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An analysis is made of the threshold orientational effects in a nematic liquid crystal subjected to a 
laser field when two waves with orthogonal polarizations propagate in a nonlinear medium. The 
pattern of instabilities is revealed for the first time and an analysis is made of the various states of 
such a system with enhancement and suppression of reorientation when two fields should 
compete with one another purely on geometric grounds. An experiment is carried out for this 
case. Analytic solutions are obtained for the first time for oscillatory regimes unstable in time, 
which are observed when a nematic liquid crystal is pumped continuously when circularly 
(elliptically) polarized light enters it. 

1. INTRODUCTION 

Excitation of modulated structures (three-dimensional 
gratings) by laser radiation in an anisotropic medium such 
as a liquid crystal gives rise, because of the self-interaction 
effects, to instabilities of nonlinear wave processes associat- 
ed with the propagation of light (see, for example, Ref. 1 ) . 
These instabilities are governed by the light-induced 
changes in the orientation of the liquid crystal director rep- 
resenting the average orientation of molecules in a sample, 
i.e., the local direction of its optic axis. The parameter which 
then varies is the angle $ by which the director n deviates 
from its initial unperturbed orientation no. It is important to 
note that in the case of nematic liquid crystals such reorien- 
tation has a threshold with respect to the intensity of the 
incident light (which is the result of competition between 
the orienting effect of the optical field and the tendency for 
the elastic forces of the medium to maintain the original ori- 
entation set by rigid boundary conditions). The strong ani- 
sotropy of a nematic liquid crystal (NLC) and the collective 
nature of the response of molecules to an external perturba- 
tion (which is a consequence of the elastic properties of the 
medium) are responsible for the very strong optical nonlin- 
earity of the  molecule^.^ 

The topic currently of the greatest interest is that of 
wave phenomena in a strongly nonlinear optical medium 
under conditions when two waves with different (orthogo- 
nal) polarizations travel inside the medium. The competi- 
tion between these waves and the mutual energy exchange 
give rise to regimes which are unstable in time: undamped 
oscillations of the intensity and polarization of the light 
transmitted by a system developed in the case of continuous 
pumping reaching the entry of the The fundamen- 
tal feature is the light-induced deformation of the structure 
of a liquid crystal which is described by two angles ($and q,) 
in orthogonal planes2 Each of these angles has its own spa- 
tial structure and its own characteristic growth time: the 
periods of the spatial structures which are established are 
different and so are the intensities of the polarization compo- 
nents. In particular, the angle $ may describe an adiabatic 
deformation (with a characteristic scale A - d) ,  whereas q, 
may describe a nonadiabatic deformation [ A  - l / ( k ,  

- k, ) < d l ,  where d is the thickness of the sample and k,, 
are the wave vectors of the extraordinary and ordinary 
waves, respectively. These two angles of reorientation of the 
director determine two types of time-dependent instabilities. 
Firstly, these are oscillations of the characteristic aberration 
pattern of self-focusing which appears in transmitted light 
for a beam localized in space; they are due to oscillations of 
the angle $ representing deviation from its original orienta- 
t i ~ n . ~ " . ~  Secondly, in addition to these oscillations, experi- 
ments on circularly polarized (incident) light have revealed 
also5 oscillations of the polarization which are due to the 
precession of n about its local direction (the azimuthal angle 
q, is varied). 

The exact solution of the problem of the appearance of 
these time-dependent instabilities has not yet been ob- 
tainedS5 Therefore, as pointed out already, the physics of the 
effect is definitely linked to the presence of two waves with 
orthogonal polarizations and the effective exchange of ener- 
gy between them.' If we use the usual language nonlinear 
optics, we can describe the situation as four-wave parametric 
scattering of light: a dynamic grating of the refractive index 
is formed in the investigated medium.' The frequency shift 
between the interacting waves (within the limits of the width 
of the line representing the incident light) is then due to 
dissipation processes. An analysis of the effects of stimulated 
scattering of light in an NLC was recently made8 using this 
approach. 

We provide the first detailed analysis of the problem of 
competition between two waves with orthogonal polariza- 
tions interacting in a nonlinear anisotropic medium (in the 
form of an NLC) and we use the geometric-optics approxi- 
mation. We first consider the simplest case when waves of 
the same polarization, but oriented at an angle 90" relative to 
one another propagate in an anisotropic nonlinear medium 
in such a way that they act on the NLC in opposite directions 
in the purely geometric sense (Sec. 2). In this case we dem- 
onstrate experimentally and theoretically that there are new 
regimes involving amplification and suppression of the net 
reorientation and we reveal unstable states of such a system. 
We also deal with the problem of excitation of instabilities 
inside an NLC when one wave is incident on a sample and 
the interaction of two components of the field inside a non- 
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linear medium is due to the anisotropy of this medium. We 
obtain for the first time an analytic solution of the problem of 
excitation of oscillations in time (both of the aberration pat- 
tern and of the polarization) in the case of threshold reorien- 
tation of an NLC in the field of a circularly (elliptically) 
polarized light (Sec. 3). This solution enables us to explain 
all the iesults of a fundamental experiment reported in Ref. 
5, including the occurrence of hysteresis. 

2. ENHANCEMENT AND SUPPRESSION OF THE 
ORIENTATION OF A NEMATIC LIQUID CRYSTAL IN THE 
FIELD OF TWO WAVES WHEN THE DIRECTIONS OF THEIR 
LINEAR POLARIZATIONS ARE DIFFERENT 

Experiment 

We used the experimer.ta1 setup shown as an inset in 
Fig. 1: two light waves with linear polarizations (El and E, ) 
in the plane of incidence reached a sample obliquely at an 
angle of 2a, relative to one another, but symmetrically rela- 

FIG. 1 .  Nonlinear phase advance Q"' experienced by a probe beam as a 
function of the time t, obtained for I, = 280 W/cm2 and I, = 700 W/cm2 
(a) and I, = 157 W/cmZ and I, = 440 W/cm2 (b), and the dependence 
of the phase advance on the intensity (I,  -k I, ) of the incident light under 
steady-state conditions ( c ) .  The points are the experimental values and 
the curves are theoretical (calculations were carried out only in the range 
of validity ofthe theory: $< 1 ,  Qn' ( 3 6 ~ ) .  Valuesofthe parameters in Eq. 
(6) :  one beam acting: a) A =  -0.01, B=0.03, C =  -0.029, 
D =  -0.035; b) A = -0.0075, Bz0.017,  C =  -0.05, D =  - 0.02; 
two beams acting: a) A = - 0.05, B = - 0.046, C = 0.08, D  = 0.05; b) 
A = - 0.02, B = - 0.006, C =  - 0.01, D  = 0.008; c )  results for two 
cases: 0)  I, /I, = 1.5;) 0)  I, /I, = 2.7. The calculated curve corresponds 
to the latter case (a). 
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tive to no. We used radiation from a cw YAG:Nd3+ laser 
( A  = 1.06 pm) which was split into two beams that were 
focused inside a cell containing a nematic liquid crystal (4-n- 
pentyl-4'-cyanobiphenyl, usually abbreviated to 5CB). The 
ratio of the intensities of these two beams was I, /I, =: 1.5 or 
2.7 (see the caption of Fig. 1) .  The thickness of the NLC 
layer was d z  125pm; its initial orientation was homeotropic 
(rb llz). We determined the nonlinear phase advance @"' 
(represented by aberration rings in a transmitted light) ex- 
perienced by a weak probe beam (provided by an He-Ne 
laser emitting at /Z = 0.633 pm), which appeared because of 
reorientation of the NLC director in the pump (strong) field 
provided by the neodymium laser. 

In this experiment the NLC was subjected first to one 
pump beam ( I ,  ); when a steady-state reorientation pattern 
was obtained, a second beam I,  was directed to the sample. 
When the pattern was established in the field of both beams, 
one of the beams was shut off. The resultant steady-state and 
transient characteristics of W"' obtained under different con- 
ditions are plotted in Fig. 1. Special measurements showed 
that as a result of reorientation the NLC director did not tilt 
out of the plane of incidence of the two waves (E, E, plane), 
when one would also expect enhancement of the reorienta- 
tion. 

Theory and calculations 

1. Initial equations. The problem under discussion is the 
interaction of light waves with a variably anisotropic nonlin- 
ear medium, so that it is convenient to use the approach 
based on the geometric-optics approximation.9 The stan- 
dard calculation procedure is given in Ref. 10. In this case 
the reorientation occurs in one plane, defined by just one 
angle qb by which the director deviates from its original ori- 
entation; the angle in question is assumed to be small, so that 
perturbation theory can be used. 

The equation of motion of the director can in this case 
be reduced to 

a all, all, ' -[--(I+K az az sinz 1) ]  sin eos d z  

Here, E, = Eli - E~ is the optical anisotropy ( E , ,  and E~ are 
the values of the permittivity along and across the director, 
respectively); K,, and K =  (K, ,  - K,, ) / K , ,  are the elastic 
constants of the NLC; y is the viscosity; c is the velocity of 
light; I,, and I,, are the z-components of the Poynting vec- 
tors for each of the waves, which are constants of motion (we 
shall ignore the interference between the waves resulting in 
distortions which are nonadiabatic in z and which disappear 
when this situation is averaged over the thickness); 

gl, .  =tg al,2/eos +( I +%tg aIs2 tg 9 )  ( I  + ~ t g ~ a i . 2 )  "' 
Ell Ell 

tg a, ,  i={el, sin $ eos I$* [el,-sin2 a,+tg2 $(e,-sin2 ao) ] ' " ) I  

(ell eosz $-sina ao) ; 

a, is the angle of incidence in air. The boundary conditions 
of the problem are stringent: $( z  = 0)  = $(z = d )  = 0. In 
the case of qb we shall use the approximation of light-induced 
adiabatic deformations which appear in this geometry for 

Arakelyan et a/. 2064 



each of the light waves: 

~p -z C, sin ( n l r / d )  

and, as is usual, we shall retain only the first term ( I  = 1 ) of 
this expansion, which is energetically favorable: 

$=$,,, sin ( n z l d )  ( 2 )  

where q, is the maximum angle of reorientation at the cen- 
ter of the sample (z = d /2). 

The following relationship can be easily derived for the 
expression that contains the functions g,,, ($) in Eq. (1) :  
expanding as a series and retaining terms up to - $', we find 
that 

where 

2. Qualiratiue description. Some qualitative results can 
be obtained even from Eq. (3 ) .  For if I,, =I,,, only the 
terms proportional to $ and $' remain in Eq. (3).  Then, Eq. 
( 1 ) reduces to the usual case of the threshold light-induced 
reorientation of an NLC caused by one normally incident 
linearly polarized wave of intensity I, 
= ( I , ,  +12,)(2-h)h"2(c~mparewithRef. 11).Weare 

considering here only determination of the threshold inten- 
sity. A specific selection of the orientation of the NLC on its 
substrate can ensure that the threshold-free reorientation 
condition 2 - h < 0 is satisfied. The value of the threshold is 
given by 

( I , ,  + I , ,  I t h  = K ~ ~ E ~ , C ~ ' ~ ~ ~ / E ~ E ~ '  ( 2 - h )  dZ. (4) 

Therefore, reorientation occurs if 2 - h > 0, which can be 
rewritten in the form sin2a, < E, ,  /2. In the case of real NLCs, 
we  have^,^ - 3, so that light-induced reorientation is possible 
for any value of a,. It is important to note that in this case 
both fields tend to increase $. We shall analyze a different 
case for which I,, #I2, . The most interesting effect is linked 
to the relative importance of the first term (of zeroth order) 
in Eq. ( 3 ) ,  which contains the difference I,, - I,,. At  low 
light intensities it plays the dominant role (zeroth approxi- 
mation) when the two fields are oppositely directed: the 
reorientation is weakened compared with the case of one 
field. At high intensities (high values of 4) the two fields 
begin to enhance together the reorientation [the terms linear 
in $ should then be included in Eq. ( 3 )  1. This enhancement 
of the reorientation effect occurs for angles 

When the intensity is increased still further, the mutual sup- 
pression and enhancement of the reorientation effect begins 
to be influenced also by those terms in Eq. (3)  which are 
proportional to $2 and $3, respectively. This provides a 
qualitative explanation ofthe experimental results plotted in 
Fig. 1. 

The feasibility of mutual enhancement of the reorienta- 
tion in crossed fields (at first sight, from the purely geomet- 
ric point of view we would expect suppression) is due to the 
fact that when an anisotropic system is considered from the 
microscopic point of view and an external field induces a 
polarization in this system, only the projection of the exter- 
nal field along the direction of the strongest polarization (4)  

is important and this projection acts as an external force 
independent of the mutual orientations of E and n (compare 
with Ref. 12) ." However, in the case of propagating waves 
there is one important feature which distinguishes this situa- 
tion from the case of static fields: when two waves are added, 
we must include also the phase coefficients proportional to 
exp(ik.r); these coefficients give rise to spatially small 
(compared with d )  interference terms which disappear as a 
result of averaging and the net effect is governed only by the 
term proportional to ( \ E l  1 '  + IE212), i.e., by the total inten- 
sity. 

3. General analysis. We now carry out a more rigorous 
analysis of the possible reorientation regimes in the case un- 
der discussion, in a fairly general form. 

It is convenient to write down Eqs. ( 1 ) and ( 2 )  in the 
form 

where the coefficients of the various powers of $,, are 

and the parameters are 6 = E , / E , ,  , and 
a = E,E~ '~ /K , ,E~ ,  ch ' I 2 .  

Let us assume that the initial distribution =qin 
determined by which field is first applied and by the material 
parameters of the medium) corresponds to the maximum 
angle of reorientation of n in the middle of a sample: at : = 0 
the second field is applied and the two fields interact with an 
NLC. Substituting a variable x = $, - qin, we can trans- 
form Eq. ( 5 )  to 

where F, ($,, ) can be written in the form 

so that F, is now given by the right-side of Eq. (5 ) .  For x 4 1, 
the first term on the right-hand side of Eq. ( 7 )  can be ig- 
nored, for the sake of simplicity, and then integration yields 

Therefore, if F,($,, ) > 0, then x = $, - $,,, increases with 
time (i.e., we can speak of an increase in $, ), whereas for 
F, ($,, ) < 0 the angle $,, decreases. The actual regime is 
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FIG. 2. Dependence F2 (q,, ) for the cases of one 4, ( a  corresponds to 
A < 0; c corresponds to A > 0 )  and three $,,, , (b  corresponds to A < 0 )  
steady-state real roots of Eq. ( 5 ) .  The explanation is given in text. 

determined by the values of the coefficients in front of the 
powers of $,, . 

We shall begin with the case A < 0. Then the depend- 
ence F, ($,, ) has the form shown in Fig. 2 for two cases: a)  
one real root $, ; b)  three real roots $,,,, ; in the case of two 
real roots we effectively have the case shown in Fig. 2a and 
$, r O  corresponds to an unstable state. It is easy to analyze 
the stability of these solutions, which correspond to the 
steady-state solutions of Eq. (5 ) .  

In fact, as in the Fl ($,, ) > 0 case, we observe an in- 
crease in +, [see Eq. (8 )  ], so that in the case shown in Fig. 
2a subject to the condition $,, < +, we can expect an increase 
in $,, which tends to the value $,; for $,, > $, , we have 
F,(+,, ) < 0 and on reduction we reach the limit $, +$, . 
Therefore, this case is relatively simple: as a function of time 
the director of an NLC always rotates toward the direction 
set by the angle $, ; depending on $,, , the application of the 
second field can enhance or suppress the reorientation. 

The case shown in Fig. 2b is more interesting. The exis- 
tence of three real roots $,,,,, is possible only if the total 
intensity I,, + I,, exceeds a certain threshold value given by 
Eq. (4).  The solutions $, and $, represent stable states, 
whereas $, represents an unstable state. It is easy to show 
that if $,, > $,, the angle $,, rises approaching a steady- 
state value $, ; for $,,, < $, , the value of $,, decreases and we 
then have $, - $, . 

It follows that, irrespective of which of the intensities I, 
or I, is higher, the reorientation angle $,, can both increase 
or decrease. Although the actual existence of three states is 
typica! of the usual geometry of the threshold reorientation 
of an NLC in an external field (Frkedericksz transition in a 
static or optical field-see Ref. 2) ," in the case under discus- 
sign there is an important difference. In fact, below the 
threshold value of the field the usual Freedericksz transition 
always gives rise to a second state which, in spite of the pres- 
ence of an external field, is stable (4," ~ 0 ) ;  however, in the 
present case of the threshold-free reorientation in the pres- 
ence of the second field when $,, #O, we find that even if we 
ignore the dependence of $, on I,,,, for I,, + I,, <I,, , the 
value of +,, may not approach $, . Moreover, for I,, <I , ,  
(i.e., for D<O), then in the case of low light intensities 
(C < O)/steady-state value is $,, = - D /C < 0; the value of 
u5, is always positive ($, is a real number). It should be 
noted that the transition to one of the stable states of the 

FIG. 3. Graphical solution of Eq. (9) .  The explanation is given in text. 

system may be responsible for optical bistability in those 
cases when there is hysteresis (see Ref. 13). 

We shall consider briefly the case A >O. The regime 
with one solution ($,) corresponds to an unstable state 
shown in Fig. 2c; for three solutions we have one stable state 
($, ) and two unstable states ($,,, ); this should be com- 
pared with Fig. 2a. The first regime is particularly interest- 
ing: the absence of a stable steady-state solution which the 
system would tend to reach finally means essentially that 
time-dependent instabilities can appear; the answer as to 
what happens then can be found by ari analysis of the prob- 
lem in the next approximation. 

4. Graphical solution. The solution of the problem can 
also be found directly by integrating Eq. ( 5 ) .  For example, 
in the case of three real roots and A < 0, we obtain 

Here a, fi, and y are certain positive constants which are 
solely combinations of the quantities $,,,, . The solution of 
Eq. (9)  with $, can be obtained conveniently by a graphical 
method. Representing the left-hand side of Eq. (9)  by y ,  ,we 
obtain the dependence shown by a continuous curve in Fig. 
3; the right-side of Eq. (9 )  is represented by the straight line 
y, parallel to the $, axis (dashed in Fig. 3). The solution is 
given by the points of intersection of y ,  and y, . 

In the case when A < 0, an increase in t ,  beginning from 
t = 0, causes a reduction in y, and in the limit t -  oo we have 
two stable steady-state solutions $,,, . Depending on the val- 
ue of $,,, (to the left or right of the vertical line y = $, ), the 
final state of the system is governed by $, or $, , respectively, 
i.e., the overall reorientation of the investigated NLC de- 
creases or increases ($, < $, < $, ). The change in the ori- 
entation of the director toward the direction given by $, is 
now much faster. 

For A > 0 (corresponding to an increase in y, with time 
t ) ,  in principle we can have a jump between these two states 
($, < $, and $, > $, ); its realization requires, firstly, that 
the solution be finite at y = $,: the curves to the left and 
right of they = $, line should join (we now have to include 
the higher terms in the expansion $, ). Secondly, the rates of 
switching from left to right and the rates of transition be- 
tween different states on the same branch should be similar. 
The existence of such a jump in the case of transient orienta- 
tion gives rise to oscillations in time and to instabilities. 

In our analysis we shall be interested in real steady-state 
solutions (we obtained by numerical calculations of the gen- 
eral expressions without expanding in the small parameter 
$). The absence of these solutions is a clear sign that time- 
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dependent instabilities appear in the system. However, the 
process of finding transient solutions is fairly complicated 
even numerically, and this has not yet been done. 

5. Estimates and calculations. We shall now compare 
the theory and experiment. Using the parameters of our 
NLC crystal (5CB), for which K,, - 4 . 4 ~  lo-' 
dyn,s,, z 3.02 and E, -2.3 1 (Ref. 2) ,  and assuming that 
d = 125 pm, we find from Eq. (4)  that (I ,, + I,, ),, ~ 3 2 0  
W/cm2 (after allowance for the Fresnel reflection, this value 
becomes =: 360 W/cm2). Therefore, the total intensity in our 
experiments did indeed exceed the threshold. Enhancement 
of the reorientation in the field of two beams (Fig. l a )  corre- 
sponded to ( $ 1  > 0.12. 

Under our experimental conditions we were dealing 
with the case A < 0 (see the caption of Fig. 1). Then, the 
geometry with one beam corresponds to one real root of Eq. 
(5)  ($:I)  in Fig. 1 and $ ' , I ) '  in Fig. lb ) ,  whereas the case of 
two beams corresponds to three such roots $;;:, (strong 
fields, Fig. l a )  or one root $1'' (weak fields, Fig. lb) .  The 
steady-state values are determined by the stable solution 
@,,, . The numerical values of these solutions are as follows: 
I):" = - 2.4; I)',"' = - 0.35; $i2' = 1.17; $4,' = - 0.05; 
$1,) = - 1.54; $ ( 1 2 ) '  = 1.00. 

The calculated curves corresponding to the light inten- 
sities used in our experiment are represented by continuous 
curves in Fig. 1. The agreement between the theory and ex- 
periment is good in the range of validity of the theory 
($  < 1) .  For @ 2 1 (which corresponds to @"I 2 36.rr), we 
can only speak of qualitative agreement (a  certain role may 
be played here also by the finite transverse dimensions of the 
laser beam, by the influence of thermal effects, by the differ- 
ence between the material parameters of our NLC sample 
and the parameters given in the published literature). 

It should also be pointed out that the threshold nature 
of the reorientational process is manifested more strongly 
(steeper dependence) for similar values of I,,, (Fig. l c ) ,  as 
is clear from the above discussion. 

3. TIME-DEPENDENT INSTABILITIES IN EXCITATION OF 
THRESHOLD REORIENTATION OF A NEMATIC LIQUID 
CRYSTAL IN THE FIELD OF A CIRCULARLY (ELLIPTICALLY) 
POLARIZED WAVE 

1. Basic equations. We shall now analyze theoretically 
the process by which oscillations of the polarization as a 
function of time and of the aberration pattern of self-focus- 
ing of light-induced NLC reorientation are excited (we shall 
assume that a circularly or elliptically polarized wave is inci- 
dent normally on an NLC with the homeotropic orienta- 
tion). Earlier we discussed only the oscillations of the polar- 
ization in the first case5; the theory of oscillations of the 
aberration pattern for such polarizations of the incident 
light has not been considered at all. 

The calculation procedure is again based on an ap- 
proach developed in Ref. 10. We shall not go into details, but 
write down directly the principal equations which reduce, 
firstly, to transport equations relating the orthogonal com- 
ponents of a light field inside an NLC and, secondly, to the 
equations of motion of the director in an optical field. In the 
former case they are 

Here, 

and A, = A  are the amplitudes of the waves with the ex- 
traordinary (e)  and ordinary (0) polarizations inside a me- 
dium [if E is the amplitude of the incident field along a se- 
lected direction, then E, = (B; 0; B ( E ~ / E , ,  ) X tan $), and 
E" = (0; A; 0)  1; 

represents a change in the difference between the eikonals of 
the waves with the orthogonal polarizations inside the medi- 
um. 

In the second case, when we are dealing with optical 
excitation of nonadiabatic (in the transverse direction of a 
sample) distortions of the NLC structure giving rise to a 
three-dimensional (along z )  gratings, we obtain 

(13) 

As before, the angle $ describes the deviation of n from 
the initial homogeneous orientation of the sample (n, (12) 

and this angle is associated with oscillations of the aberra- 
tion pattern. The angle p describes azimuthal rotation of n in 
the xylz  plane, which gives rise to oscillations of the polar- 
ization"; K is the elastic constant (for the sake of simplicity 
we shall ignore the anisotropy of this constant and assume 
that K,  , - K,, r K )  . In the case under discussion when the 
incident light is circularly polarized, E' = E( 1 + i ) ,  we have 
the following boundary condition (at z = 0 )  : 

The solution of Eqs. ( 10) and ( 11 ) was found iterative- 
ly in the approximation d p  /dz< l/d. We shall assume that 
B, =B, ,  + B , ,  andA, =A,,  +A, , ,whereB, ,  andA,, are 
small quantities of the same order as dp /dz; then, using Eq. 
(14), we obtain 

Next, assuming that $< 1 and using Eq. ( 15 ) , we find the 
solution of Eqs. ( 10) and ( 11 ) : 

It follows from Eq. (16) that energy is transferred directly 
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between the orthogonal components of light inside the non- 
linear medium; this transfer is a consequence of the condi- 
tion dq, /dz#O. This condition is ignored in Ref. 5, and the 
theory given there cannot account for oscillations of the 
aberration pattern [see Eq. (24) below]. 

Using Eq. ( 16), we can rewrite Eqs. ( 12) and ( 13) to 
first order in $ using the following relationships: 

2. Oscillations ofthepolarization. We shall first consider 
the second equation of the system ( 17). In this equation we 
shall ignore the first term (because it is a small quantity in 
the next order), which gives 

where the time to corresponds to $ = 0. 
In the approximation I/ = const, i.e., also Ag = const, 

averaging over z yields the time dependence of p :  

q( t )  -q(t=0) ={LJ E Izsin (:Ag) dz}  (t-to), 
d 0 8ne117 

where 

The relationship ( 19) can be written in the form 

Therefore, we can expect the director to process in time in 
the azimuthal plane with an angular rotation frequency 

This gives rise to rotation of the plane of the elliptic polariza- 
tion of the transmitted light. 

When an allowance is made for the time dependence of 
$, $ = $(t),  we find that Eq. (18) yields [on condition that 
ap(z,t  = ovaz = 01 

which we shall use later. It corresponds to the condition of 
continuity of p at the boundaries of our sample. In fact, the 
boundary conditions are specified only for $: 
$(z = 0)  = $(z = d )  = 0; they leave free the conditions for 
the director in the azimuthal plane, so that we shall assume 
that 

3. Oscillations of the aberration pattern. We now turn to 
the first equation in the system ( 17). We solve it by means of 
perturbation theory using a small parameter dq, /dz. In the 
zeroth approximation (dp  /dz = 0 )  it is readily [solved sub- 
ject to the condition given by Eq. (2)  ]. We then obtain 

where const = $, is governed by the thermal rms fluctuations 
of the reorientation angle. The condition T>O governs the 
threshold (I,, ) of the light-induced reorientation process 
considered in this approximation. 

Substituting the solution of Eq. (23) into the first equa- 
tion in the system ( 17), we can readily obtain the solution in 
the next approximation: 

where 
t d 

Here we have used Eq. (22). 
We shall now consider in greater detail the solution 

(24). Various regimes appear depending on the values of the 
parameters r, a ,  ando. Let us assume that at the initial time 
t = to, when $ = A-0, we have r > 0 ,  i.e., I >  I,, . In this 
case we find a = P =  0. As t is increased ( t  > to  ), the param- 
eters a and p begin to increase and in the case of a the pro- 
cess is faster (the time integral in the square brackets occurs 
in the second power in the expression for a ,  whereas in the 
expression for p it is in the first power). We can therefore 
assume that p = 0 and then Eq. (24) readily shows that 
there is always time t, when a becomes equal to r 
[ a  = r ( t  - to) at t = t, ] and for t > t ,  , the angle 11, begins 
to decrease to its fluctuation value 11, -0 (or some other 
value). The process is then repeated. 

This gives rise to oscillations of the reorientation angle 
$ with time, i.e., oscillations of the aberration pattern. It is 
important to stress that these oscillations are related to the 
condition ap /dz#O, i.e., the rotation of the polarization of 
the light across the thickness of a sample is nonuniform. 
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4. Hysteresis: discussion. This solution also gives rise to 
hysteresis of the dependence $, ( I ) .  In fact, f o r l>  I,, , when 
the reorientation is excited in an NLC (1C?, >O), we now 
begin to reduce I. When r < 0 we find that a approaches 
zero faster than does fl. We can therefore assume that B > a 
applies in this range; then, as long as I'(t - to) + P>O, the 
angle $, does not tend to zero and the system is excited. The 
system returns to its initial state ($, -- +b0-O) at a different 
threshold I',, <I,,, i.e., hysteresis appears. It should be 
stressed that in this case (l? < 0) the reorientation is weak 
and the aberration rings are no longer observed, so that we 
can observe experimentally only the oscillations of the polar- 
ization of light. 

Our analysis therefore accounts for all the experimental 
results reported in Ref. 5 (oscillations of the polarization 
and of the aberration pattern, the appearance of hysteresis). 

We shall now estimate the characteristic frequency R of 
the oscillations we have found for the experimental condi- 
tions of Ref. 5. In the case of the nematic liquid crystal 5CB 
used in Ref. 5 ( d  = 65pm, A = 0.5 pm, which gives I,, z 2.1 
kW/cm2), we have 0 = 0.0034/& Hz. This value of 0 sat- 
isfies the results of Ref. 5 (2n-/flz40 s )  when $, ~ 0 . 1 4 .  
This value of $, corresponds approximately to the number 
of the aberration rings, which is of the order of or even less 
than one, in agreement with the experimental observations 
showing that oscillations of the polarization are observed 
only near the threshold when the nonlinear phase advance is 
cPn' <2n- (and the aberration rings are no longer visible). 
This does not violate the condition of validity of our theory 
and, in particular, we find from Eq. (22) that the inequality 
(ap /az)d-0.014 1 is indeed satisfied and our approxima- 
tion based on an expansion in terms of this small parameter 
is correct. When the excess above the threshold is large, so 
that the aberration rings are observed, the pulsations of these 
rings become dominant (and oscillations of the polarization 
are then difficult to observe experimentally against this 
background). 

We shall conclude by noting that a similar analysis can 
be carried out also in the case of elliptic polarization of the 
incident light ( E  = E ,  + iE,,E, #E,). Then, instead of the 
relationships given by Eq. ( 14), we have to write down B, 
= E, and A,  = iE,. Since inside an NLC the propagating 
light has the elliptic polarization in either case, all the results 
should remain qualitatively valid. Oscillations in the case of 
elliptic polarization of the incident light are more pro- 
nounced (they become undamped) when the values of E ,  
and E, are close, which is in agreement with the experimen- 
tal results6 

4. CONCLUSIONS 

These results demonstrate that the main reason for the 
appearance of time-dependent instabilities is a nonlinear in- 
teraction which occurs inside a medium between waves with 
different (orthogonal) polarizations. We are in fact dealing 
with the nonlinear dynamics of a system with a small num- 
ber of degrees of freedom (these degrees of freedom are the 
two components of the polarization of light) and a transition 
of the system to a chaotic state. The classical problem for 
which processes of this kind have been thoroughly investi- 
gated is that of the dynamics of a nonlinear (anharmonic) 
oscillator. The threshold orientational effects in liquid crys- 

tals make it possible to represent the equations in the form of 
spatial or temporal analogs of the equation for an anhar- 
monic oscillator, although even then there are some difficul- 
ties.' 

When two orthogonal components of the polarization 
of light propagate inside an NLC, the situation is analogous 
to that of oscillations of two coupled oscillators6; the cou- 
pling between the polarization components is due to the non- 
linearity of the medium. Two aspects are important. Firstly, 
the periodic exchange of energy between the components 
(dependent on the strength of the coupling) is of a competi- 
tive nature, i.e., we can say that these components make op- 
vosite contributions to the nonlinearity of the medium. Sec- 
ondly, a svstem of this kind can be reduced to two oscillators - .  - 
with different natural oscillation frequencies (spatial per- 
iods of modulated structures); this gives rise to different re- 
laxation times of the nonlinear response for the two compo- 
nents of the field. Therefore, the conditions are satisfied for 
the appearance of regenerative pulsations in the system. l 4  In 
a system with two coupled oscillators we can of course ex- 
pect stochastic regimes; in optics this leads to polarization 
chaos.15 

A remarkable feature of liquid crystals is that the time 
T, which characterizes the feedback effects is related to a 
nonlocal response of the medium to an external field and is 
governed by relaxation times (we are speaking here of the 
internal feedback in the absence of mirrors-see Ref. 1 ) . The 
response time can be fairly long (it can vary from s to 
several seconds), so that in purely optical systems we have 
conditions favoring the appearance of Ikeda instabilities for 
which T~ must be greater than the relaxation time) discussed 
in Ref. 16.4' Experimental demonstration of these instabili- 
ties is a matter for the near future. 

"For example, in the case of magnetic systems subjected to two mutually 
orthogonal fields, the magnetic field experienced by the anisotropic mag- 
netic center is directed not in the direction of the magnetic fields but in 
the direction of the maximum polarizability of the center which experi- 
ences the fields as if they were mutually parallel. 

"The initial state (g,,, 3 0 )  is in this case governed by the random thermal 
fluctuations of the director; there are three possible states of the system: 
+ $," $0. 

"They are governed essentially by the well-known effects of the appear- 
ance of a rotational momentum in a body illuminated with elliptically 
polarized light (Sadovskii effect), which leads to precession. " 

"In thecaseof systems with resonators, T, is the round-trip time (the time 
taken to travel there and back across the resonator), which is usually less 
than 10-'s. 
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