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A general solution is derived for the problem of the cooperative spontaneous Raman scattering of 
light by a concentrated system of two-level atoms. The given-field approximation is valid only if 
the number of atoms in the system, M, is sufficiently small. IfMexceeds a certain critical M,, , 
qualitative changes occur in the cooperative Raman scattering. The results derived here also 
apply to an extended system of atoms which can be described in the spatially homogeneous 
approximation. Possibilities for constructing a theory of cooperative Raman scattering 
incorporating effects of the field propagation in the medium are discussed. 

Cooperative Raman scattering of light was predicted by 
Rautian and Chernobrodl and has been observed experi- 
mentally by Pivtsov et ale2 The theory which has been con- 
structed for this effect is based on the "given-field approxi- 
mati~n'"-~; i.e., it is assumed that the intensity of the Raman 
components of the scattered light is significantly lower than 
that of the incident laser light. 

In the present paper we show that in the case of a con- 
centrated system of atoms and also in the case of an extended 
system which can be described in the spatially homogeneous 
approximation1 the given-field approximation is valid only if 
the number of atoms in the atomic subsystem, M, is suffi- 
ciently small. If M exceeds a certain critical M,, z n / J  (J is 
the constant of the two-photon coupling of the light with an 
atom), qualitative changes occur in the behavior of the field- 
plus-atoms system, and the cooperative Raman scattering 
can no longer be treated as superradiance of Raman compo- 
nents in a given laser field. I-' 

If the spatially homogeneous approximation is not val- 
id, and effects of the field propagation in the medium can 
play an important role, analysis of the cooperative Raman 
scattering becomes considerably more complicated. In the 
final section of this paper we show that the problem of coop- 
erative Raman scattering in an extended system of atoms can 
be formulated in a classical two-dimensional model of statis- 
tical physics: the so-called six-vertex model.',' 

1. FORMULATION OFTHE PROBLEM 

A laser pulse with a carrier frequency o, is incident on 
a system containing M two-level atoms which have a dipole- 
forbidden transition 1 4 2  with a frequency a,,. The scat- 
tered field contains an unshifted component at the frequency 
w, and two shifted (Raman) components: a Stokes compo- 
nent with a frequency w, = w, - o,, and an anti-Stokes 
component with a frequency w,, = w, + a,,. Further- 
more, some of the incident pulse is not scattered and forms a 
transmitted laser beam. 

We assume that all the atoms are in a sphere of radius r,, 
which is much smaller than the typical wavelength of the 
light, A. The existence of the small parameter r,/A < 1 makes 
it possible to expand the field operators in spherical harmon- 
ics9 and to retain only the electric-dipole harmonic with an 
angular momentum j = 1 when the field interacts with the 
ensemble of atoms. If levels 1 and 2 are nondegenerate, a 
specification of the polarization of the incident light fixes the 
second quantum number of the dipole photons, the angular- 
momentum projection m. We assume that the incident light 

is linearly polarized. Choosing a quantization axis for the 
atoms along the field polarization direction, we then have 
m = 0. 

We distinguish three intervals along the frequency axis: 
a laser interval, a Stokes interval, and an anti-Stokes inter- 
val, which are centered on the points a,, a,, and w,, , re- 
spectively, and which have width A -7," -', where ri, is the 
length of the incident of the pulse. We use the indices L, S, 
and AS to specify that the dipole-photon operators 
b(w) = b ( ~ ~ ) ,  j = 1, m = 0) belong to one of these intervals. 
In the limit Agw,,, all three harmonics are independent; 
i.e., the field operators with different indices commute with 
each other. We combine the field operators into an isotopic 
triplet 

(1)  

with the commutation relations 

where the isospin variable cr (below we will say simply "spin 
variable") takes on three possible values: u = AS,L,S. 

The system of two-level atoms is described by the spin 
operator 

M 

where the spin operators r, ( r  = 4) correspond to the ath 
atom. 

In terms of the operators b, ( k )  the Hamiltonian of the 
system consisting of the dipole photons and the atoms is 

dk' 
- 1 - bo+ ( k )  [ o f  ,R- + o , ~ ~ + ] b ~ ~  (kf)},  (4)  

2n 

where a repeated spin index implies a summation, and the 
3 X 3 matrices 
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act in the spin space of the field. The operators representing 
the total number of particles, 

and the z component of the spin of the field-plus-atoms sys- 
tem, 

dk st R' +,f - bd (k) ~ i ~ f b ~ g  (k) , 2n 

where 

0 0 -1 

commute with the Hamiltonian. We have accordingly omit- 
ted from expression (4)  the terms w, N and w ,,S , and we 
are placing the origin of the particle energy scale at the cen- 
ter of the corresponding frequency interval. Since the length 
of the incident pulse satisfies the inequality 

by assuming that again for the components of the scattered 
light this relation is not seriously violated we can extend the 
integration in (4),  ( 6 ) ,  (7)  to infinite limits and ignore the 
frequency dependence of the coupling constants Js and J,, . 
Introducing 

we can rewritc the Hamiltonian of the problem as 
m 

The problem of the Raman scattering of light by a con- 
centrated system of atoms in the dipole (r,//Z ( 1 ) resonant 
[inequality (8) 1 approximation is thus described by an ef- 
fectively one-dimensional quantum field theory. This type of 
one-dimensionalization is characteristic of several problems 
(e.g., the theory of magnetic  alloy^^^^" and the theory of 
Dicke superradianceI2) in which a field interacts with a 
point impurity. In optical problems the role of an impurity is 
played by an atom or an ensemble of atoms concentrated in a 
small volume. In contrast with the theory of magnetic alloys, 
where the entities of interest are the equilibrium (thermody- 
namic) properties of a particle-plus-impurity system, the 
physical formulation of the problem of cooperative sponta- 
neous Raman scattering corresponds to a many-body scat- 
tering problem, in whose initial state there are only laser 
photons. Consequently, the problem can be solved exactly 
even if model (9)  is not completely integrable. 

In the case of so-called resonant Raman scattering, with 
JAs (Js, the anti-Stokes component can be eliminated from 
consideration. It is sufficient for this purpose to replace the a 
matrices ( 5 ) ,  (7) by the corresponding Pauli matrices and to 
treat the field operators as constituting an isotopic doublet 
with a spin variable a = L,S. 

Model ( 9 ) is also used to describe cooperative Raman 
scatering in an extended system of atoms if the variations in 
the "slow" field amplitudes over the length of the sample can 
be ignored and if field-propagation effects in the medium are 
also ignored.' In such a case the atomic subsystem is again 
described by a total-spin operator R, while the variable x 
takes on the meaning of the coordinate along the axis of the 
sample. Consequently, all the results derived in the theory of 
cooperative Raman scattering for an extended system of 
atoms under conditions conforming to the spatially homoge- 
neous approximation can thus be extracted from the results 
derived below for a concentrated system of atoms. 

2. ONE-PARTICLE SCATTERING PROBLEM 

Before we take up the solution of the general many- 
body scattering problem, we will examine the one-particle 
problem, in which a photon with a wave vector k 
( Ikl E k = w - wL ) is propagating along the z axis and is 
scattered by an m-fold-degenerate system of atoms at the 
point z = 0. The initial state of the field-plus-atoms system is 

(InlIn>=l, 
where 

and q, (z) is some arbitrary (normalized) wave function. The 
vacuum state is defined as the state in which there are no 
particles, and all of the atoms are in the ground state: 

In other words, we are adopting a vector corresponding to 
the smallest eigenvalue 'of a completely symmetric (with a 
spin R = M / 2 )  irreducible representation of the S U ( 2 )  
group, which acts in the state space of the atomic subsystem, 
as the vacuum state of the ensemble of atoms. If the vacuum 
state is the vector corresponding to the smallest eigenvalue 
in some arbitrary irreducible representation with a spin R, it 
is sufficient to replace M, the number of atoms, by Me, = 2R 
in all of the formulas. 

Using an expansion of the operator a, in spherical har- 
monics with a center at the point z = 0, we write it as the sum 
of two terms: 

aki = 6,* + (?)'I2 bLi (k) , 

where the operator 2, incorporates all the harmonics with 
angular momentaj22 which do not interact with the impuri- 
ty (with the ensemble of atoms), a, = 3?r/w: is the impact 
area of the dipole particles,I3 and So is the cross-sectional 
area of the incident light beam. Expression ( 1 1 ) converts 
our original problem, ( lo) ,  to the task of solving an auxil- 
iary problem of the scattering of a dipole particle: 

Iin>=bL+(k)(Rf)mlO>. (12) 

Its final state is evidently given by 

Iout>=Slin), (13) 

where the S matrix of the scattering of the particle by the 
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impurity is found by solving a one-particle Schrodinger 
equation with Hamiltonian (9).  The result islo 

In expression ( 14) and below it is convenient to treat the a *  
as operators which act on the spin index of the field opera- 
tors b, ( k ) .  Here we will write out only the relations which 
we will need in our own problem: 

These relations follow from the matrix representation of the 
a operators, ( 5).  

We rewrite expression ( 14) as the series 
m 

and we consider the square of the operator: 

State ( 12) is an eigenstate for operator ( 17). According to 
( 15a), the first two terms vanish, while the third and fourth 
[see (15b)l are equivalent to the operator 
( J : R  -R + + J$ ,R  + R  -). We can thus write 

(o+R-f o-R+)" !in>= (Js2R-R++JAs2R+R-) ' 1  in), ( 18) 

where I is a natural number. 
When a state containing only a laser photon is acted 

upon, the expression for the S matrix thus takes the simple 
form 

sin (JsZR-R+ + JAs2R+R-) "' 
C=i  

(JS2R-Rf + JAS~R'R-) ''' ' 

Taking account of the harmonics which do not interact with 
the impurity, we find the following solution of the one-parti- 
cle scattering problem: 

where the terms of the sum correspond to the transmitted 
laser light and the three components of the scattered light, 
respectively. 

The intensities of the components of the scattered light 
!re found by averaging the corresponding density operator 
I, (x) = E,+ (XI&, (x) (there is no summation over a)  over 
the Out state: 

IL(x) =4fD(x)sin4 [g(m)/21, (21a) 

where 

In expressions (21 ), 1, (x) = (a,/So)Io(x) is the intensity 
of the dipole component of the incident laser light, whose 
intensity is Io(x)  = Ip(x) 1 2 .  The derivation of these expres- 
sions is based on the relations 

which are simple consequences of the algebra of spin opera- 
tors R. 

An important point here is that we need to allow for the 
interference of the states of the transmitted and scattered 
laser light, as we can see from the fact that the following 
commutator is nonzero: 

Only when we incorporate (23) will the Out state be correct- 
ly normalized ( (Out ]Out) = 1 ), so the scattering will be 
unitary. As usual in scattering theory,I3 we are assuming 
here that the incident beam has a finite cross section and that 
the measurements of the scattered field are carried outside 
this cross section. For this reason, the nonvanishing commu- 
tator (23) need be taken into account only for the operators 
6, which appear in the definition of the final state of the 
scattering problem, while the operators 6, which figure in 
the operator of a measurable physical quantity must be as- 
sumed to commute with the operators of the transmitted 
wave, a, .  

As we will see below, the region of parameter values of 
the problem which is of physical interest is 

The intensity of the scattered light is thus substantially dif- 
ferent from zero only if the system of atoms is fairly highly 
excited (m - M /2). For macroscopically large values of M 
the terms 

are negligibly small and can thus be omitted from expres- 
sions (2 1 ) . As a result we find 

If the scattering is by an unexcited atomic subsystem 
(m = 0),  we find from (21) 

As expected, relations (26) reproduce the known result that 
the scattering for the unshifted and shifted components is 
respectively coherent ( a M *)  and incoherent ( a M).  This 
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conclusion was reached in Ref. 9 by taking an average of the 
intensity of the scattered light over the random (for each 
atom) phases of the coupling constant J,. In the present 
paper we are assuming that the phase factors are incorporat- 
ed in the definition of the atomic operators r,' ; this assump- 
tion does not alter the commutation relations for either these 
operators or the total-spin operators R ' . In our approach, 
relations (26) are thus a natural consequence of the algebra 
of spin operators. 

3. MANY-BODY SCATTERING PROBLEM 

The shape of the incident laser pulse plays a completely 
insignificant role. This property follows from the fact that 
the S matrix is independent of the momentum of the parti- 
cle," and it evidently persists in the many-body case. The 
theory of cooperative Raman scattering can thus be con- 
structed for an incident pulse of arbitrary shape. 

In order to avoid extraneous and tedious intermediate 
calculations in the derivation of the physical observables of 
the scattered field below, we use the fact that the S matrix 
does not depend on the momentum of the particle in order to 
transform from a continuous description of the field to a 
discrete model. The initial state of the many-body scattering 
problem in terms of the node operators a,,aj+, with the com- 
mutation relation7 

is then written in the form 

where the number of nodes, N, is equal to the average num- 
ber of photons in the incident light: 

Singling out the dipole harmonic in the node creation 
operator, 

we can again reduce our original problem, (27), to that of 
solving a set of auxiliary problems with an in-state: 

This state contains a certain number of dipole particles, 
between 0 and N. The dipole harmonic of the light is de- 
scribed by a triplet of fields with the commutation relations 

[ b o d ,  burr I = 6oN6j17 

and the scattering of particle j by the impurity corresponds 
to the S matrix 

where the operators aj act in the spin space of node j. 
The final state of the auxiliary problem is thus given by 

the expression 

Taking account of the field harmonics which do not interact 
with the impurity, we find 

where 
'Is 

+ = a + + ( )  [ ( A - ~ ) ~ ~ ~ + ( I ~ ~ ~ + + I , , ~ : ~ , R - ) C I .  
(2%) 

The unitarity of the scattering of the dipole particles leads to 
a commutation relation for the d operators: 

[dj,  dl+] =6,1 . 
in the discussion below, the vanishing of the vacuum expec- 
tation value (d ,t d,) makes it convenient to use 

C E ~ ~ , + = G ~ ~  (29) 

as the unitarity condition. 
In our problem of cooperative spontaneous Raman 

scattering, all of the incident particles are in the same spin 
state. This circumstance not only simplifies the expression 
for the S matrix but also eliminates many-body effects in the 
scattering which determine the thermodynamic properties 
of exchange  model^.'^^" Expression (28) corresponds to a 
sequential and independent scattering of particles by the im- 
purity. As a result of the scattering, the state of the atomic 
subsystem changes; i.e., the particle of index n + 1 is scat- 
tered by the impurity whose state arose as a result of the 
scattering of the preceding n particles. If relaxation pro- 
cesses in the system of atoms do not have time to destroy the 
"memory" of the scattered particles during the incident 
pulse, of length ri,,, the amplitude for the scattering of a 
particle will depend on its index. It is this circumstance 
which makes the scattering process "cooperative." 

4. CALCULATION OF PHYSICAL OBSERVABLES; 
RECURRENCE RELATIONS 

The physical characteristics of the scattered light are 
determined by averaging the corresponding node operators 
over the Out state (28). At this point we will simply evaluate 
the one-node correlation functions, which determine the in- 
tensity of the components of the scattered light: 

where n is the index of the node; a = L, S, or AS; and Io(n)  is 
the intensity of the incident light. In the second of these 
equations we have made use of the unitarity of the d opera- 
tors (29). Furthermore, we calculated the expectation value 
of the z component of the spin of the impurity (the popula- 
tion of the ensemble of atoms) which arises as a result of the 
scattering of n photons: 
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ot c ( m )  = - [ Is2  ( , + I )  (M-m) 
So 

(30b) 
The angle brackets in (30) mean the expectation value over 
the vacuum state. 

We switch to a continuous description by replacing the 
node index n by the function 

Let us consider the expectation value 

of the "Heisenberg" operator 

where @, + , is some arbitrary node operator ("Schrodinger 
operator"). Expanding the d operators at the far left and at 
the far right in (3  1 ) in accordance with definition (28b), 
and carrying out the corresponding calculations, in which 
we make use of expressions (22) and (23). we find the fol- 
lowing recurrence relations for the quantities Q r: 

'Ji 
Q ~ + ~ = Q . ~  + - {-sin2!g ( m )  ] Qnm so 

(32) 

where the function g(m ) is defined in (2 Id).  Relations (32) 
are determined exclusively by the structure of the d opera- 
tor; they do not depend on the form of the node operator. 
The structure of a q operator determines only the initial con- 
dition 

which is required for a solution of the recurrence relations 
(32). As Q,(m) we evidently need to use the results of the 
solution of the one-particle problem for the intensities of the 
components of the scattered light, (21 ), or the expression 

in determining the population of the atomic subsystem, 
(30b). 

We restrict the analysis here to only those solutions of 
recurrence relations (32) which are suitably smooth- 
which vary only slightly over one lattice step, n -n + 1, 
m - m f 1. The initial conditions are evidently smooth func- 
tions of m. Accordingly, treating Q(n,m ) as a function ofthe 
continuous variables n and m, we switch from the recurrence 
relations to a Cauchy problem for the equation 

with the initial conditions 

Q (n,  m )  In-O=Qo(~)- ( 3 4 ~  

In the region of physical interest, (24),  we can discard the 
small terms ( - M - I )  from (34b) and rewrite the function 
c (m)  as 

where u (m)  is defined in (25c). Correspondingly, we can 
use expressions (25a) and (25b) (without the factor I, ) as 
an initial condition. 

To evaluate one-node correlation functions (30) it is 
thus sufficient to solve the Cauchy problem (34a), (34c), 
(35); restricting the discussion to scattering by an initially 
unexcited atomic subsystem for the discussion below, we set 
m = 0 in the solution. As a result we find 

JsZ IsP 
18 ( t )  = -2 Z A S  ( t )  = 

l,2+lAs2 
Z D ( t ) s i n Z [ u ( m ( t ) ) l ,  (36b) 

J As 

where the function m( t )  is determined implicitly by the 
equation 

ls2-lA~2 dm' J dtfZD (t') = j " 
JsX+J~s2__  s in2[u(m') l  ' 

The expressions for the correlation functions in the many- 
body problem are completely identical to the corresponding 
expressions for the one-particle problem of the scattering by 
an m-fold-degenerate impurity, (25). The only manifesta- 
tion of the many-body nature of the problem is the time de- 
pendence of m or, more precisely, the dependence of m on 
the number of photons which have been scattered by the 
time t. 

The absence of many-body effects can also be seen in the 
structure of the multipoint correlation functions. For exam- 
ple, let us evaluate the two-point correlation function 

Q(n, n') =(QnQnr)t (37) 
h 

where the Heisenberg operator Q, is given by (31b). The 
recurrence-relation method described above for the quanti- 
ties Q(n,nl,m) leads to an equation for the function 
Q(n,nl,m): 

' d Q  + - -  dQ dQ c ( m ) -  = 0,  
dn' dn d m  

with the initial condition 

Q(n, n', m )  ln,-o=Qo(m)Q(n, m ) .  (38b) 

The function Q(n,m) here is evidently a solution of the 
Cauchy problem (34); i.e., the function Q(n,m), which de- 
termines a single-point correlation function, plays the role of 
an initial condition in Cauchy problem (38) for the two- 
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point correlation function. Consequently, after a switch to a 
continuous description in which we make use of (30c), we 
can write the correlation function (37) as the product 

Q ( t ,  t ' ) = Q ( t ) Q ( t 8 )  

of one-point correlation functions. It is easy to see that to the 
extent that it is legitimate to transform from recurrence rela- 
tions to a differential equation any multipoint correlation 
function can be broken up into a product of one-point corre- 
lation functions. 

Finally, we note that only in the case Js > JAs is there an 
important change in the population of the atomic subsystem 
in the course of scattering by an initially unexcited system of 
atoms. Consequently, we will use solutions (36) below only 
in this-physically interesting--case. 

5. CRITICAL PHENOMENA 

All the physical characteristics of the scattered field 
and the population of the atomic subsystem are determined 
by the one function m ( t) ,  the equation for which, (36d), can 
be rewritten as 

with the asymptotic condition 

The right side of Eq. (39a) is positive definite, so m(t)  is a 
monotonicallly increasing, bounded (0 < m < M) function. 

The integrals of the corresponding components of the 
intensity of the scattered light, which determine the total 
numbers of laser photons, Stokes photons, and anti-Stokes 
photons, 

can be put in the following form when we use (39): 

where p = m (t-. + co ) is the maximum value of the popu- 
lation of the system of atoms, which, as we will see, is not 
always the same as the number of atoms, M. 

In order to determine the time scale of the changes in 
the correlation functions, we switch to the function 
u(t) = [ (Jf  + J:,) x m ( t ) ( M -  m(t) ) ]  ' I 2  [see (25c)I 
in Eq. (39): 

where 

M 
u,, ( M )  = -(1s2+JAs2) ''I 

2 (42) 

is the maximum value of the function u(m), which is 
reached at m = M/2. Replacing the function ID (t )  in (41 ) 
by 

m 

i ND 
Z D  5- d t I D ( t ) - - ,  

'Fin-W 'Fin 

where ND is the total number of dipole photons in the inci- 
dent flux, we find an expression for the time scale in the 
problem: 

The parameter range (J: - J:, )NDM( 1 is thus of no 
physical interest. 

The nature of the scattering process and the time evolu- 
tion of the population of the system of atoms are determined 
completely by the quantity urn,, (M). 

1. We first consider the case urn,, (1. Over the entire 
range the function u(t)  is much less than 1 in this case, so we 
can replace the function by the sine of its argument every- 
where. It is the satisfaction of the inequality urn,, ( 1 which 
makes the scattering efficiency low (I, (ID ) and thus 
makes the given-field approximation valid. The solution of 
Eq. (36d) in this case is trivial: 

The expressions for the intensities become 

where the parameter to = ( rC /2) ln Mcharacterizes the shift 
of the maximum values of I ,""" = max I, ( t )  after the initial 
time t = 0. Expressions (44) have been written here for the 
case of a step-shaped incident pulse: ID ( t )  = I, 8(t) .  With 
JAs = 0 the expression for the Stokes component of the radi- 
ation becomes the same as the known results of the theory of 
cooperative Raman scattering in the given-field approxima- 
tion.' The solutions have no oscillatory structure, regardless 
of the parameter values in the problem. 

The intensity of the unshifted component of the scat- 
tered light is proportional to the fourth power of the number 
of atoms. This result applies specifically to a concentrated 
system; it cannot also be applied to the case of an extended 
system, for which there is no need to be particularly con- 
cerned about the behavior I, ( t) ,  since conservation of the 
number of photons tells us that we have 

zL( t )  =zO(t)-zS ( t )  -1A8 ( t ) ,  

and this relation does not hold for a concentrated system. In 
the scattering process the system of atoms becomes com- 
pletely inverted; i.e., 

and the values IT are reached at m = M/2. The total 
numbers of Stokes and anti-Stokes photons are proportional 
to the number of atoms, M [see (40a) 1, while the number of 

2008 Sov. Phys. JETP 67 (10). October 1988 V. I. Rupasov 2008 



FIG. 3. Time evolution of the intensity of the unshifted component of the 
FIG. 1 .  Maximum intensity of the Stokes component of the scattered scattered light at M >  M,,. 
light, IF as a function of M. 

laser photons, (40b), is proportional to M ': 
the incident light. The maximum value of the function m( t )  
is found from the condition u (p )  = T: 

2. As the number of atoms in the system is increased, the F~~ M,M,, the value ofp and, along with it, the values of 
growth of the maximum of the scattered-light intensities, Ns and NA, isee (40a) decrease in inverse proportion to 
I (M), deviates from a power law: the number of atoms, M: p = M,2,/4M. At the point 

JB' Js2 M M = M,, , the function p (M)  is discontinuous (Fig. 2)  : 
I ~ ~ ~ ~ -  - , 1n-7 = I .  .inz [ - ( J . ~ + J , ; ) % ] ,  (47a) 

JAE JsZ+JA82 2 p (Mcr-0) -P ( Mcrf 0) = M I L  (51 )  

Expression (47a) holds up to M = M,: 

For M >  M,, the increase in the maximum intensities of the 
shifted components comes to a halt (Fig. 1 ) . These values 
are reached at the points m = mA'32', where r n ; l v 2 '  is found 
from the condition u(M,) = ~ / 2 :  

The pulses thus become double-humped, and the dis- 
tance between humps increases with increasing M. As be- 
fore, the atomic subsystem becomes completely inverted in 
the cqurse of the scattering (p = M )  , but the number of laser 

lo,~)ns, NL , is a complicated function of M [see (40b) 1. 
3. A qualitative change in the scattering occurs at the 

value M = M,, , where u,,, (M,, ) = n-: 

The value m = p  is reached asymptotically in the limit 
t + + a,. In this case we have u ( t --, + a, ) + B, so the intens- 
sities of the shifted components of the scattered light have 
the shape of the pulse, and they vanish exponentially, while 
the intensity of the unshifted component tends toward the 
unitary limit13 (Fig. 3 ) : 

Consequently, for M >  M,, the intensity I, ( t )  increases 
from 0 at t = 0 to 41, in the limit t+ + CO. The integral in 
(40b) diverges, and we find NL -. co as M-M,, - 0 (Fig. 
4) .  Correspondingly, expression (47b) is valid only at 
M<M,,. 

6. EXTENDED SYSTEM OF ATOMS; SIX-VERTEX MODEL1' 

We turn now to an analysis of the problem of coopera- 
tive Raman scattering in an extended system of atoms, 
which has a length I >  T,, so the spatially-homogeneous ap- 
proximation must be abandoned. We restrict the analysis to 
the case of resonant Raman scattering (J,, = 0, Js = J) un- 
der conditions such that a one-dimensional model with uni- 
directional propagation of particles is ~alid.~-"or this case 

For M >  M,, the atomic system is not completely inverted, 
regardless of the intensities and regardless of the duration of 

FIG. 2. FIG. 4. Total number of unshifted scattered photons, N, , versus M. 
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we rewrite the Hamiltonian of the problem in the form 

where E: = (EL+ (x), E 2 (x) ) is an isotopic spinor made 
up of the operators representing the "slow" amplitudes of 
the laser field and the Stokes field, T *  are Pauli matrices, 
and {x, ) are the coordinates of the atoms along the axis of 
the sample (the x axis; 0 <xu < I ) .  

In the classical limit and in the limit of a continuous 
description of the resonant medium, the equations of motion 
for the dynamic variables of the field-plus-atoms system are 
the same as the equations which were studied in Refs. 3-5 in 
the given-field approximation and also in Refs. 14-17 by the 
method of the inverse scattering problem.I8 In our ap- 
proach, it is obvious that the model is integrable, since its 
Hamiltonian, (53), is the same (aside from some distinc- 
tions which are unimportant for the analysis below, namely, 
the Bose statistics of the particles and the multiple impuri- 
ties) as the Hamiltonian of the anisotropic Kondo model, 
whose integrability was established by Wiegmann.I9 We can 
thus apply to cooperative Raman scattering several elegant 
mathematical techniques which have been developed in the 
theory of integrable quantum-mechanical  system^.^.^.^^," 
The initial state of the scattering problem is of the form 

where again we are using the node description of the field, 
and we are assuming that there are no particles in the vacu- 
um and that all the atoms are in the ground state. The scat- 
tering of the jth particle by the ath impurity is described by 
the S m a t r i ~ ' ~ . ' ~  

where b = cos J, c = i sin J, and 8 means the tensor prod- 
uct. 

We consider a lattice consisting of N horizontal and M 
vertical lines, which correspond to photons and atoms, re- 

FIG. 5. 
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spectively (Fig. 5 ) .  We assume that the spin variables of the 
particles [ r j  = + 1/2) and of the impurities (r, = + 1/2) 
are given on the edges which are adjacent to the point of 
intersections of the lines, with which we associate S matrix 
(55). We represent the spin variables by arrows in the fol- 
lowing way: An arrow directed to the right corresponds to 
the case in which the spin of the particle is up (a  laser pho- 
ton), while an arrow directed to the left corresponds to the 
case in which the spin of the particle is down (a  Stokes pho- 
ton). The direction of the arrows on the vertical lines is the 
same as the direction of the spin of the impurities. With the 
leftmost edges of the six-vertex model which has been de- 
scribed7.' we associate the initial state of the system of parti- 
cles (all the arrows point to the right), and with the bottom- 
most edges we associate the initial state of the atomic 
subsystem (all the arrows point down). The problem of the 
theory of spontaneous cooperative Raman scattering is to 
calculate either (a )  the probabilities for the various direc- 
tions of the arrows at the rightmost edges, in order to deter- 
mine the state of the light which has passed through the 
medium, or (b) the probabilities for the various directions of 
the arrows at the uppermost edges, in order to determine the 
state ofthe atomic subsystem after the laser pulse has passed. 

We treat the S matrix as a 2 x 2 matrix which acts in the 
spin space of the particles: 

The scattering of the jth particle by the atomic subsystem is 
then described by a scalar product of matrices (56) (a  
monodromy matrix) : 

When it acts on initial state (54), the monodromy matrix L, 
reduces to the matrix 

The final state of the scattering problem thus takes the form 

The structure of a U matrix is completely analogous to 
that of an S matrix in the case of a concentrated system, 
( 19a), but now the operators A and C-in contrast with the 
corresponding operators in ( 19b) and ( 1%)-do not form a 
closed algebra. The effect is of course to substantially com- 
plicate the problem of calculating the correlation functions 
for the out state (59). 

We introduce an S matrix which depends on some sca- 
lar parameter A, 

and which is the same as (56) at the point A, = (T + i77)/2, 
where cosh 17 = l/cos J. For various values of A,  the ele- 
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ments of the monodromy matrix L (A), given in (57), form a 
closed algebra.7,8*10 The problem of cooperative Raman scat- 
tering thus reduces to one of calculating correlation func- 
tions for the state 

and then taking the limit {A,}- (r + i 77)/2. 

7. CONCLUSION 

In this paper the ensemble of two-level atoms is de- 
scribed by the spin operator 

which is the sum of the spin operators of the individual 
atoms. This assertion is correct either for a concentrated 
system of atoms (Dicke geometry, rO/A < 1 ) or for an ex- 
tended system of atoms, provided that the spatially-homoge- 
neous approximation is valid, and provided that the length 1 
of the system is much shorter than the length 7, ofthe Stokes 
and anti-Stokes pulses. These two physically different situa- 
tions are described by mathematically equivalent models, so 
all the results pertaining to the spatially homogeneous mod- 
elz0 can be extracted from the results of the present paper. 

A significant fraction of the experiments which have 
been carried out on cooperative Raman scattering can be 
described in the spatially homogeneous approximation. Ac- 
cording to estimates by Zab~lotskiY,~ for example, the effec- 
tive length of the scattering volume in their experiments was 
1- 10 cm, while the length of the Stokes pulse was 7, -- (5- 
15).  s, so the parameter 1 /cr, ranged from 1/15 to 1/ 
45. 

In the same experiments, the maximum intensity of the 
Stokes component, I,""", reached 70% of the intensity of the 
incident laser light, I,. From these figures we can estimate 
the value of the parameter u,,, (M) = J M / 2  in the experi- 
ments of Ref. 5. According to (47a), in this case we have 
sin2u,,, = 0.7, so u,,, was on the order of ~ / 3 .  Conse- 
quently, in order to observe the critical phenomena in coop- 
erative Raman scattering predicted in Ref. 20 and the pres- 
ent paper it is sufficient to increase the value of the 
parameter u,,, by a factor of only three from the value 
achieved in the experiments of Ref. 5. 

In the case of a Dicke geometry (rO/A< 1 ), the cooper- 
ative Raman scattering acquires several interesting new fea- 
tures, which stem from interference between the transmitted 
laser light and the scattered unshifted component. The pos- 
sibility of an experimental implementation of this phenome- 
non in the Dicke geometry requires a separate discussion, 
but a recent realization of the superradiance effect for a con- 
centrated system of Rydberg atoms raises the hope that the 
same effect can be achieved in our case. 

In the theory derived here for cooperative Raman scat- 
tering the physical quantities are determined through a solu- 
tion of the recurrence relations (32).  As we have shown 
here, a transformation from the recurrence relations to the 
differential equation (34a) results in the neglect of correla- 
tion effects. All of the multipoint correlation functions split 
up into a product of single-point correlation functions. It is 

also obvious that Eq. (34a) is good for calculating only aver- 
age statistical values of physical observables; information 
about their fluctuations is lost in the transformation from 
recurrence relations to a differential equation. In order to 
describe the correlation and statistical characteristics of the 
scattered light we thus need a more careful analysis of the 
recurrence relations (32) for single-point correlation func- 
tions and also of the recurrence relations for multipoint cor- 
relation functions, which can be derived easily by the meth- 
od described here. One finds a hierarchy of recurrence 
relations, in which an n-point correlation function serves as 
an initial condition in the relation for an (n + 1 )-point cor- 
relation function. We do not rule out the possibility that such 
an analysis will also make it possible to explain and describe 
the oscillatory structure which has been observed in the en- 
velope of the Stokes pulses in several experiments. 

If the length I of the system of atoms is greater than the 
length cr, (1 > cr, ) scale of the problem, we must abandon 
the spatially homogeneous approximation and incorporate 
the effects of the field propagation in the medium. We have 
shown in this paper that the quantum-mechanical analog of 
the model which has conventionally been used in the semi- 
classical theory of cooperative Raman ~cattering'-'.'~-'~ is 
equivalent to an integrable Kondo model with an anisotrop- 
ic exchange intera~tion. '" '~ The corresponding multiparti- 
cle scattering problem can be formulated in the six-vertex 
model,'.' so the final state of the scattered field, (61 ) can be 
determined; here the operators A (A) and C ( A )  form a closed 
algebra.7~x.'0 Again in this case, the recurrence-relation 
method leads to closed expressions for the physical observa- 
b l e ~  and to differential equation (34a), where the coefficient 
c ( m )  is given by 

< (B)  m+l ( C )  
c (m)  = < ( B )  " (C) "> 

Here the angle brackets mean the expectation value over the 
initial ("ferromagnetic") state of the atomic subsystem. 
Korepin" has recently proposed a method for evaluating 
scalar products of the type 

m m 

with an arbitrary choice of rapidities {4 ),&, >. That devel- 
opment raises the hope that it will be possible to successfully 
complete the systematic derivation of an exact quantum-me- 
chanical theory of the cooperative Raman scattering of an 
extended system of atoms even when the spatially homoge- 
neous approximation is inapplicable. 

"The results of this section of the paper were derived in collaboration 
with A. I. Maimistov. 
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