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The Stark shifts and the widths of the Rydberg states of atoms in a strong electric field are 
calculated in the vicinity of EzO.  The scaling relationships'are obtained for above-barrier 
resonances. The theoretical results are compared with the experimental data on the 
photoionization of hydrogen and rubidium in the presence of a static electric field. 

1. Extensive investigations of the Rydberg ( n s  1)  
states of atoms and molecules, and of their properties in ex- 
ternal fields, etc. have been made recently. Resonances of the 
photoionization cross section of atoms have been found ex- 
perimentally (first for rubidium' and then for hydrogen24) 
in the presence of a static electric field g; these resonances 
correspond to n - 15-40 and they lie near E = 0 (which is 
the ionization limit for 8 = 0).  It follows from numerical 
 calculation^^*^ that the positions and (less accurately) the 
widths of these resonances coincide with complex energies 
E = E, - i r /2  of quasistationary Stark states (in the case of 
the hydrogen atom). It is particularly interesting to consider 
the states" characterized by n, - n % 1, n,, and m - 1 which 
have the iowest decay probability in a field 2? among all the 
n2 sublevels with a given value of n.  We shall confine our- 
selves to states of this type and develop an analytic theory for 
EzO, valid for an arbitrary atom, and derive the scaling 
relationships [Eq. ( 10) 1 for above-barrier resonances. 
These relationships are in good agreement with the experi- 
mental results14 and can be used to identify peaks of the 
ionization cross section. 

2. The energy of quasistationary states of the hydrogen 
atom in an electric field 8 are described (for m = 0 and 
n % 1 ) by the system of equations (4)  given in Ref. 6. If we 
assume that n, % n,, m, use the quantum defect method, and 
separate approximately the variables in the range r > r, (r, is 
the radius of the atomic core), we can generalize these equa- 
tions to the case of an arbitrary atom. The "reduced" energy 
E = 2n2E(n1n'm' and the separation constants PI,, are de- 
scribed by 

j = I 1; S,, is the quantum defect for the Rydberg states. 
The values of S,, decrease rapidly7 with I, so that in the sum 
of Eq. (3)  we are left in fact with just the first few terms. In 
the case of the hydrogen atom, we find that S,, = S(n,, n,, 
m ) r 0; in the case of rubidium, we have S(n - 1, 0, 
0 )  = 0.768,0.538, and0.414, for n = 20, 30, and 40, respec- 
tively. Calculation of S(n,, n,, m) presents no difficulties 
since the quantum defects S,, are tabulated (in the spherical 
basis) in Ref. 7. When we pass from (n ,, 0,O) states to other 
series of states, the values of S(n,, n,, m )  decrease (Fig. 1 ). 

The following comments should be made about Eq. 
( 3 ) .  The appearance of the Clebsch-Gordon coefficients 
C ;", is due to a hidden symmetry group of the hydro- 
gen atom S0(4 ) ,  which explains what is known as the ran- 
dom degeneracy of levels in a discrete spectrum.' It is known 
that this symmetry group can be decomposed, 
SO(4) = SO(3) @ S 0 ( 3 ) ,  so that passage from the parabol- 
ic basis In n2, m) to the spherical one I nlm) in the subspace 
of states for a given value of n is equivalent to the addition of 
two moments9 j, = j, = (n - 1)/2 in theSO(3) group. The 
system of equations (1)  is derived bearing in mind that a 
highly excited electron moves mainly in the Coulomb field of 
the atomic core and the deviation of the atomic field from the 
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0*6 
Here, P= n 4 8  is the effective field, z, = - 16fl1F/&', 
z2 = 16fl,F/~,, 

n,+ (m+l)  12 6 
vi = n ( I - )  i=1.2. (2)  

and the functions f (z) and g(z) are defined in the Appendix 0.Y 

A. The parameter S = S (n ,, n,, m ) can be expressed in terms 
of the quantum defects for a free atom: 
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8 = -x (~:j-.,,.)'[ (1+1)61++161-1, (3  
I=% FIG. 1. Quantum defects [Eq. ( 3 )  ] plotted for the (n,, n,, 0) states of the 

rubidium atom; here, n is the principal quantum number of a level. The 
where J = (n - 1 ) /2; M = (n, - n, + m ) / 2 ;  6: - S,, for values of n, are given alongside each curve. 



purely Coulomb one at r--ro(n2 can be allowed for using 
the boundary condition. This has been employed frequently 
for the Coulomb systems with short-range forces10o1'; it 
should be compared with the semiclassical approach em- 
ployed in dealing with the Zel'dovich effect.'' We shall con- 
fine ourselves to just these brief comments and direct the 
reader to Ref. 13. 

The system of equations ( 1 ) generally requires numeri- 
cal calculations, but for E = 0 (which corresponds to the 
crossing of the ionization limit E = 0 by a level in the ab- 
sence of a field), they have the formal solution 

where Fo = n4g,  is the reduced field corresponding to 
E = 0, 

and r is the gamma function. Ignoring in Eq. (4)  small 
terms such as 1/6rn2, we obtain F, = F. v y 4  or 

This expression is in agreement with the numerical calcula- 
tions of 8, carried out by the method of summation of per- 
turbation theory series using the Pad&-Hermite approxi- 
mants ( P H A s ) . ~  

It is usual to determine experimentally a series of Stark 
resonances in a fixed field 8. The energy E = 0 corresponds 
to the following principal quantum number: 

n=n'O)=k8-'"+n2+ (m+l)i2+6 (n,, n,, m ) ,  (6)  

where k = (2y/9r)"2 = 0.787 in the atomic system of 
units, but its value is k = 37.5 if 8 is measured in kilovolts 
per centimeter. This simple expression is in good agreement 
with the results of numerical calculations.'' 

Equation ( 1 ) can be used to derive the l / n  expansion 
for the energies of the levels: 

where p = 2n2 + m + 1 and p = p / n  is a small parameter. 
The first term of the series E ~ E E , ~  (F) is given by 

and it corresponds to the classical limit n - W .  The correc- 
tions and E* can be expressed in terms of the function 
E,(F) and its derivatives: 

~ ~ r d ~ , / d F ,  etc.; 8 is the Heaviside step function. We find 
that E"(F) remains real for all values in the range 0 < F <  w , 
whereas for 0.3 < F <  1.0 it is a nearly linear function of F 
(Fig. 2). On the other hand, the coefficients~, (F) with k )  1 
have an imaginary part in the range F >  F..  This makes it 
possible to use the l/n expansion in describing the finite 
width of the Rydberg levels (this should be compared with a 
similar situation in the case of the Yukawa and Hulthtn po- 
t en t i a l~ '~ ) .  

Using Eqs. ( 7 )  and (9 ) ,  we can easily show that if 

FIG. 2. Scaling relationships of Eq. ( 10) in the above-barrier region. The 
experimental points (0, A ,  A )  for the hydrogen a t o ~ n ~ . ~  were obtained for 
%' = 6.5 and 8.0 kV/cm and three series of states: 0) (n - 1 ,  0, 01, 
n=23-28;A) ( n - 2 , 0 , l ) , n = 2 4 o r 2 5 ; A )  (n -2 , l ,O) ,n=24or25 .  
The data for rubidium (0 )  were obtained in fields %' = 2.189 kV/cm 
(four points on the left) and %' = 6.416 and 4.335 kV/cm (Ref. 1 ) .  The 
continuous line represents the dependence E,, ( F ) .  

F >  F.,  the following scaling relationships (accurate to with- 
in terms of the order of I/n2) are satisfied: 

where 

en,n,,-2ng (E,-ir /2) me'- te", 

r = r'nlnzm) ( 8 ) is the width of the level and e,, ( F )  can be 
found from Eq. ( 8 ) and from 

y,, ( F )  =0 (F--F.) (FdldF-l)  E: . (10') 

The scaling relationships of Eq. ( 10) are easily checked 
experimentally: if we adopt the scaled variables 

we find that the experimental points fit universal curves 
( F )  and y,, ( F ) .  The values of these functions are listed in 

Table I. 
In the case ofsubbarrier (E < 0, F <  F, ) resonances, the 

scaling relationship becomes more complex: 

~ : , ~ , , , , = 2 n ' ~ l ( ~ ' ~ ~ ~ )  

-n-~[e,,(U)+q((hp)~F)-(h/p)~q(@)]. (11) 

where v(F) = { - ( F ) ) ~ ' ~  when F <  F., p = (1  - S/ 
n)4, and the scaling factor A has its previous value. Equa- 
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TABLE I. 

tions ( 10) and ( 1 1 ) essentially contain just one universal whereas in the range F < F., we find that 
function E,, (F) ,  which is deduced from Eq. (8) .  

1 The additional terms in Eq. ( 11 ), compared with the E,'"'"'"'= - [e , ,  (n"%) +q ((fin.) '8) - (n"/n.)'q (n.'8) I ,  
corresponding relationship in Eq. ( lo),  originate as follows. 2fi2 

For F >  F., the first term in [see Eq, (9)  ] is real, whereas (14) 

the second is purely imaginary [this defines y,, (F)  and the 
width of the level]. For F <  F ,  , then E,, < 0 and, therefore, 
both terms in Eq. (9)  make contributions (of the order of 
l/n) to the real part of the resonance energy. 

The previous equations can be written in a physically 
clearer form if we replace the reduced energy E with E, and 
I', and if we introduce 

where E, , r, and g are all in atomic units. The above expres- 
sions are derived assuming p 4 n and retaining only the first 
two (nonvanishing) terms of the l/n expansion, so that the 
scaling relationships are accurate to within terms of order 
l/n2. Note that Eq. ( 6 )  follows directly from Eq. (13). 

For the hydrogen atom we have S = 0 and n. = n, and 
also f i  is independent of n,. It is clear from Eq. ( 13) that the 
positions of above-barrier resonances (n,n,m) with fixed 

( 12) quantum numbers n ,  and rn and different values of n, should 

(n. - ii = p / 2 ) 1 ) ,  where n, is the "effective" principal 
quantum number (similar to the number n - S,, which is 
introduced for the Rydberg states in the spherical basis), 
whereas S = S(n,n,m) is the quantum defect of Eq. ( 3 ) .  
Then, in the case of above-barrier ( F >  F. ) resonances, we 

be close to one another and their widths should be propor- 
tional to p (for example, I"n19090' ( 8):r"n12180' (25') 1~3 ) .  
This conclusion is confirmed by numerical calculations (see 
Figs. 2 and 3 in Ref. 13). 

It would be of interest to calculate also the separations 
BE between consecutive Stark resonances in the vicinity of 

obtain the ionization limit (E=;O), since the relevant experimental 
1 

~ l ( " l " ~ " ' ) =  _ ,cl (fi48), r ( n l n i m )  = - Pn' yc i (g48) ,  (13) data are available for hydrogen.3 
2ZZ nZ3 The use of the l/n expansion gives the expressionI6 

TABLE 11. Energies and widths of the Stark states (n,, n,, 0)  of the hydrogen atom ( = 16.8 

kV/cm) . 

Note. Here, PHA are the values of E, and r/2 calculated by summing perturbation theory series 
using the Pad&-Hermitian approximantsh; I/n is the numerical solution of the system ( 1  ); 
"exp." are the values taken from Ref. 4. 
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r/2, cm- I 

PHA I ~ X P .  

2.3 
8.9 
0.18 
1.9 
<lo-' 
5.7 
0.012 
0.28 
0.003 
1.3 

< l o - 3  

3,3 
0.002 
0.03 

0.57 
0,27 
0.11 
0.033 
- 

0 003 
<lo-& 
2.3 
0.44 
0.11 

60.72 
103.75 
126.46 
167.87 
198,54 
210.09 
238.12 
275.81 
314.81 
314.81 
35 1.42 
351.42 
386,35 
419.23 

781.64 
751.7 
721.0 
689.1 
629.0 
597.7 
566.0 
566.0 
490.92 
455.5 

2.5 
9.0 
0.14 
2.1 
1.1.10-" 
6.6 
0.016 
0.23 
- 

1.6, 2.5 
5.10-5 
3.0 
0.018 
0.032 

0.62 
0.25 
0.11 
0.04 
0.002 
0.003 
1.5.10-5 
2.1, 3.2 
0.38 
0.13 

s , 4  
108,7 
123.2 
167.8 
198.7 
212.1 
235.2 
274.2 
315.2 
315.0 
349.8 
353.8 
384.4 
419.1 

781.9 
750.9 
720.0 
689.1 
627.3 
596.3 
565.2 
559.1 
488.1 
453.8 

17,O 
16.1 
16.0 
15.1 
15.0 
142 
14.1 
13,2 
13.1 
12.3 
122 
11.4 
i1,3 
10,4 

0.13 
1.12 
2.11 
3.10 
5.8 
6.7 
7.6 
6.8 
8.6 
9.5 

18 
18 
17 
17 
16 
17 
16 
16 
15 
16 
15 
16 
15 
15 

14 
14 
14 
14 
14 
14 
14 
15 
15 
15 

58.2 
106.6 
123.5 
167.7 
196.7 
211.6 
235.3 
274.3 
315.2 
314.8 
349.8 
353.2 
384.4 
419.2 

781.8 
750.9 
720.0 
689.1 
627.3 
596 3 
565.2 
558 8 
488.9 
453 9 



where co = 3.708 and the coefficients x = x(p)  are numeri- 
cally small. For example, we find that x = 0.043 for the 
(n - 1, 0,O) states; the general expression is derived in the 
Appendix B. The dependence AE c g 3 I 4  follows from a se- 
miclassical treatment and it was found earlier in Refs. 17 and 
18, but the coefficient c, obtained in Ref. 17 differs some- 
what from that given above. 

3. We shall begin our comparison with the experimental 
results of subbarrier resonances in the hydrogen atom and 
use the recently published positions and widths of these re- 
sonance~.~ Table I1 gives two series of such resonances: those 
with n,)n, and those with nl 5 n, (in all cases we have 
m = 0, which is explained by the conditions of excitation of 
atoms by r-polarized laser r a d i a t i ~ n , ~ ) .  We used two nu- 
merical methods: PHAs and the l/n The re- 
sults obtained by these two methods agree with one another, 
thus confirming the procedure of summation of perturbation 
theory series (diverging for every value 8 #O) we used. The 
agreement between the theory and experiment can be re- 
garded as good.3' The resonance widths are not yet known 
accurately (in the case of asymmetric resonances two possi- 
ble values of r / 2  are given in Ref. 4), but on the whole they 
also agree with our calculations. 

Figure 2 shows that the scaling relationship of Eq. ( 10) 
is satisfied in the case of above-barrier resonances. The ex- 
perimental points are converted from the photoionization 
spectra reported in Refs. 3 and 4. It should be pointed out 
that these points fit a universal curve E,, ( F )  only if we in- 
clude S(n - 1, 0,O) in the scaling factor A and increase by 
unity4' the values of n given in Ref. 1. Such a change in n is 
supported by a comparison of our calculations with the ex- 
perimental photoionization spectrum1 obtained near S and 
reproduced in Fig. 3 [it should also be noted that Eq. ( 6 )  
yields n"' = 31.91. The reason for errors in Ref. 1 is clearly 
the use of fourth-order perturbation theory in the identifica- 
tion of peaks in the subbarrier range in the case of the hydro- 
gen atom, whereas in the case of rubidium the correction for 
the quantum defect S is important and must be allowed for. 
In the case of subbarrier resonances the relationship ( 14) is 
also confirmed well by the experimental results: see Fig. 2 in 
Ref. 19 (the number of experimental points in the figures 
could be increased quite readily 1. It therefore follows that 
the scaling relationships (13) and (14) are satisfied by all 

FIG. 3. Photoionization cross section of Rb obtained in a field O = 2.189 
kV/cm (Ref. 1) .  The value E = 0 corresponds to the ionization limit in 
the absence of an external electric field (8  = 0 ) .  The arrows identify the 
values of n in accordance with Ref. 1 (row A )  and our values (row C ) .  

FIG. 4. Scaling based on Eq. ( 10) for the widths of the Stark states (hy- 
drogen atom, 6 = 0 ) .  The ordinate represents the quantity 
y = (2n, + m + 1 ) - '  [n ,  + ( m  + 1 ) / 2 ] 3 1 - " " c " ~ m ) ,  where r("'"2m) ( g )  
is the width of the level in atomic units. TJe notation is the same as in Fig. 
2. The continuous curve represents y,, ( F ) .  

the atoms considered here (hydrogen, sodium, and rubi- 
dium) for different values of $. 

Figure 4 shows that the scaling relatiqnship is obeyed 
by the Stark level widths. The experimental points were ob- 
tained for hydrogen. In the F >  0.45 range the relationship 
( 10) is satisfied quite well. At values F - F .  ~ 0 . 4  there are 
deviations from the scaling relationship; in this case it would 
be appropriate to calculate a correction of the order of n-,I3 
toEq. (10). 

Finally, we shall consider the separation AE between 
consecutive resonances. A comparison of Eq. (8)  with the 
experimental results of Ref. 3 is made in Table 111. A correc- 
tion of order n-'I3 to Eq ( 15) is small ( - 1 % ), but it has the 
required sign and it improves the agreement between the 
theory and experiment. 

4. On the whole the agreement between the theory and 
experiment is good and there is no doubt that the observed 
peaks of the photoionization cross sections of atoms corre- 
spond to the quasistationary Stark states (both in the range 
E < 0 and also in a certain range of energies E > 0, as long as 
r 5 AE). Application of the l/n expansion which is charac- 
terized by a high degree of precision in the case of the Ryd- 
berg states (see also Ref. 15) makes it possible to derive the 
scaling relationships of the type given by Eq. (10) for the 
positions and the widths of resonances near the ionization 

TABLE 111. 

I AE, cm-I  
8 ,  kV/cm 

from ~ q .  ( I 5 )  I experiments 
(Ref. 3 )  
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limit. These relationships and Eq. (6) can be used to identify 
the quantum numbers n,, n,, and m. 

We regard it as our pleasant duty to thank B. M. Karna- 
kov for discussing the results, and to A. V. Sergeev and A. V. 
Shcheblykin for numerical calculations. 

APPENDIX A 

In the outer region where r >  ro the variables in the 
Schrodinger equation are separable in parabolic coordinates 
{ = r + z and 7;1= r - Z. If the effective potentials2' 

are subjected to the Bohr-Sommerfeld quantization condi- 
tions with corrections of the order of fi2 (Ref. 21 ), we obtain 
in the m = 0 case the system of equations ( 1 ) , where 

and F(z) = ,F1 (a, 0,  y: z )  is the hypergeometric function 
(for details of the calculations see Ref. 14). In the limit 2- 0, 
we find that 

whereas at the point z = 1 these functions have a singularity: 

where t = 1 - 2-10, and c, = 2'I2/3n-. 
Using the ideas put forward in Refs. 22 and 23, we can 

readily show that the system of equations (1) is valid to 
within terms of order l/n2 also when m #O (but provided 
m 4 n ) .  The difference between the atomic field and the 
purely Coulomb field (at distances r 5 r,) can be allowed for 
formally if we substitute ni -+ni - 6i in the quantization 
conditions (see Ref. 12 and also Ref. 20). Since in the ab- 
sence of a field ( = 0) the effective charges in the poten- 
tials of Eq. ( A l )  are f l  iO' and /3 iO', it follows that 
6, = 0 t0'6, and S2 = 0 P'S (for details see Ref. 13 ) . Subject 
to these qualifications, the semiclassical quantization condi- 
tions assume the form given by Eqs. ( 1 ) and apply not only 
to the hydrogen atom but also to the Rydberg states of any 
atom. Numerical solution of these equations presents no 
problems: the results are given in Table I1 and in Fig. 3. 

It was demonstrated by DrukarevZ2 that the semiclassi- 
cal approximation needs refinement if the energy of a level is 
close to the top of the potential barrier in the effective poten- 
tial U2(77). Applying the parabolic approximation and 
matching the semiclassical wave functions to the exact solu- 
tions, expressed in terms of the parabolic cylinder func- 
t i o n ~ , ~ ~  we can show that the first equation in the system ( 1 ) 
does not change, whereas in the second we have to make the 
substitution 

where ( T , , ~  are the turning points) 

In the case of the states with m = 0, this integral can be 
calculated analytically: 

In weak fields we have z2-0 and a = n/3.rrFB 1 [see Eq. 
(A4) ] ; therefore, 

i 7 i 
cp (a )  + ln (l+e-ana) = - a-s -t- . . . + -u-zn" 

2880 2 (A81 

Hence, we obtain 

which agrees with the familiar threshold behavior2' of the 
level width. It is clear from Eq. (A8) that in this case the 
difference between the refined equations and the system ( 1 ) 
is unimportant when we calculate the positions of the Stark 
levels. However, for n ~ ~ / ~ - 1  (i.e., in the range 
(F - F. ( 5 n-'l3 near F = F. ) the parameter a becomes of 
order unity and in solving the system ( 1) we have to allow 
for the correction to v2 described by Eq. (A5). We can also 
calculate the correction of order n-'I3 to the scaling rela- 
tionships of Eq. ( 10). These calculations are under way at 
present. 

APPENDIX B 

We shall consider the separation between consecutive 
resonances in the vicinity of the ionization limit: AE = (dE/  
dn), = o .  Bearing in mind that E = &/2n2, applying the scal- 
ing relationships of Eq. ( 10) to the real part of the energy, 
and expanding Eq. (B3 ), we obtain Eq. ( 15) where 

c ,  = y z/(2'6'3-9) = 0.211 andp = 2n, + m + 1. It should 
be pointed out that terms of the order of l/n in Eq. (15) 
cancel out and the appearance in this expansion of fractional 
powers of n is due to the "collision" of two classical solutions 
at F = F, and E = 0 (see Ref. 15). The coefficients are nu- 
merically small and decrease withp, so that forp > 3 we can 
ignore corrections of the order of nPzf3  in Eq. (15). These 
expressions are derived using the expansion 

which follows from Eq. (8). Here, 
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and y is a constant introduced in Eq. (4'). The rapid fall of 
the values lak I explains the approximate "linearity" of the 
graph E,, (F) in the range 0.3 < F < 1, as demonstrated clear- 
ly in Fig. 2. The values of the functions &,, (F) and y,, (F) ,  
which occur in the scaling relationships of Eq. ( lo),  are list- 
ed in Table I (for details of this table see Ref. 13). 

"Here, n,, n,, and m are the parabolic quantum numbers (m>O) related 
by n = n, + n, + m + 1. We shall use (unless specifically stated) atom- 
ic units and the same notation as in Ref. 6. 

"In the case of quantum number n,  of Eq. (6) we obtain njo' 
- ,,lo' - - n, - m - 1 = 23.0, 21.8, and 18.0 for O = 6.5, 8.0, and 16.8 

kV/cm in the case of the (n, ,  0.0) states of the hydrogen atom. These 
values of njO' (corresponding to E = 0)  are in full agreement with the 
numerical calculations reported in Fig. 3 of Ref. 6 and in Ref. 14. 

''The experimental values of the energy E are subject to an error4 of the 
order of 2 cm- I, so that the last two figures of the values of E,,, in Table 
I1 are not very significant. According to Eq. (6),  n"' = 19 for the (n - 1, 
0, 0 )  states. 

4'However, if the peaks in the photoionization spectrum of rubidium are 
assigned the values of n from Ref. 1, we obtain points which deviate from 
the E, curve in Fig. 2 by more than the experimental error (see Ref. 13). 
Therefore, the scaling relationships allow us to determine the quantum 
numbers of the resonances. 
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