12) and ( 1 3 )  into Eqs. ( 9 )  and ( l o ) ,  we 
obtain a system of kinetic equations for the one-particle elec- 
tron and phonon density matrices. 

We now consider the case of a quantizing magnetic field 
applied at right-angles to the surface of an inversion layer. 
We describe the one-particle states of a quasi-two-dimen- 
sional electron by a wave function that allows for electrical 
quantization along the z direction and for Landau quantiza- 
tion in the xy plane": 

~ ~ ~ = ~ n k ~ ~ = ~ , ( z ) c x ~ ( i k , x ) ~ , ( ( ~ - ~ ~ ) / a ) ,  
( 1 4 )  

cD,, (x) = (2"n!n 'a) -'I2 exp(-x2/2) Hn(x). 

Here, yo = a2kx is the projection of the center of a Larmor 
orbit along they axis, an is the eigenfunction of a harmonic 
oscillator, Hn ( x )  is a Hermitian polynomial, a is the mag- 
netic length, go ( z )  is the envelope of the wave function of an 
electron in the inversion layer at the electrical quantum lim- 
it'' given by 

where the quantity b that minimizes the total energy isI9 

N, and N, are the electron densities in inversion and deple- 
tion layers, and x is the permittivity. The effective thickness 
( z )  of an inversion layer is approximately equal to the aver- 
age separation of the inversion layer electrons from the inter- 
faceI9: 

m 

[ N ,  is the density of electrons in the ith electrical subband 
and 6, (2) is the corresponding normalized envelope of the 
wave function]. In the electrical quantum limit, when only 
the lowest electrical subband ( i  = 0 )  is filled with electrons, 
we have 

The matrix elements of the electron-phonon interac- 
tion which occur in Eq. ( 5 )  can be represented, allowing for 

the explicit form of the wave functions of Eq. ( 14) ,  in the 
form" 

where 

U= (aql  )'/2, qLZ=q,Z+q,2, n,=min(n, n'), (20)  

The effects of the drag on electrons by phonons can be 
investigated by considering two-dimensional spatial inho- 
mogeneities distributed in a plane perpendicular to the mag- 
netic field. Such inhomogeneities are described by off-diag- 
onal elements of the density matrix only with respect of the 
quantum number k,,  i.e., fn ,x,,, Calculation of the charge 
flux in such systems can be carried out conveniently using 
the Wigner representation of the density matrix": 

where the particle number density is given by the expression 

If the density is slowly varying, we have 

We then have 

Substituting Eqs. ( 1 2 )  and ( 1 3 )  into Eqs. ( 9 )  and ( 10) 
subject to Eqs. ( 2 1 ) ,  (22) ,  and ( 2 5 ) ,  we obtain 

Here, 

the last term on the right-hand side of Eq. ( 2 7 )  allows for 
nonelectron relaxation of phonons, i.e., for the relaxation of 
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phonons by interaction with other phonons, boundaries of a 
sample, defects, etc.; wp, (q)  is the effective relaxation fre- 
quency of phonons in a thermostat (nonelectron relaxation 
frequency of phonons); and N :  is a local-equilibrium 
phonon distribution function: 

where T(x, y)  is the thermostat temperature. 
We assume, as usual, that the distribution function of 

phonons differs little from the local-equilibrium function of 
Eq. (29). We shall therefore assume that 

Substituting Eq. (30) into Eq. (27), we find the equation for 
the determination of g(x, y ) ,  which contains the electron 
distribution function fnyx. We can determine g(x, y )  to first 
order (w07) -' by assuming that fnyx is the local-equilibrium 
electron distribution function: 

where in the case of a standard parabolic energy band in the 
electrical quantum limit we have 

(E,, is the energy of the lowest electrical subband, w, 
= eH /mc is the cyclotron frequency, and m is the effective 

mass of an electron). 
Substituting next Eq. ( 3  1 ) into the equation for the 

functiong(x, y) ,  we find that to first order in the gradients of 
T and {, we obtain 

d o ,  d  fn- fn*  -- dqrz - N , o ( ~ *  a x ,  Y ) = {  ( f n , - f n ) g ( x .  Y ) -  2[ChLhwqikT:) 

Here, w, is the relaxation frequency of phonons interacting 
with electrons: 

f n - f  ( e n ) = { e x p  I ( ~ n - E o ) l k T ~ I + l ) - ' ,  (37) 

f, is the equilibrium electron distribution function, and go 
and To are the average values of the chemical potential and 
temperature. 

We can find the conduction current using the equation 
for the conservation of the charge en (x, y ) : 

Substituting Eqs. (30) and (31) into Eq. (26) and using the 
expansions 

fro, N, (x", y") =No + 
2 ( k T ) 2 [ c h ( ~ o q / . k T o )  -11 

where 

No= [exp ( h o , l k T o )  -11 -', ( 4 1 )  

we find to first order in V, T and Val the following expres- 
sion for the conductioil current which allows for the drag on 
the electrons by phonons: 

where the minus sign applies toj, and the plus sign applies to 
j,. The matrix form of Eq. (42) is 

where the tensors of the transport coefficients are 

ea4qx20ep 'opp<z )  
2 [ch ( h o , l k T )  - 1  I ( o e p + o p p )  ' 

(44) 

Equations (42) and (43) determine the dissipative (colli- 
sional) charge flux allowing for the scattering of electrons 
and phonons. 

The transport coefficients for a nondissipative electron 
flux can be described by the following expressions3 

ecN,  e2  e2v  (45) 
(T=v=(Tvx = - = -- 

H 

where 

X n =  ( ~ n - k )  / k T  

The expression for the isothermal transverse thermoelectric 
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coefficient is13 

and it follows from Eqs. (44)-(46) that it consists of two 
components: the electron component 

k a* = - - [In 2+ln oh (xn/2)  
l e l  ,, 

which is entirely due to nonequilibrium electrons, and the 
phonon component 

which is due to deviation of phonons from the equilibrium 
distribution because of electron-phonon collisions: 

At high temperatures the frequency up, of collisions of 
phonons with the "thermostat" is considerably greater than 
the frequency of their collisions with electrons wep 
(up, $ wep ) and in Eq. (44) we can go to the limit wpp - w . 
Consequently, we havep $ . '  -0 and the drag thermoelectric 
coefficient approaches a'P' -0 (i.e., there is no drag on the 
electrons by phonons). It then follows from Eq. (44) that 

In the opposite case of sufficiently low temperatures the non- 
electron frequency opp of phonon relaxation (relaxation of 
phonons due to interaction with the "thermostat" is less 
than the frequency w, of phonon relaxation due to interac- 
tion of electrons (w, > wpp ). In the limiting case when 
wpp -0 we find from Eq. (44) that ug -0, 02 -0, 

(dP' is the phonon or lattice specific heat, n = N,  (z) is the 
bulk electron density). 

Equation (49') is identical with the expression for a ( P '  

obtained in Ref. 20 using a phenomenological theory and 
assuming an overall drift of a system of electrons and phon- 
ons at a shared velocity (total entrainment of phonons). 

According to Refs. 13, 2 1, and 22, the damping rate of 
longitudinal long-wavelength sound is 

( L  represents the size of a sample). The first term in Eq. 
( 5 1 ) describes the absorption of long-wavelength sound by 
short-wavelength thermal phonons; the second term corre- 
sponds to the relaxation of phonons at the boundaries of a 
sample, which is important at low temperatures. 

The presence of scatterers broadens the Landau levels. 
There are many ways of allowing for such broadening. The 
simplest is the smearing of the S function." Introducing 
smearing of the Landau levels, we obtain the following 

expression for the frequency of collisions of phonons with 
electrons [ Eq. (34) 1 : 

EO2sTD q [ e x p ( f i o , / k T )  - I ]  
0 . p  = n<zSu2CLkP ( i+q ,2 /bZ)  ' 

Gnlnf ( e n + h , )  [I-f ( E , )  I ' (T./T)'+[ ( e . - e . ~ + h e ~ ) i k ~ ] ~ '  
(52) 

n'n 

where T, is the Dingle temperature governing the Landau 
level broadening. 

If the applied magnetic field is sufficiently strong, we 
can ignore transitions between different Landau levels and 
assume that G,., = G,S,., . Then, the drag thermoelectric 
power of three-dimensional phonons is described by 

where wep /app = R and it follows from Eqs. ( 52) and (5  1 ) 
that 

2'" ( E o / k )  ' T D L  4T'(u+a2b2P/2)" 
Q =  

n02<z)CLa3/k  [ B3CLu4/kL 
+ I]-* 

( u + ~ ~ b ~ V ~ / 2 ) ' ~  {exp [ O  (u+ a2b2V2/2) 'h /T]  -1) 
( I + v ~ ) ~  ( T D / 8 )  ' f  u f  a 2 b 2 v / 2  

where 8-2'12iis/ka. The order of magnitude of the mo- 
mentum of transverse motion is Wa.  Therefore, an electron 
traveling across a magnetic field can interact only with 
phonons whose momentum is %iq, gWa.  The law of conser- 
vation of momentum imposes rigid restrictions only on the 
phonon momentum component q, parallel to the surface, 
whereas in the case of q, it is found that phonons character- 
ized by Iq I < l/(z) participate equally in the scattering pro- 
cess. Since (z) a N, - ' I 3 ,  it follows that q, <q, at low densi- 
ties of the 2 0  gas, so that q z q , .  If we assume that the Fermi 

FIG. 1. Temperature dependence of the transverse thermoelectric power 
a,, : 1 ) (z) = 10 cm; 2)  ( z )  = 5 X low5 cm; 3 )  experimental curve 
taken from Ref. 1; N,  = 6. 82X 10" cm 2 ,  Fermi temperature T ,  = 297 
K , H =  1 8 . 5 T , v = 3 / 2 .  
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level coincides with the n = 0 Landau level and derive aP for 
the case of weak drag of electrons by phonons, when R < 1 
and (1 + a)-' a 1 - a ,  we find from Eqs. (53) and (54) 
that 

.D 

exp[ - ( T x )  Z / ~ Z ]  

( T D / T )  '+r2- [ B4:L:7ki + ' 1 -" (55) 

We analyze the temperature dependence of the drag 
thermoelectric coefficient aP allowing only for the phonon- 
phonon relaxation and we ignore completely the scattering 
of phonons on the boundaries of a sample. We consider mag- 
netic fields and temperatures such that T% 8. It then follows 
from Eq. (55) that 

Figure 1 shows the results of a numerical analysis car- 
ried out using Eq. (53) assuming parameters typical of a 
GaAs-Al, Ga, _,As heterostructureI6: m = 0.065m0 (m,,  
is the mass of a free electron), L = 0.08 cm, s = 3 . 9 ~  lo5 
cm/s, Eo ,- 13.5 eV, C, = 1.397x 1012 erg/cm3, x = 11.5, 
N, , -~x  1010cm-2, TD = 3 K, and H =  18.5 T. 

It follows from our calculations that allowance for the 
drag effects makes it possible to account for the nonmono- 
tonic temperature dependence and for the order of magni- 
tude of the transverse thermoelectric force observed experi- 
mentally. 
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