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The time evolution of quasistationary atomic levels is derived taking into consideration the 
quantum-electrodynamic interaction. The method of single-time Green's functions and 
associated quasipotential equations is used. Renormalization is possible over finite times, on the 
order of the lifetime of a quasistationary level. Expressions for the probabilities for one- and two- 
photon transitions at a specified time tare derived with radiative corrections in the nondegenerate 
case. In the limit t + co the spectral line has a purely Breit-Wigner shape. In the degenerate case, 
one-photon transitions are analyzed. The lineshape is found to depend on the method by which 
the initial state is specified: It is a Breit-Wigner lineshape if quasistationary levels are formed 
statistically, while it contains interference terms if close-lying quasistationary levels are produced 
coherently through the quantum-mechanical interaction. 

1. INTRODUCTION 

Since the development of covariant perturbation theory 
it has been known that the ultraviolet infinities which arise in 
relativistic quantum field theory can be eliminated through 
renormalization of the S matrix and the Green's functions, 
but not in quantities characterizing the time evolution of 
processes, e.g., the evolution operator exp [ - iH(t, - t, ) 1, 
where H is a Hamiltonian. Additional surface infinities ap- 
pear for this operator in perturbation theory because the in- 
teraction is turned on at the time t, and off at t, (Ref. 1).  
Because of this circumstance, a description of the time evo- 
lution has been abandoned in quantum field theory, and S 
matrices and Green's functions have been used exclusively. 
This is not always the best approach for studying unstable 
states. In principle, of course, it is clear that even processes 
involving unstable particles can be dealt with by the S-ma- 
trix approach, provided that the initial stage of the forma- 
tion of the unstable entities is taken into account, and pro- 
cesses which go from stable particles to stable particles are 
studied. A description of that sort, however, would become 
unjustifiably complicated and would not include the time 
evolution. Accordingly, practical calculations usually either 
totally ignore the instability of the particles (in the course of 
their interactions), or in cases in which the instability is im- 
portant (in a description of a decay probability), are restrict- 
ed to lowest-order perturbation theory and analogies with 
quantum-mechanical problems. As the calculations become 
more accurate, and radiative corrections are taken into ac- 
count, it becomes necessary to clearly distinguish the insta- 
bility effects and to correctly describe the time evolution of 
an unstable state with the help of higher-order perturbation 
theories. 

Higher-order corrections to the decay probability and 
to the spectral lineshape have been under study for a long 
time now because of practical problems in atomic physics. 
Researchers working in this field use the apparatus of a fi- 
nite-time evolution operator or an adiabatic theory, ignoring 
the ultraviolet infinities. In that approach it becomes possi- 
ble to derive the Lamb shift of the center of a spectral line 
and its Breit-Wigner shape through a summation of dia- 

g r a m ~ . ~  Estimates show, however, that surface terms arise 
because of the multiplicative renormalization of the wave 
function in the diagrams considered in Ref. 2 and remain 
infinite even after renormalization of the mass and charge of 
the electron (see the Appendix). In lowest-order perturba- 
tion theory, in the resonant approximation used in Ref. 2, 
these infinities are unimportant, but in higher orders they 
cannot be avoided. 

In the present paper we develop an approach for study- 
ing unstable states in quantum electrodynamics which starts 
from the understanding of an unstable particle as a pole of 
the S matrix on a nonphysical sheet of the complex energy. 
The approach is essentially a translation of this concept into 
a time-evolution language. We systematically derive all the 
characteristics of an unstable state-its lifetime, mass, mix- 
ing ratios, and probabilities for decay by various mecha- 
nisms-in terms of renormalized Feynman diagrams. Si- 
multaneous Green's functions in which all the initial 
particles and all the final particles are considered at the same 
times turn out in a natural way to be a key entity which is 
convenient for describing unstable particles. Green's func- 
tions of this sort have been used for a long time in the quasi- 
potential method.394 In the approach which we are proposing 
here the incorporation of higher-order corrections to the 
transition amplitudes, in particular, incorporating the Lamb 
shift and the mixing of unstable levels, turns out to be com- 
pletely trivial, as we will see, in contrast with, say, the adia- 
batic approach, where complicated summations of series of 
diagrams are required in order to accomplish the same pur- 
pose.2 

2. TIME EVOLUTION OF A QUASISTATIONARY STATE IN 
QUANTUM ELECTRODYNAMICS 

Let us consider the quantum electodynamics (QED) of 
an atom, taking the customary approach of replacing the 
nucleus by an external Coulomb potential. For simplicity we 
first consider atoms having a single electron outside a filled 
shell; the latter corresponds to the vacuum state. We denote 
by E,  the unperturbed electronic levels, and by p, the wave 
functions. We are interested in the behavior of level n when 

2039 Sov. Phys. JETP 67 (lo), October 1988 0038-5646 1/88/102039-08$04.00 @ 1989 American Institute of Physics 2039 



the complete QED interaction is taken into account; this 
interaction is known to render all levels except the ground 
state unstable. 

The formal description of the dynamics of unstable 
states in quantum theory is well known. The unstable state 
(level n )  is described at the initial time by a wave function 
@, , while the decay products are described by wave func- 
tions a,. The amplitude for nondecay by the time t is de- 
scribed to within a phase factor by the expression 
A,, ( 1 )  = (a, le - iH' I@, ), while the amplitude for decay by 
mechanism a is described by the expression A,, ( t )  
= (Qa le- I@,, ). The entire problem is one of choosing 

the wave functions @, and @, . In nonrelativistic quantum 
mechanics, @, and @, are usually taken to be eigenstates of 
some unperturbed Hamiltonian H,. In relativistic quantum 
field theory, it is not possible to find a suitable H,. 

We will accordingly attempt to choose wave functions 
@, and @, without resorting to any unperturbed Hamilto- 
nian, working exclusively from the physical interpretation of 
these functions and the renormalizability condition. The lat- 
ter requirement dictates the choice of wave functions essen- 
tially unambiguously. We introduce Heisenberg operators 
which create (bare) electrons, a,+ (x,), and photons, 
c+(k,x,), at the time x,. For example, 

an+ (I.) = I d3x $+ ( x )  (p,, (I) e c i e n % ,  (1)  

where the operator $(x) represents the electron-positron 
field, and c+ (k,x,) are determined in a corresponding way 
in terms of the electromagnetic field A (x) .  We construct the 
states @, and @, in the form 

where Yo is the physical vacuum. We have specified only the 
simplest type of states a: an electron in state m and a photon 
with a momentum k. More-complex states can be found by 
using several operators cC and, possibly, operators of elec- 
tron-positron (or hole) pairs. All of the Heisenberg opera- 
tors are taken at the same time and are applied to the phys- 
ical vacuum. The latter circumstance is responsible for the 
renormalizability of the theory. Substituting ( 1 ) and (2)  
into the definition of the amplitudes for nondecay and decay 
by mechanism a, we find 

etc., for more-complex states @, . We see that the amplitudes 
are expressed in terms of Green's functions in which the time 
of the initial operator, $+, is zero, while the times of all the 
final operators are identical, equal to t. These are simulta- 
neous Green's functions: They depend on only one time, t ,  
the final-state time, and their Fourier t transform depends on 
only the total energy E. It is not difficult to rewrite (3)  in 
terms of simultaneous Green's functions in the energy repre- 
sentation, Go, (e)  ( a  = n or a ) :  

A,,. ( t )  = 5 (dEi2ni )  e-"' G.. ( E )  . (4)  

The amplitude ( 3 )  or (4)  has the advantage that the 
renormalization procedure is simple: it reduces to the elimi- 
nation of the vacuum diagrams and a further multiplication 
by the required number of factors Z - ' I 2  for the electrons 
and photons. Now let us look at the disadvantages of these 
amplitudes. An explicit and formal disadvantage of the sys- 
tem @, , @, is that it is not orthonormal. It might seem a 
straightforward matter to correct this situation through 
orthogonalization, but this procedure does not work. The 
quantities (a, /Fb ) = A,, (0) remain infinite even after re- 
normalization since the integral of the renormalized G,, 
over E in (4)  diverges at t = 0 for large values of E. The 
reason for this result and a physical interpretation of it can 
be understood better by considering the spectral characteris- 
tics of the state @, , which are determined in accordance 
with Bun = (Y, /@, ), where \Y, are eigenstates of Hamilto- 
nian H (among the one-electron states, only one-the 
ground state-appears in them). The amplitudes B are 
found from expressions similar to (3)  in which all of the 
final-particle times become infinite in a manner independent 
of each other. These are covariant Green's functions that are 
truncated on the side of the final particles which lie on the 
mass shell. On the initial-particle side we are left with an 
ordinary tail, which corresponds to the one-electron Green's 
function G,, for the total energy of the final state, Ea . For 
the simplest spectral function Ban with a single photon, the 
entire dependence on Ea is specifically in this Green's func- 
tion, so the distribution in the energy of state @, , described 
by [Ban 1 2 ,  is a slowly decreasing function cc l/Ea '. Renor- 
malization makes this distribution finite, but its integral over 
the photon momentum, with allowance for the phase vol- 
ume, remains divergent. 

The slowly decreasing tail on the energy distribution is 
a result of an unsuccessful choice of the initial state @, and is 
not pertinent to the observable physical picture. This point 
can be seen best in the behavior of the nondecay amplitude 
A,,,,, . We write 

a,, (t) = 1 Ban 1 ' e - " n f  = j d 6  pn ( E )  ecZE1.  

It is clear from a comparison with (4) that we have p, 
= Im G,, for E > Em,, , where Em,, is the lowest energy of 

an intermediate state. The contribution top, is the sum of a 
possible pole corresponding to the ground state, E = En, 
and a cut from the intermediate states \Y, of the continuum. 
The pole contribution is of no interest. It is a consequence of 
the nonorthogonality of @, and Y,,; it must be removed 
through orthogonalization. A rotation of the contour makes 
it possible to break up the contribution from the cut into a 
contribution from poles on a second sheet, at the points E, 
= Wp - i rP/2,  which correspond to the previous stable 

unperturbed levels, and one from cuts which run parallel to 
the negative imaginary axis away from the branch points. 
Some of these branch points coincide with these poles for the 
case of zero photon mass, and some stem from the boundar- 
ies of the continuum of the electrons and pairs (the points 
E = m, 2m + En,,,3m etc.; Fig. 1). The discontinuities in 
G,, at the cuts which are associated with the complex poles 
at the points Ep fall off rapidly (as 1/E 3 ,  in the limit E-  a. 
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FIG. 1 .  Integration contour in the complex energy plane. 

A slow decrease in p, (E )  is observed on cuts which run 
away from the boundaries of the electron continuum. One 
can verify, however, that in a description of the dynamics of 
unstable states the entire contribution from the cuts is de- 
void of physical meaning, as in standard decay theory in the 
nonrelativistic t h e ~ r y . ~  This contribution takes the form 

where p, is a smooth function which contains the quantity 
Eo-En as a dimensional parameter; i.e., we have 
p, (E)  = E - 'f(E /E,). Clearly, thecontributionis adimen- 
sionless function of E,t, which varies at times t- l/Eo and 
approaches a power-law asymptotically for t- l/Eo. The 
specific asymptotic form is determined by the behavior of 
pn  (E)  at E = E,; for intermediate states with a single pho- 
ton and a single electron, it is determined by the behavior of 
this function E,:p, - E - E,. The contribution from the cut 
at t)  l/Eo is thus 1/(E0t)' in order of magnitude. For a 
large number of particles in the intermediate state the degree 
of the denominator is larger. If the imaginary part of the 
poles on the second sheet is r (E ,  in order of magnitude, 
there exists a region of intermediate times t- 1/T -4 l/Eo in 
which the contribution from the cuts is negligibly small in 
comparison with that from complex poles. The latter is 
exp( - r t )  in order of magnitude, while the contribution 
from the cuts in this region is found to be of order (T/E,) '. 
At times t- l / r  the contribution from the cuts can thus be 
ignored. If the condition y -4 E, does not hold, the contribu- 
tion from the cuts will be comparable to that from the poles, 
and the behavior of the nonstationary state will depend 
strongly on the contribution from the cuts, i.e., onp, . As we 
have seen, the specific choice of p, reflects the behavior of 
the nonstationary state at times t- l/Eo, i.e., the method by 
which the initial state is formed. Different methods for pre- 
paring the initial state will correspond to different forms of 
p,. The contribution from the cuts thus tells us nothing 
about the dynamics of the quasistationary state; it simply 
reflects the details of the formation of this dynamics for the 
specific choice of @, . 

We arrive at a description of the nonstationary state 
which is of the sort usually found in nonrelativistic quantum 
mechanics. An unstable particle is an approximate asympto- 
tic entity, defined at small values of the imaginary parts r / 2  
of the complex poles in the energy plane below the unitary 
cut to within corrections on the order of r /Eo,  where E, is 
the typical spacing between levels. All of the physical infor- 
mation is in these poles. From the time-evolution stand- 
point, the picture is this: Immediately after the initial state 
@, is specified at t = 0, this state begins to decay rapidly. By 
the time t- l/m, all of the contributions from the slowly 

decreasing energy distributionp, (E) at E)m have died out. 
By t- l / m ,  all of the contributions from the cuts, without 
exception, have died out. Thereafter, the decay amplitudes 
go into an exponential stage and exhibit a behavior 
exp( - r t  /2),  where r / 2  is a typical imaginary part of the 
poles. In this stage the amplitudes vary up to very large val- 
ues of r t ,  at which nonexponential terms associated with the 
details of the formation come back into play. In this picture 
it becomes clear that the norm of a,, which is specified ri- 
gorously at t = 0, is not related to the unstable particle; it 
simply gives us a measure of the increment of extraneous 
states, which all die out by the beginning of the dynamics of 
the actual unstable particle. It might thus be a correct proce- 
dure to measure relative probabilities of the type I A,, ( t,) 1 2/ 

IA,, ( t ,  ) l 2  under the assumption t, > t, $ l/Eo, i.e., under 
the assumption that both measurements are taken after all of 
the extraneous states have died out, and we are left with the 
actual unstable particle. One could also take the simpler ap- 
proach of setting the time t, equal to zero, after retaining in 
A,, ( t )  only those terms which arise because of the pole con- 
tribution to ran (E) .  The meaning here is that we extend the 
asymptotic behavior of the process at times t- 1/T smooth- 
ly into the region of smaller values oft. This is the approach 
we will take below. As a result, for the physical amplitudes 
A,, ( t )  we are left with our previous expression, (4) ,  in 
which only the pole contribution r,, is retained. In the fol- 
lowing sections of this paper we carry out specific studies of 
the amplitudes for nondecay and decay by a given mecha- 
nism. 

3. NONDECAY AND DECAY PROBABILITIES OF 
NONDEGENERATE UNSTABLE STATES 

The retention of only the pole contribution in the 
Green's function in (4)  makes a calculation of transition 
probabilities in the QED of an atom essentially identical to 
the corresponding problem in nonrelativistic quantum me- 
c h a n i c ~ . ~  The final expressions for the probabilities natural- 
ly turn out to be of the same nature. All the radiative correc- 
tions to the energy shift and the width and also to the vertex 
functions for transitions are taken into account in these ex- 
pressions. In this sense the expressions are exact, not based 
on perturbation theory. We will go into more detail on the 
problem of diagonalizing the states and on the one- and two- 
photon decays of unstable atomic levels. 

After renormalization in QED, the residues at the poles 
of Green's function Gun become finite. The one-electron 
Green's function G,,, ( E )  satisfies the Dyson matrix equa- 
tion G = Go + G,BG, where (G,),, = S,, ( E ,  - E)-l ,  
and 2,, is the self-mass with the incorporated intermediate 
states of an electron for the continuing. Continuing this 
equation onto the second energy sheet below the cut, and 
taking the residue at the complex point E n ,  we find that it 
has a structure 

where? is found from f through time reversal, and f satisfies a 
quasipotential equation: 

From this we determine both f '"' and E n .  Since Z is not 
Hermitian and depends on E, the wave functions f '"' for 
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different values of n are not orthogonal. 
From this point on the calculations depend on the sepa- 

rations in energy between unstable states having identical 
quantum numbers. In this section of the paper we discuss the 
case in which there are no unstable states with identical 
quantum numbers and approximately equal energies. For 
one-electron states in an atom, this condition holds for all 
levels. For multielectron levels, on the other hand, the non- 
degeneracy condition may be violated. 

In the nondegenerate case we are justified in assuming 
f '"' to be real. At the cut, ImZ is on the order of r ,  and ImZ 
at the complex point En is of the same order of magnitude. It 
follows that the adjoint of Eq. (6)  differs from Eq. (6)  by 
terms on the order of T, and in terms of the nondegeneracy 
Imf is of order r. Since the overall accuracy of our analysis is 
limited specifically by terms of order T/E,, we can ignore 
this imaginary part. From T invariance we have 2,, = Zik 
andy'"' =fn' . It thus becomes possible to avoid the com- 
plex pole structure of the Green's function in an extremely 
simple way. We choose a system of real vectors g'"' =y'" '  
which have the property Z,g~'f:"'=g'"'f '"' = S n m '  

Multiplying the Green's function from the right by G'") and 
from the left by G'"' , we can then diagonalize the matrix of 
residues: If G'""' = g~")Gk,gjn', then 

Res G'"') = -6,, 6,,. 
E=En 

As a result we find from (4)  that in the pole approximation 
we have A,, (0) = urn,. SO this part of the normalization has 
been carried out. 

In the pole approximation the nondecay amplitude Ann 
is A,, ( t )  = exp( - En t);  from this expression we find the 
usual expression for the probability for the nondecay of level 
n:p, ( t )  = exp( - Tt). 

We turn now to the amplitude for a decay by mecha- 
nism a. The Green's function G,, for a state a which con- 
tains a photon with momentum k and an electron in state m 
is found from the covariant Green's function by integrating 
over the relative energy E of the final particles 

G.. ( E )  = (dsi2.i) Gmm ( E - e )  4 (k, e )  ( e f  k , )  

Here V"' is the vertex part of the emission of a photon ac- 
companied by the transition of an electron from state n to 
state m, and A is the complete renormalized Green's func- 
tion of the photon. We have not written out the Lorentzian 
indices explicitly. We are interested in only the pole part of 
G,,. , which stems from collisions of pole singularities of the 
integrand in (8).  Accordingly, only the diagonal parts of the 
electron Green's function have been retained in (8 ) . Taking 
the residue at E = k,, we find 

G,, ( E )  = (Em+ko-E)-' v,,!:) (E-k, ,  E ,  k )  (En-E)- ' .  ( 9 )  

Substituting this expression into (4),  we find 

(') A,, ( t )  = (En-Em-Lo) -'[ V,, (Em, Em+ k ~ ,  k )  e-it'Emtb) 

By virtue of the difference between the arguments of V'", the 

quantities A,, (0) are nonzero. The difference, however, is 
less than the accuracy with which the quasistationary states 
have been determined (on the order of T/E,). 

Let us find the probability for a one-photon transition 
from level n to level m, which is equal to w:,' ( t ) .  This proba- 
bility is found by integrating the square of the absolute value 
of ( l o )  over all the photon momenta k. We are interested 
only in the leading terms with respect to T/Eo. At this accu- 
racy level we can ignore the difference in the arguments of 
the vertex parts of V"' in the two terms in ( 10). We can then 
write 

w!? ( t )  = J (kk /2ko)  I v 'Li (En-ko. En, k )  I ' I En-Em-ko I -' 
. I e - f l ( . Z m t l b )  - e - l f %  I 2. (11) 

In the integration over k we can, to leading order in T/E,, set 
k, = W, - W, in the smooth factors and extend the inte- 
gration over k, to the entire axis. Introducing a deviation 
from resonance, q, = W, + k, - W, , we find 

where 

and 

Integration over q, yields 

") wmn ( t )  = FL)  (e-'mt-e-'nt) ( rn-Fm)  - I .  (15) 

It is not difficult to see that expression ( 15) is equiva- 
lent to the conservation of probability in the one-photon ap- 
proximation. Let us assume that m is the ground state and 
that n is the closest excited state, so there are no cascade 
transitions through intermediate states. We then have 
I?, = 0 and 

(1' wmn ( t )  = (I'L) IFn) (4-e-'nf). (16) 

This result will satisfy the probability conservation condi- 
tion p, + W ; ,  = 1 if T:,' = r, E - 2 Im E n .  We can 
show that this is the case. After diagonalization of the pole 
part of the Green's function, Eq. (6)  becomes 

where Z, = f '"'f '"' , Z,;, = Zk E~ f P'f P' and the renor- 
malization condition Z, = 1 - 8,,, (En ) which follows 
from (6)  holds. As we have seen, we can assume Z, to be 
real. We then find Z, ImE, = - ImS,, (En ) from ( 17). 
Expanding the right side in terms of the small width, we find 
that the terms which are linear in the width cancel out the 
S ;, (En ), so that G, = 2 ImS,, ( W, ). The right side of this 
expression is equal to G :,' according to ( 14) if we consider 
only intermediate states with a single photon and an electron 
in state m. Probability is thus conserved to within terms of 
order T/E,. 
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FIG. 2. Pole contributions to the Green's function from two-photon tran- 
sitions. 

We also consider two-photon transitions. In this case 
the final statep contains two photons, with momenta k, and 
k,, and an electron in state m. The corresponding Green's 
function rp, will contain two types of pole terms, which 
correspond to the diagrams in Fig. 2. The part which comes 
from the intermediate electronic statep (Fig. 2a) has three 
poles: 

~ ~ b i ) =  (E,+kio+kzo-E) -' v:; (k2) (E,+k,,-E) -I 

. v&) (ki) (En-E) -I.  
(18) 

We are not specifying the electron energies on which the 
vertices V"' depend, since they are all on the mass shell to 
lowest order in the limit r + 0. In addition to ( 18), Go, con- 
tains a contribution from two poles from the one-particle- 
irreducible two-photon vertex V"': 

Substituting these expressions into (4) ,  we find the time- 
dependent transition amplitudes AD,, ( t ) .  The complete pro- 
babilities for two-photon transitions are found by integrat- 
ing /ABn 1' over the momenta of the two photons. The 
probability w,($,, takes the following form by virtue of ( 18) : 

where we have introduced the deviations from resonance 
x ,  = Wp + k,, - W, andx, = Wm + k,, - W,, . Thefunc- 
tion f(x,,x,) is of the form 

f (%,,  nz) =e-rmt (x~+~z")-'(~3"+E3")-' 
+e-1h(r,+r,)t2 R, e-"~t(~+2++Ei2)- i (~3+ i~~ ) -~ (%- iE2) -~  

+ cyclic permutations of ( 123). (21) 

Here the states mpn have been numbered in the order 132; 
x, = - x,  - 7t2; = i(rp - r, ) etc. Integration over x ,  
and x, yields 

( 2 )  (1)  
wmpn ( t )  = r,$) rp,, (ecrn&' 1 I'*,-r,, 1 - I  1 rm-rPl -' 

+ e - r n t  1 rn-r,,, 1 - I  1 rn-ITp 1 - l  - e-'PI 1 rP-rn 1 -' 1 rp-rm 1 -I). 
(LLJ 

The rest of the two-photon transition probability comes 
from (19) and from the interference of contribution (18) 
with ( 19) and of ( 18) with the interchange of photons. This 
remaining part of the probability is similar in form to the 
one-photon decay probability ( I5),  with the one-photon 
width r:,' being replaced by the two-photon width, Tg,'. 
The latter quantity as l/ i  times the discontinuity in the self- 
mass En,  at the cut made with intermediate states with two 
photons and with an electron in state m, from which the part 
corresponding to diagrams like Fig. 3 has been removed. It is 
not difficult to verify that expressions ( 15) and (22) satisfy 
the probability conservation condition when we note that 
the total width of state n is the sum of the one-photon and 
two-photon widths. The contribution w,,, incorporates 
cascade transitions. 
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FIG. 3. The part of the self-mass of an electron corresponding to cascade 
transitions. 

Let us examine the spectral lineshape. At a given obser- 
vation time, this shape is specified by the quantity 
IA,, (t)I2 = constf(x), where f (x )  is given by (13). For a 
given t, the line has a Breit-Wigner shape on which oscilla- 
tions are superimposed. The frequency of these oscillations 
grows with time. They evidently stem from the determina- 
tion of the decay probability over a finite time, i.e., from 
nonconservation of energy by an amount of order l/t. After 
a long time, the line acquires an exact Breit-Wigner shape. 
For two-photon cascade transitions, the lineshape at time t is 
described by the function f(x,,x,) in (21). After a long time 
we are left with only the first term for the stable state m in 
(2  1 ) ; as a result we find the familiar distribution6 

The formalism constructed here could be generalized 
without difficulty to the case in which an atom has several 
electrons. Let us consider the case of two electrons. As the 
initial state we now use 

where n numbers the two-electron levels of the atom (the 
QED interaction is being ignored), and n, and n, are one- 
electron levels which have an identical total energy 
E ,  = E,, + E,, . Among the final states of the continuum, 
@,, are states which differ from (23) by the addition of 
Heisenberg photon-creation operators. More-complex si- 
multaneous Green's functions appear in the expressions for 
transition amplitudes A,, and A,, . This change does not, 
however, alter either (a )  the fundamental points associated 
with the possibility of renormalization, with the separation 
of the contribution of the pole terms, and with the limitation 
of the accuracy to quantities of order r / E o  or (b)  the techni- 
cal side of the description of the dynamics, which is reflected 
by the equations above, starting with (4) .  The only differ- 
ence is that the Dyson equation for the one-electron Green's 
function is replaced by a corresponding quasipotential equa- 
tion for a two-electron Green's function. From this equation 
we find, in place of (6 ) ,  

The properties of quasipotential U ( E )  do not differ from 
those of the self-mass of the electron, so all of the properties 
off which were used above remain in force for the multielec- 
tron case if there is no degeneracy. The final expressions for 
the probabilities, ( 15) and (22), turn out to be the same. The 
conclusion regarding the spectral lineshape also remains in 
force. 

4. THE DEGENERATE CASE 

We now consider the case, encountered in two- and 
multielectron atoms, in which two unstable states appear 
with identical quantum numbers and approximately equal 
energies, W,, z Wm . The degenerate case is analogous to the 
problem of K ORo transitions in elementary particle theory, 
with the distinction that in atomic theory we do not have the 
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approximate conservation of strangeness which consider- 
ably simplifies the analysis of the K OKo system. On the other 
hand, T invariance holds very accurately in an atom. 

At the formal level, difficulties in making a comparison 
with the earlier analysis arise because the mixing coefficients 
f become complex in the case of degenerate states, and it is 
not possible to transform to a new basis by multiplying by g 
vectors. Let us assume that all of the other states-all except 
the pair n,m-are nondegenerate. The pole part of the 
Green's function which corresponds to them can then be 
diagonalized as before, and all of the nondiagonal aspects of 
the poles are associated exclusively with the pair of degener- 
ate states. We assign these states the indices 1 and 2. The 
mixing coefficients f ( I s 2 '  satisfy the quasipotential equation 
(24); the degeneracy means El - E2-T. The quasipoten- 
tial Uin a real atom depends weakly on the energy because of 
retardation. The main, and energy-independent, real part of 
Ucan be diagonalized by a standard unitary transformation. 
We assume that the energy shifts found in this manner are 
incorporated in the seed energies E , ,  so U in (24) refers to 
only that part of the quasipotential which depends strongly 
on the energy. We then have Ukl - G in order of magnitude, 
and we find from (24) that two unperturbed levels should 
approximately coincide. Denoting them as levels 1 and 2, we 
have el - e,-G. It is thus clear that (24) is dominated by 
k,l, = 1,2 and that f i ' ~ ~ '  for k # 1,2 are of order r/Eo. We 
will ignore them. We also note that to the same accuracy we 
can ignore the difference E l  - E, in the argument of U. As a 
result, the two-dimensional vectors f L'Q~' are found to be ei- 
genvectors of the same non-Hermitian Hamiltonian: 

Here Ukl = Ukl (E ,,, ) and k, 1 = 1,2. From Tinvariance we 
find U,, = U,, . Expression (25) then leads to the orthogon- 
ality of f ' l '  and f ( 2 )  in a symmetric metric (without canjuga- 
tion): BJk1'fF) = 0. Normalizing f to 1 in this metric, we 
find orthonormality and completeness relations: 

The pole part of the Green's function G ,  , which corre- 
sponds to states 1 and 2, can be written 

According to (4) ,  the nondecay amplitude can be written 
A;, ( t )  = ( e  - l H r  )ik. 

Let us analyze the nondecay and decay probabilities. In 
the degenerate case there is no possibility of a separate deter- 
mination of any specific 1 or 2 at a finite time, since a time 
t -  ( W, - W,)-I- l /T is required. The only question that 
can be asked is that of the probability for observing either of 
states 1 and 2. With regard to the initial state, we specify it by 
means of the density matrix p, which describes the distribu- 
tion among states 1 and 2: trp = 1, p +  = p .  The nondecay 
probability can then be written 

Using representation (27), we find 

We introduce the matrices t'""' = f '"'f '"' * and 
p ( m n )  = f (m)Pf '"' *. From (26) we find ttr(ttT) 
= tr(ptT ) = 1. For brevity we use the notation t'"' = t'""' , 

p(n )  =p'""' , t (0)  - (12) - (21)* (0) (12) - (21)* - t  - t  ,p = p  - p  , 
r = t (T1  + r 2 ) ,  A = W, - W2. From (29) we find 

The quantities T'"' can be expressed in terms of the 
parameters of Hamiltonian H (Ref. 7) .  In the case of Tin- 
variance, these quantities can be expressed in terms of the 
single complex parameter 

Solutions of Eq. (25) are written in the form 

from which we find 

According to (30), the nondecay probability p ( t )  contains 
oscillations at a frequency A which are well known in K ORo 
decay theory. The phase of the oscillations depends onp, i.e., 
on the method by which the initial state is specified. We will 
discuss the most characteristic choices ofp after we examine 
the decay probability. 

Let us consider a one-photon transition from states 1 
and 2 to the nondegenerate state 3. The transition probabili- 
ty is 

The amplitudes A,;, for a transition to a state a which con- 
tains a photon with a momentum k and electrons in state 3, 
are found in the usual way. These amplitudes differ from 
(10) in that the energy En is replaced by the operator H. 
Using representation (27), we find 

w ( t )  = p'") I V'.) I ' a(") ( t ,  X )  + 2 Fie p ( " ~ ( ~ ) v ( ~ ) * o ( ~ )  ( t ,  x ) .  
11=1,2 

Here 

We have introduced a deviation tt = W, + ko - W,, and we 
have A, = 0 and A, = A. Here we also have Vn '  = B, f :"' 
X V,, where V,, is the matrix element for a transition in- 
volving the emission of a photon from basis level k = 1,2 to 
level 3. In the integration over the photon momentum, we set 
x = 0 in the slowly varying factors. After integrating k over 
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angle, we obtain the quantities 1'"' = 1'""' and 1'" - -1 ( I 2 )  , 
where 

1'"'"' = 5 (d3k12ka) n6 (W,+k,- WJ V ( ~ ) V ( " '  ; (36) 

Here 1'""' are related to the contribution of I to the imagi- 
nary part of H due to transitions to state 3 by the relation 
I("") = f m '  If'"' *. If 3 is the ground state, and there are no 
other transitions, I is the imaginary part of H. Using Eq. 
(25), we can express 1'"' in terms oft'"' in this case: 

If state 3 is not a unique final state in transitions from 1 and 
2, Eqs. (37) continue to hold if we substitute into them the 
partial widths and shifts of levels which arise because of in- 
termediate state 3 in the quasipotential. 

After integration over photon emission angles, the de- 
cay probability (34) takes the form w = T- '~dxf(x) ,  where 

f (x) = z p ( n ) ~ ( n ) a ( n )  (t, x) + 2 Re p(o)Z(o)a(o) (t, x) (38) 

and the quantities a'"' are given by ( 35). Integration over x 
yields the total transition probability: 

If 3 is the ground state, and there are no other decay chan- 
nels, then we have r, = 0; using (37), we find 

w (t) = z t(.)p(.) (I-I-'"') + 2 Re t(")p(') (l-  
n=i,2 

e-" e-iAt). 

(40) 

Comparing this result with expression (30) for the nonde- 
cay probability, we find p ( t )  + w(t) = 1; i.e., we find that 
the probability is conserved at each time. 

The shape of the spectral line is extremely complicated 
at finite times [expression (38) for f (x) ] .  In the limit t-+ co 

we find, assuming that level 3 is the ground level and using 
(371, 

t(2)p(~)+t'0)*P(~)- 
f (x) = -1m + x+A+i11,/2 

) .  (41) 

The x distribution depends on how the initial state is speci- 
fied. We can imagine two basic versions: a purely statistical 
version, in which the initial state contains an equilibrium 
mixture of states 1 and 2, and a coherent version, in which 
the initial state is formed as the result of a specific quantum- 
mechanical interaction. 

In the statistical version we havep, = (1/2) and thus 
p'") = ( 1/2)t'"' . The numerators in (41) are identical and 
equal to 1/2, so we have 

1 
f (x) = - - Im{(x+iI',/2) -' + (x+A+ir,i2) -I). (42) 

2 
In this case the lineshape is thus the mean of two Breit- 
Wigner distributions. The nondecay probability becomes 

1 
p(t) = -(t('))' (e-rll+ e-'~'-2ae-~' cos At), 

2 
(43) 

where 

In the coherent version we can imagine the formation of 
unstable states, e.g., intermediate states in the Compton ef- 
fect involving the atom and ground state 3. The matrix is 
then proportional to the product VT, V,,. , where V, ,  is the 
operator (which we introduced above) which represents the 
emission of a photon accompanied by a transition of the 
atom from states i = 1, 2 to the ground state. Integration of 
this product over the photon emission angles gives us a com- 
mon factor which preserves the factorization with respect to 
indices i and k; on the other hand, this integration gives us 
the imaginary part I,, of Hamiltonian H,, near the reso- 
nance (if, as we are assuming, there are no other mechanisms 
for the decay of states 1 and 2).  In this case we thus have 
pi, = cI,, , where c is a constant; furthermore, we have 
detI = 0. The latter condition is a consequence of our as- 
sumption that the decay mechanism is unique. This condi- 
tion relates the parameter S to the masses and widths of 
states 1 and 2: 

The constant c is determined by the condition trp = 1 and is 
equal to 1/T. We thus find the following result for the distri- 
bution f ( x )  

The residues at the poles have acquired imaginary 
parts, so the distribution is more complicated than simply 
the sum of two Briet-Wigner distributions. One can verify 
that (45) corresponds precisely to the scattering amplitude 
in a given mechanism in the presence of two complex energy 
poles, when the unitarity condition is taken into account. 
From unitarity we find 

(the product is over all the poles). For the amplitude we thus 
find an expression which is the same as (45), to within a 
coefficient. The nondecay probability in the coherent ver- 
sion is expressed unambiguously in terms of the masses and 
widths of the unstable states: 

Here ( t"))2 = (A2 + r2) / IE1  - E2I2. The phase shift is 
p = - tan-'A/r. 

5. CONCLUSION 

We have found that all properties of the unstable states 
can be determined from the renormalized quasipotential 
equation (6)  or (24).  The probabilities for decay by various 
mechanisms are determined in the usual way, in terms of 
vertex parts which are constructed in standard S-matrix the- 
ory with energy conservation. The indefiniteness regarding 
the specification of the energy of an unstable state and the 
complex nature of the corresponding pole in terms of the 
energy do not affect the magnitude of the probability, since 
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they are at the same level as the corrections which are dis- 
carded in defining the concept of an unstable particle and in 
establishing probability conservation. 

These considerations seriously restrict the possibility of 
refining the transition vertices for relativistic electrons in an 
atom. If there are no special rules which forbid certain events 
in a strong field, the width is on the order of a (Za )4 ,  and the 
distance between levels turns out to be of order (Za) '  (in 
units of the mass of an electron). The error in the determina- 
tion of the dynamics of a nonstationary level is thus on the 
order of a(Za)' .  We thus see that it would be meaningful to 
refine the transition vertex for allowed transitions only in the 
case (Za12 ( 1. At large values of Z the refinement would go 
beyond the overall accuracy of the analysis and would be 
pointless. 

APPENDIX 

Let us consider the simplest of the diagrams for an S 
matrix in the semi-infinite time integral [0, ca ] with self- 
mass insertions, as shown in Fig. 4. These are the diagrams 
which were analyzed in Ref. 2 for the purpose of extracting 
the Lamb shift of an initial or final level. For simplicity we 
restrict the discussion to intermediate state C which coin- 
cides with state A (as in Ref. 2). It is convenient to use a 
mixed representation in which the states of an electron are 
specified by its quantum numbers in the Coulomb nuclear 
field, and the time is retained. We then find the contribution 

M.,=Iv" (k) d t ,  d t ,  d f ,  ei'("*b'-itse~ S. ( t i - t , )  E (f-fd . 
0 

Here sB ( t )  = ie( t)e - "B' is the propagator of an electron 
in state B with a positive energy, Vh is the radiation opera- 
tor in lowest order, and 8, ( t )  is the (unrenormalized) self- 
mass for state A. Writing it as a Fourier integral of the usual 
self-mass 8, (E) in the energy representation, we find 

M ~ ,  = i ~ j : '  ( k )  (x+iO)-I 

where x is the deviation from resonance: x = EB + ko - E A .  

In Ref. 2 the quantity 8, (E) was taken out from under the 
integral sign at the point E = EA ; in that case, it is true that 
no difficulties were seen. Actually, however, an attempt to 
renormalize 8, runs into complications in connection with 
the convergence of the integral at large values of E. These 
complications are a manifestation of the surface infinities 
which we mentioned earlier. We see that renormalization of 
the mass does not run into any difficulties, but in renormal- 
ization of the wave function requires us to subtract from the 
regularized unrenormalized 8, terms which are linear in E 
and which contribute infinities to the integral. As a conse- 
quence, the renormalized self-mass 8F varies as E ln E in 
the limit E- oc,, and the integral diverges. Some even more 
unpleasant infinities of this type are observed in renormal- 
ization of the photon wave function in connection with the 
vacuum polarization. 
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