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The present study carries out a theoretical investigation of the possibility of collectivization of an 
ensemble of atoms of a concentrated system from two-photon spontaneous decay. It is 
demonstrated that such a system of inverted atoms emits phase-correlated biphotons with an 
intensity proportional to the square of the number of atoms. 

1. INTRODUCTION 

Dicke's study' was the first to predict the possibility of 
collectivization of an ensemble of two-level atoms in one- 
photon spontaneous decay. This effect, which has come to be 
called superradiation, has become the focus of extensive 
theoretical and experimental investigation in this decade 
(see s t u d i e ~ ~ - ~ ) .  As demonstrated in Refs. 1-3, two-level 
atoms in an inverted quantum state are capable of collective 
light generation due to interaction through fluctuations in 
the electromagnetic field (EF) vacuum. In this case the rate 
of photon generation becomes proportional to NZ,  where N 
in the number of atoms in the system. 

The present study reports the possibililty of collectivi- 
zation of an ensemble of atoms inverted with respect to the 
12) - 11) dipole-forbidden transition, where 12) is the first 
excited state; 11) is the ground state from the two-photon 
spontaneous decay of the (2) level. A concentrated system of 
atoms of dimensions substantially smaller than the njini- 
mum radiation wavelength is examined for simplicity. A 
photon pair whose total energy is fixed, 
hk , + fiWk = h2,, is created in each decay event, where 
+b,, is the energy distance between the 11) and 12) levels. 
The common phases of such photon pairs may be in phase in 
spite of the fact that the photons in the pair have different 
energies, The radiation intensity of the photon pairs (bipho- 
tons) becomes proportional to N 2 ,  as in one-photon superra- 
diation. However the second-order photon correlation func- 
tion remains much greater than the squared first-order 
correlation function during the entire collective decay pro- 
cess. 

Section 2 develops a nonequilibrium technique for 
elimination of the two boson operators of the photons creat- 
ed in a single decay event. This technique is used to demon- 
strate that the atoms may get into phase in the spontaneous 
emission of biphotons, and will radiate with a rate of change 
in the population difference between the 12) and (1) levels 
proportional to N 2. Section 3 employs this technique to cal- 
culate the fluctuations in the radiation energy density at a 
distance of r from the radiation source. 

The possibility of the photon subsystem acquiring co- 
herent properties in two-photon processes was examined in 
Ref. 5-7. These studies consider the possibility of effective 
accumulation of coherent photons in a prescribed mode k,, 
i.e., first order coherence. The present study investigates the 
possibility of the formation of phased photon pairs consist- 
ing of two quanta of different energies. In this respect the 
purpose of the study differs from that of Ref. 5-7. 

2. KlNETlCSOFTWO-PHOTON DECAY 

We will consider N three-level A-type radiators invert- 
ed with respect to the 12) and I I )  levels. Since transitions 
between the 12) and )3), and 11) and 13) levels are allowed 
(d,,,d,, +O), while a transition is forbidden between 12) and 
(1) (d,, = O), the Hamiltonian of such a system takes the 
form 

- .- 
a-i j=l k 

Z N 

[ahf cj' (k) -H.c.] (Uj$+U,:). (1)  

Here fw, (a = 1,2,3) is the energy of level a ;  d,B is the 
dipole moment of the transition between IB) and / 3); 

Cj' (k)  =exp [ --ikr,], gk= (2nf io, /V)  '"eb, 

es is the polarization vector of the photon (S = 1,2); Vis the 
quantization volume; a: (a, ) is the Bose creation (destruc- 
tion) operator of a photon with momentum fik, energy Pio, 
and polarization 8; u$, is the operator of the transition 
between the a and ,8 levels of thejth atom. In expression ( 1 ) 
and henceforth we will use Greek letters to describe summa- 
tion over the atomic levels, and Latin letters for summation 
over the atomic sequence. The operators of the atomic sub- 
system and the electromagnetic field (EF) operators satisfy 
the commutation relations 

The Heisenberg equations for the operators of the atom- 
ic subsystem and the EF obtained subject to ( I )  take the 
form 

d - U,,@(t) =-iw3BUj3B - 
d t  

y, * [ak+ ( t )  Cj' (k) 
k a=l 

A 
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d dsagh - ak( t )  =-iakak(t) + Fa Yr, C; ( k ) [  Ui,'(t) +u~'(t)J. 
dt a-i j - I  

The equations for U; , Uja and a: are hermitian-conjugate 
to the equations in (3a), (3b) and (3c), respectively. 

Formally integrating equation (3c) we represent the 
operator a, (t)  through the vacuum part a>nd the part 
related to the sources a; : 

Gk ( T )  = exp (-iohz), (4b) 

where 

akv(t)  1 v) =0, (vl akU+(t)  =0, ahu (:) =ahu (0) exp [ -iokt] , 

Iu) is the wave is the wave function of the EF vacuum. After 
substitution of a, ( t )  and a: ( t )  into (3a) and averaging 
over the initial state of the "atom plus field" system 
$ = Iu) \A ) ( ( A  is the wave function of the atomic subsystem 
fort = 0)  we can easily obtain the following equation for the 
populations of the jth atom: 

. dr G; ( r )  < [ U i l . ( t - ~ )  + U i s p ( t - - r )  ] 

4[Uja3 ( t )  -Ujsa( t )  1) + H.c.}. ( 5 )  

Since all atoms are in the 12) state at t = 0, the one-photon 
transition to the 11) ground state is forbidden. This is easily 
determined by using the familiar Born-Markov approxima- 
tion in the right side of (5).2,3 Here the operators 
UT3 ( t  - T) are replaced by uf3 ( t ) e x p ( i ~ , ~ ~ ) ,  while the 
rightside of the equation (5) is equal to zero, since there are 
no spontaneous polarization sources in the diagonal part of 
the correlator $: (t,O) = (U:, ( t )  U; ( t ) )  for t = 0 (the di- 
agonal part of this correlator is $: I ,= = ( Uj3 ( t ) )  1, =, 

= 0).  Consequently the only path for the system to make 
the transition to the ground state is by two-photon decay 
through the intermediate 13) state. The Hamiltonian ( 1 ) as 
well as all the results obtained in the present article can easily 
be generalized to the case where the number of higher energy 
states is greater than unity. For this it is necessary to replace 
the index 3 by y in all positions and to sum over y. Below we 
will propose a more exact method of accounting for the delay 
in ( 5 ). This method allows incorporation of the two-photon 
decay diagrams in the collective radiation kinetics. 

By simplifying the subsequent mathematical intermediate 
calculations we will consider only the equation for the func- 
tions ( t , ~ )  : 

.< [ak+ ( t - r )  C,' ( k )  -ak ( t - t )  Cl ( k )  1 

[ul? ( t -T)  -6T,pU1s3 ( t - Z )  ] Uja3 ( t )  ). ( 7 )  

The vacuum part of the operator a,+ ( t  - T) in equation (7 )  
is easily eliminated. It is necessary to represent a: ( t  - T) in 
this case through the vacuum EF  operator and the material 
operators in accordance with (4)  and to operate with the 
operator a:+ ( t  - T )  on the bra vector ($(O) la", ( t  - T) 

= 0. It is more difficult to eliminate the vacuum part of the 
a, ( t  - T) operator. In this case it is necessary to transpose 
the operator to the right side of the correlator under the Sp 
sign. Since the Uja ( t )  operator following a, ( t  - T) belongs 
to time t, its commutator with the vacuum part of the opera- 
tor a, ( t  - T) and with the operator itself is nonzero. We will 
formulate the following lemma to eliminate the vacuum part 
of the EF  operators in such situtations. 

If the EF  creation or destruction operaior lies be t~een  
the two operators of the atomic subsystem A(t , )  and B(t,) 
belonging to other times, elimination of the vacuum part of 
this operator yields the following expression for the correla- 
tor: 

The proof of (8)  can be obtained in the following manner. 
Since a, ( t )  = a; ( t )  + a",t), we will represent the vacuum 
part through the vacuum-operator at time t, subject to the 
determination of a", (t [see' (4)  ] : 

=[ah(ti)-ak1(t i)1 exp [ - iok ( t - t l ) l  . 
After substitution of a: ( t )  into the correlator we obtain 

h 

a,  ( t , )  commutes with the operator A(t,  ). Consequently 
taking into account that 

we easily obtain ( 8 ) . 
Subject to lemma (8)  we obtain the following equation 

for ( t , ~ )  : 

The following correlation functions are under the inte- 
- -&,( t ,  d r)=iosB$,'(t,  T )  f Vap(t ,  71, 

gral over T in the right side of equation (5) dr 

vap ( t ,  T )  = y, y, y, (d8Tgf2(ds&k) 
(6a) k n-i 7.5=1 
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J ds {-GI.* ( k )  Gk*(rl)  ( [ Unl) (t-.I-9) + H.c.1 

c,, ( k )  =Ct ( k )  Cn' ( k )  (9b) 

Formally integrating equation (9)  we obtain 

Analogous expressions like (9)  and ( 10) are easily ob- 
tained for the remaining correlators ( 6 ) .  Substituting the 
expressions for these correlators into ( 5 )  we can obtain the 
following equation for the populations ( Uz ( t )  ): 

. dr erp (iok.r) Cji' ( k l )  [exp ( i ~ ~ r ) c p a ' ( t .  0) 

- exp (- iossz)  cpea ( t ,  0) 1-tH.c. , 

where 

cpae(t, 0 )  =$as ( t ,  0 )  -qBa ( t ,  0 )  , 

The first term in ( 11 ) takes into account the collective one- 
photon transition processes from the ) 3) level to the la) level 
( a  = 1,2). If the 13) level is populated, the primary contri- 
bution to (1 la)  comes from the correlators $; (t,O) 
= Sa,p ( UJa ( t )  U j; ( t )  ). The remaining correlators rapidly 

oscillate in time with a frequency on the order of the transi- 
tion frequencies in the system w,,, Since it was intially 
assumed that the 13) level is not populated, the contribution 
of this term to spontaneous two-photon decay is small com- 
pared to (1  lb) .  The term FP is proportional to gig: ,  (i.e., 
the second order term in the constant g: ). In analyzing this 
term we will use the Markov approximation in the three- 
particle correlators from (9).  For this purpose we represent 
the operators of the atomic subsystem under the integral 
signs over r,, T,, and r3  as 

where e$,(t) is a smooth function of time compared to 
exp ( imp, t )  . This approximation corresponds to neglecting 
the higher orders in the expansion in terms of the constant g: 
which couples with the EF  vacuum and retaining only terms 
through second order. 

In order to identify the more probable two-photon de- 
cay diagrams of the system from the 12) level we will inte- 
grate the coefficients of the three-particle correlators with 
respect to time after making approximation ( 12). Expres- 
sions (9)  and ( 12) suggest that these three-particle correla- 
tors either have no spontaneous polarization sources, i.e., 
the diagonal part of such correlators vanishes when 
I = j = n, since the 13) level is not populated, or they have 
rapidly-oscillating multipliers of order exp(ioa8t). Hence 
they make not contribution to second order in the constant 
g: . Clearly the terms obtained after commutation of the op- 
erators in (9b) make the primary contribution in this ap- 
proximation: 

Tap ( t ,  7 )  = - 
k E,I=l 

. [Uja7 ( t )  exp (iorat) -Gr,aUjss ( t )  1 > 

Here 

i/ (x-i0) =iP/x-n6 ( x )  

Substituting ( 14) and analogous expressions for T pa, 
TaS and T; into (12) we can easily determine that after 
integration with respect to r 1  and r 3  the two-particle correla- 
tors ( Uf, ( t )  U :, ( t ) )  make the primary contribution to two- 
photon decay. The remaining two-particle correlators have 
rapidly oscillating time-dependent multipliers, and their 
contribution is insignificant on the average over the period 
T = 2?r/m,,. In this approximation it is therefore possible to 
obtain the following expression for the populations of the 
system of atoms ( U: ) and ( U ) : 
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d - A t  (u: (t) > a -4nyl Yi, cji* (kt) cJi (k2) 

For simplicity we will consider a concentrated system 
of atoms with dimensions much smaller than the minimum 
radiation wavelength. We have CJ:(k,) = C,, (k,) = 1 in 
this situation. As a result it is possible to go over to the col- 
lective operators 

in ( 1 )-( 14). After integration with respect to k, the follow- 
ing equation is easily obtain for ( U :  ( t )  ): 

where 
mzt 

1 x3 (ozl-x) 
-=-- 

'TO 3 6 2 3 1 7 3 2  0 3 i 3 0 3 z 3  ( o s ~ - x ) ~  (o~z+x) (17) 

We then use the boson representation in equation ( 15) for 
the new collective operators 

It is possible to obtain a closed system of equations for ( U ) 
and (U: ) by ignoring fluctuations of the operators U f and 
U:, i.e., by decoupling the correlators (U: ( t )  U ( t ) )  in 
equations ( 14) and ( 16) in the following manner: 

Taking into account the fact that 

we obtain the following expressions for ( U :  ) and ( U f ): 

From ( 16)-( 19) we therefore obtain the following expres- 
sion for the population difference of the system: 

d 1 N 1  
- R i  = - - (  + -) + -( R - ) (20) dt 'To 2 7 0  4 

whose solution is well-known in one-photon superradiation 
theory 

N t-to 
Rz l=  --th-, 

2 2tR 

where to = T R  In N is the delay of the collective radiation 
pulse of the photon pair and T~ = T ~ / N  is the collectiviza- 
tion time of the ensemble of atoms from two-photon sponta- 

neous decay of the 12) excited state. It follows from (20a) 
that the ensemble of atoms collectively emits photon 
pairs in the interval O ~ E ( O , O ~ , )  with a total energy 
fI(ok, + wk ,) = fh21. The rate of emission of such photon 
pairs is equal to 

Decoupling of ( 18a) may also be obtained by breaking 
off the chain of equations for the two-particle correlators. By 
eliminating the bosonic operators of the photon subsystem 
using the scheme (5)-( 14), we obtain the following equa- 
tion for the two-particle correlator ( U :  ( t )  U: ( t ) ) :  

d - <UIZ ( t )  UZi ( t )  ) 
dt 

1 
= - < u,z (t) [ U,Z (t) - Uil (t) 1 Uzi ( t )  ). 

To 
(21) 

It follows from ( 16) and (21 ) that the chain of kinetic equa- 
tions for the atomic subsystem in two-photon spontaneous 
decay is analogous to the chain of equations of superradia- 
tion in one-photon spontaneous decay.lW3 We therefore de- 
couple the right side of equation (2 1 ) in a semiclassical ap- 
proximation in the following manner: 

Thus equations ( 16) and (21 subject to (21a) form a sys- 
tem of kinetic equations for one-particle and two-particle 
correlators. The solution of this system agrees with the solu- 
tion of (20a). 

It is possible to obtain an equation for the change in 
photon density at w ,  using the boson operator elimination 
method discussed above. After the first elimination of the 
EF boson operators the equation for the photon density 
n = (a,+ a, ) will take the form 

The number of photons radiated in the solid angle A R  and 
the spectral interval Amk is determined from the relation 

After the secondary elimination of the EF boson operators 
the equation for Nk takes the form 

The number of photons of frequency wk emitted in direction 
k is directly proportional to the rate of light generation from 
two-photon collective decay, v,,  ( t )  . The photons are creat- 
ed in pairs and the frequency dependence of the generation 
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rate is determined primarily by the multiplier w: 
(w2, - wk ),. Equation (22b) is invariant under the substi- 
tution w, -w,, - w,, while Nk adopts the greatest value 
for w, = w,,/2. After integration of (22b) with respect to 
R, and w,, we obta inN( t )  = 2(U: ) for the total number 
of photons. 

3. PHOTON CORRELATION 

In recent years increasing attention has been devoted to 
the influence of photon statistics on the interaction of radi- 
ation with matter. Several studies in this area have been de- 
voted to two-photon spontaneous radiation and light ab- 
s ~ r ~ t i o n . ~ - ' ~  Below we will consider the influence of 
collective photon pair radiation processes on EF density 
fluctuation as well as detection probabilities in two-photon 
spontaneous decay. Following Refs. 8, 11 we will consider 
the correlation functions 

where 

E- (r, t) = gkaA+ (t) eikr, 
A 

?(r,t): indicates normal ordering, K, (r,t) is the EF density 
at the observation point r, and K,(r,t) is the correlation 
function between the biphotons at the point r. The function 

takes into account the EF  density fluctuation. 
After partial elimination of the photon boson operators 

we obtain the following expressions: 
z 

J dri J d ~ r  Gkl* ('Ti) G~~ (TI) 

After secondary elimination of the boson operators subject 
to (8)  Eqs. (24) take the form 

2d3i2d,z2 
Ki (r, t) = - (I - cos2 %) (03Zf 031)' 

3n5c7r2 

x3(w2i-x) ' dx u ( t )  u ( t )  0 ( t )  , (25a) i ( , 3 2 + ~ )  ,031-x, 

Here $(t,) is the Heavyside step function, 5 is the angle 
between the direction of the vector r and d,, , and t, = t - r/ 
C. 

It follows from (25) that the second-order correlation 
function is much greater than the first-order correlation 
function K,(r,t) .  The photons in the radiation field form 
time-correlated pairs. This will cause an avalanche growth 
in EF  density fluctuations at the point of observation r. After 
substitution of (25) into (23c) and averaging over the direc- 
tion of the dipoles d,, in the system of atoms we obtain the 
following expression: 

It was assumed in deriving (26) that w, ,, w,,$ w,,. 
At the point of observation r the density of the photon 

pairs is inversely proportional to the fourth power of the 
distance from the source to the detector. It is possible to 
increase the biphoton density at the point of observation r by 
means of collecting lenses or mirrors.I0 In the present situa- 
tion the biphoton detector is located at the image point of the 
source. We assume that the detector consists of the same 
two-level system with a dipole-forbidden transition between 
the / 1') ground state and the excited 12') state. The effective 
Hamiltonian of the interaction of the detector with the 
source field takes the form 

where &, ,,, is the excitation matrix of the detector atoms. 
Obviously the probability of photon pair absorption is pro- 
portional to the squared matrix element: 

i.e., the probability of photon pair absorption is proportional 
to the correlation function K2 (r,t). As indicated by (26) and 
(27b) the phased photon pairs at the focal point of the lens 
or mirror act on the detector in a manner similar to that of 
coherent one-photon light on a two-level system with an al- 
lowed transition. The formation of phased photon pairs dur- 
ing collective spontaneous decay will serve to increase the 
photon pair detection rate. Unlike the two-photon spontane- 
ous decay of individual atomsI0 in the present situation the 
rate of biphoton detection of time t, = to is proportional to 
the square of the number of atoms in the system, while the 
spontaneous decay time calculated per atom diminshes by a 
factor of N. When employing collecting lenses or mirrors to 
focus the biphotons the EF density at the focusing point di- 
minishes by a factor of ?R/s, where s is the cross-sectional 
area of the focusing volume (s1I2 - w,,c), R is the solid angle 
of radiation focusing. In the present case the factor l/r4 in 
(25) and (26) is replaced with R2/s2. 
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Experiments to determine the lifetime of the metastable 
states of hydrogen-and helium-like atoms in two-photon 
spontaneous decay with respect to the 22S1,2 + 12S1,, and 
2'S,,+ 1 'So transitions have been discussed on several occa- 
sions in the literat~re.".'~ Two-photon collective decay pro- 
cesses may also appear in such experiments. If a certain 
number of inverted atoms N- 10-100 arise at a distance less 
than the minimum radiation wavelength Amin = hc/ 
(E,, - El,) = 1200 [A]/Z2 (where E2, - Els = &a2,, Z 
is the ordinal number of the element), the lifetime of the 2S 
metastable state decreases: t, = to = (ro/N)ln N (here 
r0 = 0.1212 -6 sec). In this case the exponential law of de- 
cay of the excited state changes substantially [see (20a) 1. 

4. CONCLUSION 

These results on collective two-photon spontaneous de- 
cay are applicable only to concentrated systems of atoms 
with dimensions less than the minimum radiation wave- 
length. In extended media the interaction between radiators 
through the virtual photon pairs changes significantly. The 
spatial separation of the photons in the pair will reduce the 
exchange interaction integral between atoms at a distance 
greater than the radiation wavelength [see (2  1 ) 1. In spite of 
this fact the exchange interaction between atoms at a dis- 
tance less than or on the order of the radiation wavelength 
may have a substantial influence on the two-photon spon- 
taeous decay of extended media.14 The latter must be taken 
into account in investigating collective two-photon pro- 
cesses in condensed media. 

The author wishes to express deep gratitude to Yu. M. 
Shvery for participating in a discussion of the results of the 
present study. 
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