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We describe the kinetics of phase relaxation of the electric polarization of a two-level center in a 
resonant laser radiation field. The origin of the phase relaxation is interaction with a reservoir, 
which we model as a shift in the resonant frequency due to a multistage random process of 
arbitrary strength. We obtain explicit solutions ofthe integral equation which describes the 
kinetics for seven different random processes, and find that there are conditions under which the 
phase relaxation is characterized by two times T2, and T2, which depend in different ways on the 
intensity of the laser radiation. On the basis of the microscopic theory developed here, we give a 
rigorous proof of Redfield's hypothesis, which postulates the existence of an effect due to the 
resonance field which lengthens the time T,, without noticeably lengthening the time T,, ; this 
effect is appreciable when the amplitude of the resonance field (in energy units) is comparable to 
the local field which causes the relaxation of the impurity center. This type of dependence of the 
phase relaxation of an impurity on the laser radiation power was observed earlier in experiments 
on free-induction decay of Pr3+: LaF,. 

1. INTRODUCTION 

Recently there has been a new growth of interest in the 
problem of relaxation of atoms in an intense laser radiation 
field.'-" This growth of interest is driven by an experiment' 
in which anomalous behavior of the optical induction was 
observed in crystals of LaF, doped with Pr3+ impurity ions, 
a material known for its long-duration optical phase mem- 
ory. The anomaly appears in the dependence of the relaxa- 
tion time T2 for the polarization on the intensity of the long 
laser pulse which prepares the Pr3+ ions in a stationary ex- 
cited state. 

The theoretical descriptions of this effect proposed by a 
number of authors2-' are based on the assumption that in- 
tense laser radiation averages out the action of the rzndom 
fields caused by the environment which are responsible for 
phase relaxation of the impurity ion. These fields are genera- 
ted by the magnetic moments of 19F nuclei; the resulting Pr- 
F dipole coupling causes a shift in the resonance frequency 
w, for the 3H4-'D2 transition of the Pr3+ ion 
(w = W~ + Aw) .  A random time dependence of Aw arises 
due to the mutual reorientations of the magnetic moments of 
l9F nuclei resulting from their dipole-dipole coupling. 

The theories proposed in Refs. 2-8 can be classified as 
follows, depending on the relations used by their authors 
between the fundamental characteristics of the random pro- 
cess-i.e., its dispersion (Am2)  = S2 and correlation time T, . 
Those of Refs. 2-5 belong to the first group, in which it is 
assumed that the random process is weak or rapidly-varying 
(ST, & 1 ); on the basis of this, these authors use a differential 
kinetic equation. In a weak laser field this is the Bloch equa- 
tion, which describes only exponential relaxation. In the op- 
posite limiting case (strong or slowly-varying random pro- 
cesses, i.e., ST= ) I ) ,  nonexponential relaxation can occur 
and the evolution of the resonant levels is not described by 
the Bloch equation." 

In practice, most crystals exhibit the intermgdiate case 
(ST, - 1 ), and another approach is required in order to de- 
scribe the relaxation. One method which puts no limits on 
the magnitude of the parameter ST, was developed by 

Burshtein12-l4 for a particular form of random process. A 
special form of this process is that of two-step telegraph 
noise, which was already used in Ref. 7 to describe phase 
relaxation of Pr'+. The more general case of a multistep 
random process was studied in Ref. 8. In both Refs. 7 ,  8 an 
exponential (or biexponential) law is obtained for the polar- 
ization decay independent of the magnitude of the parameter 
ST,; this result is questionable, at least in the region ST, % 1. 
In the first case, exponential decay is a consequence of the 
statistical "poverty" of the telegraph noise model, which 
possesses only two states, whereas in the second case it is due 
to neglect of contributions to the signal from "holes" in the 
wings which are burned into the inhomogeneously broad- 
ened spectrum. 

In this paper, we develop a theory of phase relaxation 
based on Burshtein's methodI2 for arbitrary values of the 
parameter ST=. We analyze a large set of possible multistep 
random processes which give rise to the relaxation. We show 
that for certain ranges of the parameter ST, the relaxation 
acquires a nonexponential character. We find expressions 
for the boundaries of these ranges, which depend on the form 
of the random process. For the example of a resonant packet 
we investigate the effect of laser radiation on the boundaries 
of these regions and on the relaxation rates. 

2. DERIVATION OF THE KINETIC EQUATIONS AND THEIR 
GENERALSOLUTION 

We will describe the kinetics of dipole dephasing using 
the method developed in Ref. 12. This method involves a 
mo$el random process whose origin is the action of a poten- 
tial V ( t ) ,  which in turn depends on a certain random param- 
eter a ( t ) .  The time variation of a consists of discontinuous 
and uncorrelated jumps which are separated by intervals of 
time At over which it remains constant. Assume that the 
length of each such interval is determined by the probability 
d W = e - ""dt /T,, where T, is the mean time between 
jumps, and that there are no correlatic:~~ between values of 
the parameter a in neighboring intervals. Then the probabil- 
ity d W(a) of finding a given value of a in any cross-section 
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of the process does not depend on time. The equation for the 
density matrix pq ( t )  averaged over all possible realizations 
of the process has the formI2 

pim ( t )  =e-'"~ Sp E Rim (t, 0) 6 (0) I 
1 

h 

where S is the e~olution~operator which satisfies the equa- 
tion iM$/dt = Z ( a ) $ , Z ( a )  is the system Hamiltonian. 

Let us investigate a two-level a toz  which undergoes 
phase relaxation under the influence of V(t), where the lat- 
ter gives rise to a random discontinuous change in the reso- 
nant frequency, i.e., w , - ~ ,  + Aw(t). We will be interested 
in the behavior of this atom in a coherent radiation field 
whose frequency coincides with the resonant frequency 
w,. The Hamiltonian of such an atom has the form 

fix 35, = - -(Pi2eim~t+B~ie-'**t), 
2 

, . 
where P,, %re projection operators with certain prescribed 
properties: P,, Yk = a,, Y, ; Y ,,q2 are unperturbed wave 
functions for the atomic states with energies El < E2 (where 
fio, = E2 - El );x = (Y, JdEI *,)is the Rabi frequency; E is 
the amplitude of the resonance radiation field; and d is the 
dipole moment. For such a system, Eq. ( 1) takes the form 

x (4 =z(O)  k ( r )  + 1 d r l x ( r l ) k ( r - s ) .  (3a) 
0 

where T = t / rC ,  x ( r )  = u(r)eT,  y ( r )  = v(r)eT, 
Z(T)  = w(r)er,  w =p22 - p l l ,  ; (u  + iv)eif" =p12, c =xT,. 
The functions k ( r )  and n ( r )  are calculated by averaging 
over all possible realizations of the dimensionless random 
parameter a = AWT, : 

e2 a2 
n(r )=  J{-+= oos [ r  (cz+a2) 'I) dw(a). 

D 

We can use the Laplace transform 

to reduce the system of integral equations (3)  to a system of 
algebraic equations whose solution has the form 

where X(p ) , Y(p ) , and Z(p ) are transforms of the functions 
x ( r ) ,  y ( r ) ,  andz(r) ,  and 

Applying the inversion formula 

to Eq. (5),  we can obtain an exact solution to the integral 
equations ( 3 ) which describe the kinetics of the phase relax- 
ation of the two-level system. In the general case it can take 
the following form: 

wherep, are poles of the transform F(p) ,  Ci = res F(p, ) are 
the residues at these poles. The function Q(T) is made up of 
contributions from other singularities and has a more com- 
plex time dependence. In the experimentally observed relax- 
ation time dependences of the quantities u( t) ,  v(t), and 
w(t), the first term in Eq. (8)  contributes a simple exponen- 
tial dependence (characteristic of the kinetic limitI5) with 
the time constants T ,,,, = 7, /( 1 -pi ) Ix = o .  The second 
term Q(T) cannot be obtained from kinetic equations of the 
Bloch-equation type. It is a consequence of our going beyond 
$e framework of perturbation theory in the interaction 
V(a), and we cannot introduce a relaxation time to repre- 
sent it in the same way as for an exponential term. However, 
like the exponential, the function Q(T) has a characteristic 
time scale over which it varies appreciably. In order to speci- 
fy this scale quantitatively for all functions f ( r ) ,  we define 
an integrated relaxation time through the maximum of the 
homogeneous absorption line go( A )  '"": 

In this expression the function f(r) is multiplied by an expo- 
nential because the solution ( 7 )  differs from the desired 
functions u(t),  v(t),  and w(t) by the factor eT. 

In the absence of an AC field ( X  = 0)  the form of the 
transfor? ( 5 ) considerably simplifies: 
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From this it follows that w(t) = const and u( t ) /  
u (0)  = v(t)/v (O), i.e., the difference in level populations 
does not change while the kinetics of the components 2 and v 
are identical. Therefore, for x = 0 the perturbation V(t) is 
adiabatic. Turning on the AC field considerably changes the 
situation. 

3. ANALYSIS OF THE KINETICS 

In the formalism developed here the properties of the 
physical system are derived from those of the density distri- 
bution d W(a)  for the random variable a .  The assignment of 
d W(a) has a heuristic character, in that our success in de- 
scribing the kinetics will depend to a considerable degree on 
how well d W(a)  reflects the system's physical properties. In 
order to clarify the reason for the appearance of nonexpon- 
ential relaxation, we will analyze several types of distribu- 
tions. First of all, we will begin with (1)  uniform and (2)  
normal distributions. According to the Central-Limit 
Theorem, when the number of sources of the local fields, i.e., 
thespins which participate in shifting an ion's resonant fre- 
quency, is large, the fields will be normally distributed. The 
uniform distribution, which is one possible approximation 
to a normal distribution, allows us to obtain easily results we 
can inspect. In order to clarify to what extent the character 
of the kinetics is affected by the rate at which the wings of the 
density distribution fall off, we will investigate ( 3 )  a Laplace 
distribution, (4)  a Cauchy distribution, and (5)  a third dis- 
tribution which decreases much more slowly in the wings 
than (4)  and (5).  Finally, we will investigate two other dis- 
tributions which provide reasonable approximations to the 
scatter of local fields in a physical system with a rather small 
number of particles. 

1. Uniform (rectanguiar) distribution: 

This distribution leads to the following expression for the 
functions: 

1 
Y ( p )  3 -(eZ-l-p2) "'( 

r 
w h r e  y = PT, and P2/3 = (Am2) is the dispersion of the 
rrnciam variable Aw. In the absence of an AC field (X = O) ,  
the function L(p)  has a single polep, = y ctg y in the region 
of parameter values y<n-/2. For y > n-/2 the pole disappears. 
Thus, the value y = r / 2=  y,, is critical for the existence of 
exponential relaxation. 

For the case of a uniform distribution we can find an 
exact solution for the relaxation function f,,, ( t ) :  

= e - f / T g  {e (+ - y) 1' ,wen c t g  r + q  ( t )  
sin" 1 

The function Q(t)  results from the logarithmic branch point 
p = + iy of the transform K, (p); its components have the 
forms: 

For y<n-/2 the result (12) is well approximated by the 
expression 

rz s*et e-tl" ju,.(t) = (A)' e-rn2 +(I - -) - 
sin y B t 

+R ( t )  e-"'c. (13) 

The function R ( t )  equals zero for t = 0 and t = W .  For all 
remaining values of t  its contribution to f,, , ( t )  is less than a 
few percent. The purely exponential decay is characterized 
by a time T, = T,/( 1 - y ctg y).  In the small-y limit this 
time coincides with the well-known value 
T2 = ( (Aw2)~ ,  ) - I  given by perturbation theory for the 
case of a weak random process. For y)  1 Eq. (12) is ap- 
proximated by the function 

Turning on even a weak (XT,  ( 1 ) AC field leads to the 
appearance of poles in the supercritical region of parameter 
values of y ( y > ~ / 2 )  ; this gives rise to exponential relaxa- 
tion with a time T, z ( 1 + y,,x/P)~, . However, the contri- 
bution from this exponential relaxation (i.e., the weight of 
amplitude C, z y,,x/P in Eq. ( 8 ) 1 to the relaxation func- 
tion is small compared to the contribution from Q(t) .  Nev- 
ertheless, the time T2 for this process is found to be far longer 
than the characteristic time scale for nonexponential relaxa- 
tion ( -P - I ) .  Therefore at large times a weak field changes 
the character of the kinetics from nonexponential to expo- 
nential. 

As x increases, the exponential term in the relaxation 
function increases. In a strong field (XT, % 1,y) the relaxa- 
tion becomes predominantly exponential, and the relaxation 
time grows appreciably; the character of this increase de- 
pends on the strength of the random process. For y 4 1 the 
slowing-down of the relaxation proceeds as long as XT, > 1; 
then 

~ ( t )  =U ( 0 )  e- t 'T lu ,  v ( t )  = v  ( 0 )  e - t / T z u  cos Xt ,  

For the case y% 1, by the time thatx- ( (Aw2) ) 'I2, the time 
T2, has increased from a value on the order of ( (Aw2) ) - ' I2 

to several times 7,. However, the variation in the relaxation 
rate of the v-component is not so significant in this case. This 
difference in the u and v relaxation rates is preserved up to 
very large values of X- y( (Am2) ) ' I2 .  The times T2, for the 
range of valuesx > ( ( h a 2 )  ) ' I 2  and T,, forx > y( (Aw2) ) ' I 2  

depend on the parameters in the following fashion: 
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For all values of y and x the integrated relaxation time 
(9)  of the u-component can be represented in a compact 
form: 

Finally, let us note that in a strong field there appear 
traces of the dynamics in the behavior of the u and v compo- 
nents-oscillations at a frequency X* = X( 1 + (Am2)/ 
2x2), which are somewhat shifted from the Rabi frequency 
by the relaxation processes. 

2. Normal(Gaussian) distribution: 

K2 ( p )  = (+ ) ' ew(p)lz edC (Y ( p )  /F), 

where erfc(x) = 1 - erf(x); erf(x) is the probability inte- 
gralI9 and y = PrC = ( (Am2) ) 1 ' 2 ~ c .  

Let us investigate the kinetics of phase relaxation in the 
absence of an external field. For the distribution (18) the 
dependence of the poles of the function L ( p )  ( 10) on the 
parameter y is difficult to represent in explicit form. How- 
ever, when y < l the poles can be found in the form of an 
expansion in powers of y: p ,  =: 1 - Y2 + ... . In this case the 
kinetics of polarization relaxation has a purely exponential 
character with T, = ( (Am2)rC ) - I .  We also can show that 
the critical value of the parameter y is yc, = (n-/2)'12, SO 

that for y > PC, the exponential part of the solution (8)  dis- 
appears, and the kinetics of polarization becomes fully non- 
exponential. As an example of such behavior we will use the 
simple asymptotic form of the function Q(t),  which is valid 
in the case of a strong random process ( y$ 1 ) : 

fu,o ( t )  =e-'/'~ ( )  - +  . . . . ( 19 ) 

Analysis shows that in the subcritical region (y< yc, ) the 
exponential relaxation time decreases from the value T,/ 

s T, for y <  1 to rC as y- yc, as the strength of the random 
process increases. 

The integrated relaxation time for all values of the pa- 
rameter y equals 

Turning on the AC field changes the relaxation function 
in the same way as for the case of a uniform distribution (see 
Subsec. 1 ). A small quantitative difference is observed in the 
region of parameter values y> 1 ,X > y( (Am2) ) 'I2, where the 
coefficient 5 in Eq. ( 16) for T2, is changed to a 2. Another 
difference is observed in the total relaxation time for small 
values of the AC field amplitude (XT, < 1 ) : 

y expI- (e2+1)/2y21 
( d 2 )  'v, ( ~ ~ + l ) ' ~  erfc ( (e2+1) "/2"y) 

- 1 -  ,211 

In Ref. 8, in which the distribution (18) was used, it 
was shown that when fi is the largest parameter 
(B$x,r, - ' )  the relaxation kinetics are exponential with 

the characteristic time 7,. A more detailed analysis shows 
that in this case the relaxation function (8)  is essentially 
nonexponential and is determined by the function Q(t) ,  
which falls off rapidly over short times on the order o f 0  -'. 
Therefore at large times the exponential part of the relaxa- 
tion function takes over, with C,-,yC,x/fi and 
T2 =: ( 1 + yC,x/b)rc. These kinetics are characteristic of a 
homogeneous line with a narrow Lorentz center [with a 
width (2n-T2) -' -- (2n-rC ) - I ]  and broad Gaussian wings. 
In Ref. 8 only the Lorentzian part of the spectrum was taken 
into account, which is caused by processes which mediate 
the flow of the statistical ensemble of atoms out of a state 
with a given shift Am,. The terms of the kinetic equation 
which describe flow into this state (i) from all remaining 
states are excluded, and it is just these terms which give rise 
to the Gaussian line broadening. Therefore the result of Ref. 
8 is valid only for large times. 

3. Laplace distribution: 

K, ( p )  = y(p)[ci~ ( p )  sin Y ( p )  -si Y ( p )  coa Y ( p )  1, 
P 

where c i (q(p)  ) and si(\V(p) ) are the cosine and sine inte- 
g r a l ~ , ' ~  and y = fir,, 2fi = (Aw2). 

For small y the polarization kinetics exhibit many of the 
features investigated previously, qualitatively and in many 
respects quantitatively: there exists a yc, = ~ / 2 ,  for y <  1 the 
exponential relaxation time T2 = ( (Am2)r, ) -I, etc. 

Differences are observed for large y. For example, for 
y$ 1 a different asymptotic form is valid for the relaxation 
function: 

The effect of an AC field on the kinetics is fully analo- 
gous (qualitatively and quantitatively) to that investigated 
in Subsecs. 1 and 2. 

The integrated relaxation time for this distribution has 
the form 

4. Cauchy distribution: 

In the absence of an external field we cen find an exact 
solution to this problem, which turns out to be exponential 
relaxation with a time T2 = for all values of the param- 
eter y. 

Turning on the field complicates the problem. The im- 
age K,(p) acquires a square-root branch point p = + i ~ ,  
thanks to which the term Q(t) in the relaxation function (8)  
becomes different from zero. In the limiting cases of weak 
(xrc < 1) andstrong (XT, $ 1 , ~ )  AC fields, Q ( t )  gives rise to 
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small corrections to (8)  of order (XT, ) 2  and ( p  /x), respec- 
tively; however, in intermediate fields this correction can 
turn out to be substantial. For example, forx-fl (for ~ $ 1 )  
Q ( t )  amounts to 50% of the signal, appearing as an oscillat- 
ing function which decays with time. 

The AC field also changes the exponential relaxation. A 
weak field produces a small correction: 

xrc > 2/?, then the dependence of the time T2, on the pa- 
rameters changes: 

In the case of a strong stepwise process ( y > 1 ) the expo- 
nential relaxation of the v-component is also realized in a 
stronger field (X > y(  (Am2) ) ' I2  with the time T2, given in 
(33). 

For all parameters of the system the integrated relaxa- 
tion time in this model has the form while a strong one considerably slows it down: 

For strong random processes ( y $1 ) we observe a slow- 
ing-down of the exponential relaxation of the u-component 
evenforx-B= T2-'; it is found that the time T2, is length- 
ened by a factor of 2y, becoming equal to 2r,. A considerable 
lengthening of T2, also takes place for stronger fields 
(xrc > ?>. 

The integrated relaxation time reinforces the conclu- 
sions about the kinetics of the u-component: 

6. Te/egraph noise 

In the absence of an AC field the system relaxation pro- 
ceeds according to the same laws (30)-( 32) which were ob- 
tained in the previous case. For the telegraph noise model, 
the parameters which enter into Eqs. (30)-(32) are: 
y,., = ; , A =  l , a n d D =  11 -4y2) .  

In the case of a strong stepwise process and in the region 
where the field is comparable to the local fields 
(x- ((Am2) ) 'I2), the relaxation function has the form 

5. We now investigate the distribution 

which is similar to a Cauchy distribution but which falls off 
more rapidly in its wings. In this case we have 

where we assume that x = ( (Am2) ) ' I 2 .  Hence, the AC field 
under these conditions, while changing the character of the 
relaxation, does not cause much change in its slowing-down. 
In a strong field the essential contribution to the relaxation 
function is given by one exponential; the corresponding 
times Tz,  = r,x2/(Am2) and T,,, = 2T2, are considerably 
longer than the relaxation times in weak fields. 

In this model the integrated relaxation time coincides in 
form with that predicted by perturbation theory: 

In the absence of an AC field the problem has an exact 
solution whose form depends critically on the strength y of 
the random process. For y < y,, = 1 + 2-'I2 the relaxation 
function evolves according to a biexponential law: 

1 
fU,,(t) = --{ (A+ D'") exp[- (A -D" ) t / 2~ , ]  

2 0  

where D = / 1 + 23i2y - 2y21, A = 1 + 2''2y. At the critical 
point ( y  = y,, ) there arises a power-law deviation from the 
exponential: 

7. The distribution 

s in2(a ly )  d a  
dW, ( a )  = - , Y = P G  

ny while in the supercritical region ( y  > y,, ) there is an expo- 
nential decay accompanied by oscillations: 

leads to the following expression for the function (6) :  
D'"t A 
2 t ,  D'" 2% 

As in Secs. 1-3, turning on a strong AC field leads to a 
purely exponential relaxation with a time T,, = .r,x2/ 
(Am2) for any y so long as Xr, > 1,y. The relation 
T2, = 2T2, obtains only for a weak random process ( y  9 1 ) 
and a limited range of field amplitudes ( 1  <XT, <2/y2). If 

Here, in contrast to all the previous cases, in the absence 
of a field not only the magnitude but also the very form of the 
relaxation function changes as time passes; this is reflected in 
the solution: 
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where 6 ( t )  is the Heaviside function, t, = 2nD -', 
n = 0,1,2, ..., and f, ( t )  are the original functions 
F,(p) = [ ( I  + a / b ) b P n  - S , , I ,  a = p  - y/2, 
b = p2 - 2p + y/2. While staying well-defined on the time 
interval At = t, - t, , , the form of the relaxation function 
changes as we go to the next interval At, + , . 

The function &( t )  repeats the behavior of the relaxa- 
tion functions in Subsecs. 5 and 6 with yc, = 4, A = 1 - y, 
and D = 11 - 2yl; however, there are some small changes. 
They include replacement of the exponent A of Eqs. ( 30), 
( 3 2 )  by 1, and replacement of the preexponential factor ycr 
in Eq. (3  1 ) by y,, /2. The subsequent functions f, ( t  - t, ) 
differ from f,(t) by preexponential factors which are poly- 
nomials in t, whose degree increases with increasing n. 

For ~ $ 1 ,  the series (40) is replaced by the function 

which coincides with the original transform K7(p). 
The AC field leads to approximately the same variation 

in the relaxation as predicted by Subsecs. 1-6. In particular, 
a strong field causes the relaxation to become purely expo- 
nential in character, with times T2, = T, (,y/fl) (for 
X T ~  > l,y) and T2, = [4 (xrC ) '12 /y1~c  (for X T ~  > l,?) 
which are longer than in the absence of a field. 

4. DISCUSSION OF RESULTS 

The basic results of the theory developed here, which 
are independent of the strength of the random process, can 
be formulated briefly as follows: 

1. For all distributions except the Cauchy distribution 
there exists a critical value of the strength of the noise 
yCr = ( (Am2)cr ) ' 1 2 ~ ,  such that for y > y,, an exponential 
evolution of the system is impossible. For y& y,, the relaxa- 
tion of the polarization is described by a function which in- 
cludes exponential and nonexponential decay terms. For 
y <  1, in all cases we can neglect the nonexponential contri- 
bution with high accuracy; therefore the Bloch equations 
can be used to describe the kinetics. In the intermediate re- 
gion y- 1 (but y( y,, ) the contribution from nonexponen- 
tial relaxation grows, and can reach 50% at t = 0. It should 
be noted that the Cauchy distribution is the only one for 
which the relaxation is purely exponential for all values of 
the parameter y. 

2. Turning on a weak AC field for y > y,, leads to the 
appearance of long exponential "tails" for long times, al- 
though the polarization during the initial instants of time 
relaxes nonexponentially. Turning on a strong field 
(X > rc - I ,  ( (Am2) )'I2 transforms the kinetics so that the 
behavior of the system becomes exponential for all times. In 
addition, a strong field slows down the relaxation. 

3. For y< 1 all the distributions except for the Cauchy 
and d W7(a) give the same expressions for the exponential 
relaxation times: T2 = ( (Aw2)7, ) - '  for ,y = 0, 
2T2, = T2, = 27, (x2/(Am2)) forxr,  $ 1. The Cauchy dis- 
tribution and d W,(a) have other dependences on the pa- 
rameters 

1/p Cauchy 

~ ' = { z / p  (dW,(a)) for xaO, 

2 (X~e)l/a,/Y Cauchy 
T 2 d = ~ c  

4 ( x ~ c ) ~ " l ~  (dW, (4) 
for  X ~ C >  1. 

The qualitative differences in the distributions appear in the 
supercritical region, where the form of the relaxation func- 
tion depends significantly on the choice of distribution func- 
tion for the random field dVJ(a).  In the large-y limit the 
relaxation function in the absence of a field is found to be the 
Fourier transform of the distribution function for d W(a) .  

4. The value of the AC field amplitude at which a signifi- 
cant lengthening of the relaxation time occurs depends on 
the strength of the random process: for y$ 1 it occurs when 
XT,$XT~ $ 1; for y k 1 it is sufficient to fulfill the less strin- 
gent condition X?2- 1. In the latter case, when ~ $ 1  the 
relaxation time lengthens appreciably (by a factor - y).  In 
the telegraph-noise model the character of the relaxation 
slowing-down does not depend on the strength of the noise. 

5. For the case of a strong random process the relaxa- 
tion time of the u and v polarization components depend in 
different ways on the amplitude of the AC field. Thus, as 
described in the previous subsection, T2, increases when the 
value of ,y is on the order of the average value of the local 
field ( ( A o 2 )  ) ' I2,  while in order to substantially lengthen 
T,, it is necessary to fulfill the more stringent condition 
x > y( (Aw2) ) ' I2.  Such behavior of the relaxation time cor- 
responds to the Redfield scenario, in which the kinetics of 
the spin system changes in a strong resonance field. This 
change in kinetics was predicted on the basis of a hypothesis 
concerning the existence of a spin temperature in a rotating 
coordinate system.20 Hence, we have shown that the change 
in relaxation can be explained within the spirit of Redfield's 
scenario, but starting from fundamentally different consid- 
erations, the basic factors being strong coupling of the dy- 
namic system with a heat bath and the existence of a contin- 
uous band of values of the random variable Am reflecting the 
presence of large numbers of states in the heat bath. 

These conclusions were arrived at based on our investi- 
gation of seven distributions for scatter in the values of the 
resonance frequency Am. These are model distributions; 
each can serve more or less as an approximation to the real 
distribution. 

Let us note that two of these model distributions, and 
one other (which was not discussed here), are given by the 
Fourier transforms of exp ( - A 1 t / " ) where n = 4, 1,2; these 
functions were also used in Refs. 12, 21 for analyzing phase 
relaxation in the absence of a resonance field. The Gaussian 
distribution ( n  = 2)  is the only one for which an analysis 
was given of the effect of a radiation field on the kinetics with 
the goal of describing the contribution to the local field Aw 
from the distant environment of an impurity center. In order 
to describe the contribution to Am from the small number of 
spins in the immediate vicinity of the ion which are ordered 
in the crystal lattice, it may be necessary to use a different 
distribution. 

As a limiting simple case which typifies these short- 
range effects, we can use the situation where a single spin 
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which has only two states is located near the center under 
study. In the first state this spin causes a shift in the reso- 
nance frequency of the center by the value + a, in the sec- 
ond by - a ;  these states are occupied with equal probabili- 
ties (the high-temperature approximation). This case 
corresponds to telegraph noise, i.e., a two-step random func- 
tion a ( t ) .  In this model the Redfield scenario is not realized, 
and the dependence of the relaxation time on the amplitude 
of the AC field is roughly the same as in the case of a weak 
random process in the other models. This is a consequence of 
the statistical poverty of telegraph noise and does not contra- 
dict Redfield's idea, because the latter was formulated for a 
physical system which interacts with a subsystem possessing 
a large number of degrees of freedom. 

It is more realistic to consider a situation where the 
deviation of the frequency Aw of the center under study is 
caused by a small number of spins. Then Aw should take on a 
finite set of discrete values. In particular, when all the spins 
belong to the first coordination sphere and are positioned in 
the same way relative to the center under study, these dis- 
crete values of Aw are equidistant, while the probability of 
achieving a given value of Aw decreases monotonically as Aw 
increases. This is the situation we have modeled with the 
distribution dW,(a), which has a sharp maximum of 
~ ( n  + f )  at a = 0. Analysis of the kinetics shows that the 
Redfield scenario is realized in the present case only because 
of broadening of the spectrum of discrete values of Aw, i.e., 
the participation of a large number of spins. 

5. AN ESTIMATE OF THE STRENGTH OF THE RANDOM 
PROCESS FOR Pr3+ IONS in LaF, 

In conclusion, let us estimate the strength of the ran- 
dom process which corresponds to irreversible phase relaxa- 
tion of Pr" impurity ions in LaF,, and compare it with the 
critical values of the theory. It is well-known that the reso- 
nance transition 3H4-'D2 of the Pr3+ ion has a strong static 
inhomogeneous broadening of 2.5 GHz.' At low tempera- 
tures ( T = 1.6 K)  the phonon relaxation mechanism is "fro- 
zen out" and spectral packets of the static lineshape are 
broadened due to magnetic interactions with fluorine nuclei, 
which cause fluctuations in the packet frequency Aw (2). 
This process can be treated either as division of the static 
packet into a collection of "magnetic" subpackets among 
which the ion migrates, or as a random time variation of the 
frequency of each static packet. The well-known mean- 
square displacement of the resonant frequency of a packet 
( (Am2) ) ' I 2  (Refs. 2,3,22) almost coincides with the mea- 
sured "homogeneous" line broadening (2rT2)- '  = 7.3 
kHz.',23 Therefore, to first order we can ignore the varia- 
tions in the static packets by this mechanism, i.e., neglect the 
migration of the resonant frequency over the static spec- 
trum. Then we can apply the theory we have developed for 
an isolated static packet to estimate the characteristics of the 
random process which causes irreversible phase relaxation 
of Pr3 +. 

Because we have shown that all the distributions (ex- 
cept for the Cauchy and telegraph noise distributions) lead 
to qualitatively the same results, we choose to analyze the 
experimental data with the theory based on the uniform dis- 
tribution. The problem reduces to establishing the relation 
between the process parameters r, and ( (Am2) ) ' I 2  and the 
known values of T2 asx  -+ 0. In Ref. 2, two possible estimates 

were given for the correlation time T, of the reservoir, which 
is made up of the system of I9F nuclear spins. According to 
the first estimate, T, is the spin-spin relaxation time caused 
by magnetic dipole-dipole interactions among the nuclei 
throughout the whole crystal volume. The experimental val- 
ue of the latter equals 16.4 p ~ e c . ~ ~  This estimate gives too 
large a value for the rate T, - ' of the process, which actually 
should be smaller because the large magnetic moment of a 
Pr3+ ion shifts the resonance frequencies of neighboring I9F 
nuclei, and thereby hinders the flip-flop processes by which 
they interact with I9F nuclei throughout the crystal vol- 
 me.^^ Therefore, the spin-spin relaxation time for nuclei 
near a Pr3+ ion may be longer than the one observed in ex- 
periment for bulk nucleiz4 A second estimate for rC was 
made based on direct calculation of the correlation function 
(Aw(2)Aw) using the Monte Carlo method; this function is 
found to decay exponentially with a time T, = 70 p ~ e c . ~  In 
this calculation there were no free parameters and the only 
assumption used was that spin reversals were uncorrelat- 
ed . 25 

In comparing theory and experiment the value T, = 20 
psec given in Ref. 2 was used, which is close to the first 
estimate. This is probably connected with the fact that the 
kinetics were described using the Bloch type of differential 
equations, which are valid when the condition 
T, < T2 = 2 1.7 psec holds. The second method estimates the 
times for precisely those correlations which take part in the 
relaxation process; however, as shown by the authors of Ref. 
2, its use requires a new theory which is not limited by the 
condition (Aw2)~,  * 1. In this paper we have proposed just 
such a theory. 

So as to understand the extent to which this new theory 
is necessary, let us estimate the strength of the random pro- 
cess ST, (where S = ( (Aw2) ) ' / * ) ,  using known values of T2 
and T,, and compare them with the critical value (ST, I,, . 
Perturbation theory gives the following expression for the 
strength of the process: ST, = (7, /T2) 'I2. This expression is 
valid when T, ( T2. For arbitrary ratios of the times T, and 
T2 it is necessary to use a different theoretical estimate which 
is not limited to certain ranges of the strength of the process: 

3"6~,/arctg(3"'6~,) =l+t,iT, (6a, - arbitrary ), 

(T,),,, is the exponential relaxation time which applies to 
the subcritical regime; T, is the general (integrated) relaxa- 
tion time. In the case T, = 70 psec we obtain a value of 
ST, = 3.42 for the strength, which is larger than critical by 
almost a factor of4, implying that the random process which 
causes phase relaxation of Pr3+ is a strong one. This asser- 
tion remains in force even when the correlation time T, coin- 
cides with the relaxation time, because in this case ST,, is 
50% larger than the critical value (ST, ),, = 0.9. 
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