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It is shown that interaction between a moving monopole with atoms located along its trajectory 
renormalizes the effective charge of the monopole that determines the field far from the 
trajectory. This is in fact the physical reascn why the true response functions in monopole 
electrodynamics differ from & ( a )  andp  (w). A model medium consisting of widely spaced 
quantum oscillators is considered, in which the renormalization changes the magnetic charge by a 
factorp(w), so that, in particular, the equation for the Cherenkov-radiation intensity acquires an 
additional factorp2(w). A general estimate of the correction to the monopole charge is derived 
and shows that the renormalization in question is due mainly to diamagnetic effects. 

1. INTRODUCTION 
One of the deductions of present-day elementary-parti- 

cle theories is that magnetic monopoles can e ~ i s t , ' , ~ . ~  al- 
though they have not been observed in experiment so far. A 
number of proposed methods of monopole detection are 
based on various effects due to electromagnetic interaction 
between a magnetic charge and a medium (see, e.g., Kef. 4).  
The analysis of this interaction usually begins with the Max- 
well equation to which the magnetic-charge and current 
densities are added. The medium is then described by a di- 
electric constant E(W)  and a magnetic permeability p (co), 
determined from linear material equations. This approach 
was not subject to doubt for a long time, until a recent paper5 
revealed a fundamental difficulty encountered when an at- 
tempt is made to determine the magnetic field of a monopole 
moving in a continuous medium. It has been found that the 
Maxwell equations can be closed by many methods that are 
fully equivalent in monopole-free electrodynamics, but lead 
to different results for the field of a magnetic charge.'.' Since 
the choice of the particular forms of the material equations 
was in no way determined prior to publication of Ref. 5, it 
becomes necessary to review the main topics of magnetic- 
monopole electrodynamics. 

A microscopic determination of the correct form of the 
material equations in linear monopole electrodynamics was 
the task undertaken in Ref. 5. Its implementation, however, 
calls for determining the response to fields that cannot be 
expressed in the usual manner in terms of a scalar and a 
vector p~tential.~.' If, on the other hand, the monopole field 
is described by a singular Dirac potential,' linear-response 
theory cannot be used, since the magnetic charge is quan- 
tized, and such a potential cannot be regarded as a small 
perturbation. 

A somewhat different approach is proposed in the pres- 
ent paper. It is based on an analysis of the spatial distribution 
of the current induced in a medium by a moving monopole. 
We confine ourselves to the important particular case of a 
monopole in uniform rectilinear motion, and consider a me- 
dium with small spatial dispersion. In the actual calculations 
we use a model medium consisting of widely spaced and ri- 
gidly secured harmonic oscillators. These constraints allow 
us to explain many qualitative peculiarities .of the problem 

without additionally assuming a weak interaction between 
the monopole and the medium. 

We shall show that separate account must be taken of 
the contribution made to the induced current by atoms lo- 
cated in the immediate vicinity of the monopole trajectory. 
The point is that the atoms through which the monopole 
passes become excited and acquire an additional magnetic 
moment, so that the moving magnetic charge leaves in the 
medium a wake in the form of a "string" of magnetization. 
The current corresponding to this magnetization has the 
same structure as the current of a semi-infinite thin solenoid 
known to simulate the field of a monopole. Allowance for the 
additional current localized near the monopole trajectory 
leads therefore to a distinctive renormalization of the mag- 
netic charge, and in the general case the renormalized charge 
g*(w) begins to depend on frequency. Also contributing to 
this frequency dependence are excited-atom relaxation pro- 
cesses that limit the length of the magnetization wake. 

This renormalization effect changes the familiar results 
for the field of a magnetic charge in a medium. The expres- 
sion for the Cherenkov-radiation spectral density differs 
from I. M. Frank's equation9 in that the square of the charge 
is replaced by lg*(w) 1'. The earlier expression remains in 
force at low frequencies for which the radiation wavelength 
exceeds greatly the magnetization-wake length, and also 
when the monopole moves in a channel cut through the me- 
dium and there is no extraneous current. It is curious that, in 
contrast to radiation by an ordinary charge, a channel in- 
fluences the monopole radiation even if the channel radius is 
much smaller than the wavelength. 

The approach proposed thus reduces the problem of 
correctly closing the Maxwell equations to the problem of 
calculating a function g* (w) that describes the interaction 
between a monopole and atoms directly in its path. So far, 
the renormalized magnetic charge has been calculated expli- 
citly only in a few simple cases. Thus, for a system of quan- 
tum oscillators we find in the present paper that 
g*(co) = ,u(w)g. It can be shown that the same relation 
holds also in classical-particle systems. In these models, 
however, p ( w )  differs from unity only because of the dia- 
magnetism, and the magnetic-charge renormalization is 
therefore actually small. A simple estimate made in the con- 
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cluding section of this paper shows that in general the 
change of the monopole effective charge is indeed due to the 
diamagnetic effects. 

2. RENORMALIZATION OF A MAGNETIC CHARQE IN A 
MEDIUM 

We consider a magnetic monopole, with chargeg, mov- 
ing in a medium uniformly with velocity v in a straight line. 
The electromagnetic field produced by the monopole can be 
obtained with the aid of the Maxwell equations2' 

1 .  1 
rotB--E=-j, divE=p, 

C C 

1 .  1 
rot E + - B = - - j,, div B=p,, 

C C 

where 

and p and j are the charge and current densities induced in 
the medium by the fields E and B. If we neglect spatial dis- 
persion, the connection between the Fourier components of 
the induced charge and current and those of the field to first 
order in the field take the form 

pw ( r )  = ( 1 - E  ( 0 ) )  div E,(r), 
(2)  

where E and p are the dielectric constant and the magnetic 
~ermeability.~' This method of closing Eqs. ( 1 ) corresponds 
to the materlal equations D = EE and B = pH customarily 
used in the analysis of the Cherenkov radiation of a mono- 
pole9." and of the total losses in the rnedi~rn.".'~ Of course, 
Eqs. ( 2 )  are not valid near a monopole, where the fields 
cannot be regarded as weak and slowly varying in space. 
This circumstance is as a rule not regarded as significant, 
and relations (2 )  are extrapolated to all of space, including 
the field source. When it comes to Cherenkov radiation, a 
justification for this extrapolation can be the intuitive notion 
that in a region much smaller than the radiation wavelength 
the changes of the properties of the medium have practically 
no effect on the radiation intensity (as first set fourth by L. I. 
Mandel'shtam). We shall see below, however, that a mag- 
netic charge moving in a medium can leave along its trajec- 
tory an excited-atom wake not accounted for by Eqs. (2)  
and influencing the radiation intensity if the wake length is 
comparable with the wavelength A. It is therefore necessary 
to consider separately the response of the medium located 
near the monopole trajectory. 

We investigate first the general expression for the in- 
duced-current correction j(r,t) which we define as the dif- 
ference between the exact averaged current density and the 
linear response (2) .  The arbitrary current density can be 
parametrized by three scalar functions. Under stationary 
conditions, with allowance for the symmetry of the problem 
(in which only one vector v is specified), it is convenient to 
use the following parametrization: 

where n = v/V, Q(r) is the correction to the charge density 
(2), while M( r )  and T(r) are two unknown functions. In a 
cylindrical coordinate frame with Z axis along the monopole 
velocity, taking Fourier transforms with respect to time and 
factoring out next from all the functions the common z-de- 
pendence [the factor exp(iwz/v) 1, we obtain from ( 3  ) 

If it is stipulated that M, (p)  and T, ( p )  tend to zero as 
p-  cs , then Eqs. (41, given the current, define uniquely all 
the scalar functions introduced to parametrize Gj(r,t) . 

The physical meaning of Eq. (3)  is quite clear: the three 
terms of the current describe respectively the additional con- 
tributions of the induced magnetic-moment, toroidal-mo- 
ment,13 and charge densities concentrated near the source 
and unaccounted for by the linear equation (2) .  We assume 
hereafter in the approximate estimates that the scalar func- 
tions contained in (3) differ noticeably from zero only at 
distances from the monopole trajectory on the order of the 
atom size a. 

Let us dwell first on the last two terms of (3).  In con- 
trast to the first, which is seen from (4)  to add an azimuthal 
component to the current, they should be present also when 
an ordinary charge moves through the medium. In a dielec- 
tric, however, the total charge corresponding to the Q(r) 
distribution is zero, and the contribution of the dipole and 
higher electric moments to the magnetic field, as well as the 
contribution of the moving toroidal moment, is small com- 
pared with the field of a charge or a monopole i f p s a .  For 
example, the Cherenkov radiation from a dipole with d--ea 
is small by virtue of ( a / A )  4 1. The radiation due to the to- 
roidal moments also contains this parameter. l 4  The custom- 
ary neglect of the additional current 6j(r,t) in the analysis of 
fields at large distances from a charge trajectory is therefore 
apparently well justified. 

To understand why similar reasoning does not hold in 
general for the first term of ( 3 1, we consider a medium con- 
sisting of isolated atoms in the ground state with zero angu- 
lar momentum. The interaction between a slow monopole 
(of velocity lower than that of the atomic electrons) and 
such a medium was considered in Ref. 8. It was shown there 
that atoms through which a monopole passes become excit- 
ed and acquire an angular momentum a 2qfi(q = eg/& is a 
half-integer) directed along the Z axis. The cause of this 
momentum can be readily perceived to be the twisting of the 
atomic electrons by the moving-monopole field (whose 
form, apart from the sign, is the same as that of the magnetic 
field of a moving charge). 

Since the excited atoms thereby acquire a magnetic mo- 
ment, the monopole should be followed by a magnetization 
wake whose thickness depends on the monopole velocities 
and is less than the atom size at low velocities. Disregarding 
the atomic relaxation, the current corresponding to this 
magnetization can be approximated roughly by 
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where m (p)  is some rapidly decreasing function. This is pre- 
cisely the current described by the first term of Eq. ( 3 ) .  A 
fast monopole will interact much more strongly with the 
medium and ionize the atoms, but the action of its electric 
field, meaning also the general structure of the additional 
current (5),  remains the same as before. Recognizing that 
the Fourier transform ofthe 8 function is equal to i/(w + iO) 
and comparing (5)  with (3)  and (4),  we get 

'M, ( p )  = i m ( p ) [ (  o+iO) (6)  

at low frequencies. It will be shown below that it is just the 
appearance of the factor l/w in M, (p)  which makes the 
contribution of the current (3)  to the field substantial at 
large distances from the monopole trajectory. The singular- 
ity in (6)  as w -0 is due, of course, to the infinite length of 
the wake, and is removed when relaxation is taken into ac- 
count. Nonetheless, the magnetic-moment relaxation times, 
which depend on the actual model of the medium, can be 
quite large,4' so that there are no apriori grounds for regard- 
ing the contribution of the first term in the additional cur- 
rent ( 3 )  to be small. 

It can be assumed in the analysis of fields far from the 
moving monopole that M, (p)  -S(p). Then taking only the 
first term of (3)  into account, we write for the induced cur- 
rent 

j.(r)=-iw(e(0)-1)E.(r)+c(l-~-~(o))rot B.(r)  

where y (w ) is defined by the integral5' 
co 

The new response function y(w) , which describes the mono- 
pole interaction with a medium close to its trajectory, can 
depend in general both on the charge of the monopole and on 
its velocity. A explicit determination of the function y(w) 
calls for a microscopic calculation. 

Substituting the induced current ( 7 )  in the Maxwell 
equations ( 1 ), we obtain for the transverse electric field the 
equation 

o 1  
AE.  ( r )  + ep 7 E. ( r )  = - g' (w)ro t  [n6 (p) ei"'"] , 

C 
(9)  

where 

Equation (9) has exactly the same form as that for the field 
of a monopole in a medium described by the linear material 
equations ( 2 ) ,  but the role of the monopole charge is now 
assumed by a function g* (w ) that depends on the properties 
of the medium near the monopole trajectory. Since j, = 0 
and B, ( r )  = (d im)  V x E,, ( r )  outside the trajectory, the 
monopole magnetic field far from the monopole is also deter- 
mined by the charge g* (a). 

Allowance for the additional current (3)  leads thus to a 
distinctive renormalization of the magnetic charge in the 
medium. We refer here, of course, not to the change of the 
true magnetic charge defined by the equation V-B = p, , but 

to the renormalized effective charge that determines the 
fields at large distances from the monopole trajectory 
(p % a ) .  The cause of this behavior is that the correction to 
the induced current has the same structure as the current of a 
semi-infinite solenoid whose end coincides with the mono- 
pole location [this is most clearly seen from expression (5)  ]. 
Far from this solenoid, its field is well known to imitate that 
of a magnetic charge. Therefore even in a medium that con- 
tains no monopoles the magnetic charge can be partially 
screened, in the foregoing sense, by currents localized near 
its trajectory. 

Knowing the fields far from the monopole, one can de- 
termine the loss to Cherenkov radiation. Note that a calcula- 
tion of the loss from the force acting on the monopole en- 
counters a fundamental difficulty. The point is that a 
quantized magnetic charge distorts strongly the ambient 
medium and calculation of the exact value of the magnetic 
field B on the monopole trajectory becomes a complicated 
problem (see Ref. 15 in this connection). We determine 
therefore the Cherenkov loss from the energy flux through a 
remote surface that encloses the monopole trajectory. Stan- 
dard calculations yield for the radiation intensity in a fre- 
quency interval d o  the equation 

v cZ 
d l . = - l g e ( o )  a d o .  

c2 v ~ ( 0 )  

which differs from the usual one9.'" only in that the charge g 
is replaced by g* (w) . It follows from ( 10) and ( 1 1 ) that for 
y(w) - l/w the contribution of the magnetization wake to 
radiation of wavelength A does not contain the small param- 
eter (a/A). The difference between g* (a) and g can be ne- 
glected only if the wake is much shorter than A. 

The equations of Refs. 9 and 10 are valid also if the 
monopole moves in a channel cut through a medium and 
having a radius small compared with A but larger than the 
characteristic length over which the function M, (p)  de- 
creases. In this case there is no magnetization wake and 
g* = g. In this sense, radiation from a monopole is more 
similar to radiation from dipoles'' than to radiation from an 
ordinary charge, which is not affected by the presence of a 
channel in the medium. 

We conclude this section by establishing the correspon- 
dence between our approach and that of Ref. 5. Since the last 
term of (7)  is proportional to the curl of the monopole cur- 
rent, it can be expressed, using the Maxwell equations, in 
term of the fields B and E. The expression for the Fourier 
component of the transverse induced current then takes the 
general form 

1 
j W t ( k )  = -ia ( E - 1 )  E,,, (k) + ic ( 1  - T) [ kBu (k) 1, 

P 
and the true response fucntions E andp introduced in Ref. 5 
for the considered media are given by 

~ I P ( W )  =UP (0 )  +my ( o ) ,  

s: ( a ,  k )  = e ( o ) + c 2 k Z y  ( o ) / a .  

It follows hence, first, that the problem of calculating the 
correct response function reduces in fact to an analysis of the 
interaction between a monopole and a medium located near 
its trajectory (at distances on the order of the spatial-disper- 
sion radius). Second, even if a medium containing no mono- 
pole can be described with spatial dispersion disregarded, 
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this can generally not be done in monopole electrodynamics, 
because E becomes dependent on k. Since, finally, y ( w )  can 
readily become dependent on the magnetic charge, the medi- 
um in monopole electrodynamics can in general not be re- 
garded as linear. 

It was also shown in Ref. 5  that ji = 1 in the particular 
case of an isotropic medium consisting of classical particles. 
We have then from ( 12) for such a medium 

and therefore, according to ( l o ) ,  g* ( w  ) = p ( w  )g. We shall 
verify in the next section that the same relations hold also for 
a system of quantum oscillators. 

THE QUANTUM-OSCILLATOR MODEL 

We consider in this section the interaction between a 
fast monopole and a low-density medium made up of isolat- 
ed atoms randomly distributed in space, with average den- 
sity n. In the actual calculations the atoms will be simulated 
by nonrelativistic harmonic oscillators of frequency w,. The 
simplicity of the model permits a complete calculation of the 
renormalized charge g* of a fast monopole. 

To calculate the current induced near a monopole in a 
low-density medium it suffices to known the response to the 
fields produced by a magnetic charge in vacuum. We de- 
scribe this field by means of singular vector potential. In a 
cylindrical coordinate frame with the Z axis parallel to the 
monopole velocity, it takes the form 

B A, = --(1-cos a), A,=A.=O, 
P 

The potential ( 14) induces on the monopole trajectory an 
additional magnetic field 

meaning a string along which the magnetic flux 471-g returns 
to the monopole. If the monopole charge is so quantized that 
q = eg/+ic, the string is unobservable and ( 14) describes a 
magnetic charge. As v - 0  the potential ( 14) is transformed 
into the Dirac static potential.' 

If the monopole velocity v  is much larger than the veloc- 
ity v, of the electrons in the atom, the Schrodinger equation 
with the potential ( 1 4 )  can be solved by using the sudden 
approximation and assuming that the wave function I l , ( r )  
of the ground state of the atom does not manage to change 
during the monopole collision time. The interaction time 
pu- ' (1  - v 2 / ~ 2 ) I ' 2  of an electron located at a distance p 
from the monopole trajectory should then be shorter than 
the characteristic time l / w ,  of electron motion in the atom, 
so that the admissible values o fp  are bounded from above. 
This bound, however, is immaterial for atoms through 
which a monopole having v )  v, passes. Nor is the instanta- 
neous approach valid in a narrow region near the monopole 
trajectory, where the fields are so strong that the wave func- 
tion is substantially altered even in a short time of flight. 
This region is small by a factor v,/u ( 1 compared with the 
atomic size a,  and will henceforth be disregarded. Since the 
instantaneous approximation does not take into account the 
evolution over a collision time, it yields the response of the 

medium only for frequencies w  4 ( u / a )  ( 1 - v2 / c2 )  - ' I 2 .  

It follows from ( 14) that the passage of the molecule 
leaves in the atom a string that carries a quantized magnetic 
flux = 2q (hc / e )  and is described by a vector potential 
A,  = 2g/p .  The string can be eliminated from the Hamilto- 
nian by a gauge transformation that changes the function 
& ( r )  into 

where9 is the angle in the cylindrical frame. The subsequent 
evolution of the state ( 15) is determined by the free Hamil- 
tonian of the atom. The result ( 15) has a simple interpreta- 
tion: the electron does not manage to change position during 
the time of flight of the monopole through the atom, but 
acquires under the influence of the electric field an angular 
momentum - 2qfi along the Z axis. The wave function ( 15) 
is not well defined a tp  = 0, since the instantaneous approxi- 
mation is inapplicable for very small p .  We point out also 
that sudden-approximation calculation, based on Eq. ( 15 ) , 
of the ionization losses of a monopole leads to a known re- 
sult'' derived by another method (see Appendix 1 ). 

We calculate now the induced current, replacing the 
atoms by harmonic oscillators, and consider first only one 
oscillator at the point r,. It is convenient to describe it not by 
the wave function $ ( r , t )  but by the Wigner function 

f (r, p; t)  = j d39 $ (r+g/2, t )  $' (r-V2, t )  e - i p E i h .  

Using the explicit expression for the oscillator ground-state 
wave function and Eq. ( 15 ), we obtain for the Wigner func- 
tion at t = z,/u + 0 ,  i.e., immediately after the passage of the 
monopole, a representation in the form 

where 

p  = ( x , y ) ,  p, = ( p ,  ,p, 1, a2 = fi/mu,, and R ( p , Q  is thean- 
gle between the two-dimensional vectors p  + f / 2  and 
p  - f / 2 .  Straightforward calculations reduce the function 
W( p,f ) to the form 

The time dependene of the Wigner function for t  > zo /v  
is determined in the instantaneous approximation only by 
the Hamiltonian of the harmonic oscillator and is described 
by the familiar equation 

which coincides with the classical equation for the distribu- 
tion function. The function f ( r , p ; t )  is therefore governed by 
the equations of motion of a classical oscillator and the solu- 
tion of Eq. ( 18) with the initial condition ( 16) can be writ- 
ten in the form 
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i=ro + (r-ro) cos COOT - - sin ooz, 
moo 

p=p cos oo~- tmoo(r -r0  sin ~ O T .  

In these equations T = t - zo/u Since the function ( 6 )  
differs significantly from zero only if )z - zo) -a, it can be 
assumed that for times r%a/v, the only ones considered in 
the sudden approximation, we have T = t - z/u. 

Now we average the function f(r,p;t) over the position 
of the center r,, assuming the oscillators to be randomly dis- 
tributed in space with an average density n. It is convenient 
for this purpose to first expand W(p,g) as a function of p in a 
two-dimensional Fourier integral. The integral over dr, is 
then Gaussian and can be easily calculated. After a number 
of transformations we obtain for the averaged Wigner func- 
tion 

d21 W (k, b coa fir)  

fa gpL kp, sin COOT 
.exp i - - i - a2 ------ 

COS OoZ 

k2a2 (I-cos oo7) ' -- - 
4 cos ooz 

1 sin O ~ T ( ~ - C O S  oo7) 
--kb 

2 cos OOT I s  (19) 

where ~ ( k , l j )  is the Fourier transform of W(p,g). This 
expression must now be substituted in the equation for the 
induced-current density 

It is seen immediately that in this approximation the current 
along the Z axis is zero, and the integral over p, yields the 
derivative of the 6 function 

d sin o,t 
iti - B( t+ka2 ----) , 

3E COS OoZ 

which eliminates the integration over d 4 in ( 19). It is con- 
venient to change next to a two-dimensional Fourier trans- 
form of the current density as a function of p and to distin- 
guish in it the transverse component j, ( k , ~ )  which is 
proportional to v x k .  Taking into account next the explicit 
form (17) of W(p,g) we obtain ultimately 

neh k2aZ 
j,(k, T) = 21-cos  sin oar) 

m 2 

where the function @, ( c )  is defined by the integral 
1 mq (6) = 4hJ dx dy sin r e-blxl 

It is possible to obtain in similar fashion the current in a 
system of oscillators also for a finite temperature T. The 
result for this case is obtained from (20) by replacing a2 by 

in the argument of the exponential (the function @, con- 
tains a2 = fi/mwo as before). 

To compare the expression obtained for the induced 
current with Eq. (7) of the preceding section, we expand 
(20) in powers of k. It is important here that the behavior of 
@, (0 for small is given by 

Therefore @, makes no contribution to the first two terms of 
the transverse-current expansion 

e2n 1 4ni[vk] eiu,u 
j, (k, o )  = -to - --- 

m o:-oZ gvCkt 

It is easy to verify that this expression becomes equivalent to 
the phenomenological equation (7)  for the induced current 
upon substitution of the monopole field in vacuum (in this 
case the second term of (7)  is small compared with the first 
in view of the smallness of vo/c and can therefore not be 
obtained in the sudden approximation), while the response 
functions are equal to 

where w, = ( 4 ~ e ~ n / m ) " ~  is the plasma frequency. The 
magnetic permeability of a system of oscillators is calculated 
in Appendix 2, and 

It follows from (21) and (22) that the relation wy = 1 - 1/ 
p, which is valid also in classical-particle systems, holds in 
the model considered here [see ( 13) 1. The renormalized 
monopole charge is likewise given in this case by 

The distinctive character of an oscillator model without 
atomic ionization is shown by the fact that y(w) does not 
depend on monopole charge and by the fact that g*(w) is 
determined by the simple equation (23). It is also known 
that a quantum oscillator is similar in many respects to a 
classical one for which relation (23) [with a different p (a), 
naturally ] is known to be valid. It must be emphasized at the 
same time that the result is not obvious, for in contrast to the 
analysis of classical systems, the derivation here made use of 
quantization of a magnetic charge which is nowhere as- 
sumed to be small. It turned out simply that the explicit form 
of the function 0, ( 5 )  in (20), which describes essentially 
quantum and nonlinear effects in the response, is immaterial 
for the determination of y (w ). 

The reason for the singularity of y(w) as w-0 is that 
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there is no relaxation mechanism whatever in the model. In a 
real system, the induced current attenuates with time, and 
this can be accounted for in the simplest approximation by 
multiplying the current (20) by exp( - Y T ) .  The frequency 
w in Eqs. (21 ) is then replaced by o + iv and the renormal- 
ized charge for v go is, in accordance with ( lo) ,  

with p (w) from (22). Evidently, screening effects (p < 1) 
come into play only for w 9 v. 

CONCLUDING REMARKS 

We have demonstrated here that interaction of a mono- 
pole with atoms located on its trajectory renormalizes the 
effective magnetic charge, in view of the appearance of a 
magnetization wake in the medium. From the physical view- 
point, it is precisely this effect which leads to the difference 
between the true response functions introduced in Ref. 5 and 
the functions E ( W )  and p(w).  On a purely theoretical level, 
this difference leads to important consequences. For exam- 
ple, A. A. Kolmogorov's equation" that describes the Cher- 
enkov radiation in media withp # 1 acquires an extra factor 
p2(w), This result, however, calls for a number of remarks. 

First, magnetic-charge renormalization and all the con- 
comitant effects occur only at frequencies higher than the 
magnetization-wake relaxation frequency. The relaxation 
mechanisms depend on the specific model of the medium 
and their analysis is outside the lcope of the present paper. 
Second, in all the models for which6' g*(w) =p (w)g  the 
value o fp  differs from unity only on account of the diamag- 
netism, so that the real renormalization effects are rather 
small. This is true, unfortunately, not only in purely diamag- 
netic media. 

To verify this, we consider a medium consisting of arbi- 
trary atoms that can have a nonzero angular momentum in 
the ground state. From the angular-momentum conserva- 
tion law it fol1ows"hat when a monopole passes precisely 
through the center of an atom the change of the atomic angu- 
lar momentum is exactly equal to - 2qCiZ, where Z is the 
number of electrons in the atom. This result depends neither 
on the initial angular momentum nor on the presence of elec- 
tron spin. Multiplying - 2qftZ by the gyromagnetic ratio 
and by the atom density n, we obtain the maximum magneti- 
zation in the wake of the monopole. Assuming further that 
M, (p)  behaves like (6)  and is decreased at a distance a from 
the monopole trajectory, we obtain from Eqs. (8)  and (10) 
for the correction to the magnetic charge the estimate 

Disregarding for a moment the factor p (w), it follows from 
(24) that the correction is determined not by the total mag- 
netic susceptibility, which would lead to an equation such as 
(23), but only by its diamagnetic part, which is small in 
terms of the parameter ( U , / C ) ~  < 1 (uo-Z 2'3e2/fi) is the 
average electron velocity in the atom) even for nu3 - 1. This 
means that the magnetic-charge renormalization can be ne- 
glected for ordinary transparent media in which Cherenkov 
radiation is observed. The effect can be enhanced by choos- 
ing a condensed medium of sufficiently heavy atoms and 
with high p ((w ) . 

This analysis pertains only to media with low spatial 
dispersion. In general outline, however, the analysis is mean- 
ingful also in the case of high spatial dispersion. To describe 
the interaction of a monopole with such media it is certainly 
necessary to introduce a renormalized charge g* (w,k) that 
depends on the frequency and on the wave vector k. I t  is 
curious, that if Eq. (23 with p replaced by p (0,k) =: k 2 A i  
(A, is the field penetration depth) is applied now to a super- 
conductor, the correct result g*-0 is obtained for large 
scales, meaning total screening of the monopole's magnetic 
field (this field is entirely concentrated in a vortical filament 
trailing the monopole). 

It is noteworthy, in conclusion, that effects similar to 
those considered in this paper could in principle take place 
also for an ordinary charge capable of leaving behind in some 
medium a polarization wake localized near its trajectory. 

I am grateful to D. A. Kirzhnits and V. V. Losyakov for 
numerous stimulating discussions on the electrodynamics of 
a magnetic monopole. 

APPENDIX 1 

Let us calculate the monopole energy losses within the 
framework of the instantaneous approximation. In this ap- 
proximation an atom located at a point r, continues to re- 
main in the ground state +&(r - r,) directly after passage of 
the monopole, and the Hamiltonian takes the form 

where A ,  = 2g/p, A, = A, = 0 (in a cylindrical coordinate 
frame with Z axis along the monopole velocity). Averaging 
the Hamiltonian ( 1.1 ) over the wave function ICr, ( r  - ro),  
which we assume to be real and spherically symmetric, we 
obtain the change in the energy of the atom due to the inter- 
action with the monopole: 

Further averaging over the atom location in the z, = const 
plane leads, with allowance for the normalization of the 
wave function, to the equation 

dE 
-= 4ne% ddp 

.gz - 7 5  - dt mc P ' 
where n is the atomic density. The integral diverges at both 
limits because the sudden approximation is inapplicable for 
large as well as for very small p. The estimate given at the 
beginning of Sec. 3 yields for the a nonrelativistic monopole 
p,,, - v/w,, where w, is the characteristic atom-excitation 
frequency. We can estimate p,,, by assuming that in the 
sudden approximation the distance that an electron initially 
located at a distance p can be displaced by a monopole field 
E-gv/cp2 in an interaction time p/u should be small com- 
pared withp. We obtain thenp,,, -qfi/mv. It appears that 
the probability of finding an electron in a region p <p,,, 
immediately after the passage of a monopole is very low and 
tends to zero asp -+ 0. With allowance for these estimates, the 
energy losses are given by 

which is the result of Ref. 17. 
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APPENDIX 2 

We consider the transverse response in a low-density 
system of harmonic oscillators. In the linear approximation, 
the current induced in one oscillator located at a point r, can 
be expressed in the form 

The response is described in momentum space by the con- 
ductivity o$>)(w;k,kl), which depends on two wave vectors. 
Assuming a random distribution of the oscillators in space, 
with an average density n, we average the current (2.1) over 
r. It is easy to verify that the response is then 

Using next the Kubo equation for (w;k, - k ) ,  we get 

where the matrix elements relate the states of a harmonic 
oscillator located at the origin. To calculate the transverse 
part of the conductivity it suffices to consider uyy (w,k) and 
to direct the vector k along the X axis. Since motions in the 
oscillator along different axes are independent, all the ma- 
trix elements factor out, after which 

where the summation is now over the states of two one-di- 
mensional oscillators. The equations for a one-dimensional 
oscillator are 

and allowance for them permits the transverse dielectric 
constant 

to be written in our model in the form 

where w, is the plasma frequency. This equation was ob- 
tained earlier by D. A. Kirzhnits and V. V. Losyakov, who 
found the linear response with the aid of the Heisenberg- 

operator equations of motion. According to the definition of 
E ( w ) and p ( w  ) used here, we have for small k 

Expanding next (2.3) in powers of k we obtain E (w ) from 
(21 ), and Eq. (22) for the magnetic permeability. 

APPENDIX 3 

We consider an atom located at a distance p from a 
monopole trajectory and calculate the change of its angular 
momentum as a result of interaction with the monopole. In 
contrast to the rest of the text, we use in the calculation a 
spherical coordinate frame with origin at the center of the 
atom. 

An atom with zero angular momentum in the initial 
state acquires after the passage of a monopole an average 
angular momentum along the Z axis. In the instantaneous 
approximation this momentum can be calculated by merely 
averaging, over the ground-state wave function @,(r), the 
operator 

where A ,  ( r )  is the potential of the string with quantized 
magnetid flux, which remains after the passage of the mono- 
pole. In the sperical coordinate frame we have 

r sin 8-p cos cp 
Aq=2g -. 

rZ sinZ 8+pZ-2Rp sin 0 cos cp 
The result of the averaging is quite simple: 

where R,(r) is the radial part of the wave function. It can be 
seen that L, = - 2qfi forp = 0, and that forp much larger 
than the atomic size the angular momentum decreases rapid- 
ly. Multiplying (3.1) by the gyromagnetic ratio and by the 
atom density n, we obtain the function m(p)  of Eq. (6).  
Taking next (8) into account and integrating (3.1) with re- 
spect t op  we obtain y(w) for low frequencies in the form 

where (r?) is the average over the ground state, and 
x = - e2n (?)/6mc2 is the static diamagnetic susceptibility 
of the atomic gas. In a low-density medium, Eq. (3.2) leads 
to a renormalized magnetic charge g* =pg with 
p = 1 + 4 q .  

"The result for a system of classical particles is given in Ref. 5. 
"We use Heaviside units in this section. 
3'Here E and p are connected with the employed longitudinal and tran- 

verse constants ~ , ( m , k )  and ~ , O w , k )  by the relations 

I - 0  

The quantity p ( w )  defined in this manner is meaningful at all frequen- 
cies. 

4'If, for example, the relaxation time is assumed to be the lifetime T -  lo-' 
s of an isolated excited atom, the wake length for a monopole with 
u- c is of the order of 0.3 cm. 

"The convergence of this integral is not considered here. Convergence of 
the integral of the singular part of ( 6 )  is sufficient. 

"It is shown in Appendix 3 that as o - 0  this result is valid for any law of 
electron-nucleus interaction, and not only in the oscillator model. 
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