
Rates of deexcitation of the mesic molecule ddp in the mesic molecular complex 
[(ddp)deel 

D. D. Bakalov and V. S. Melezhik 

Joint Institute for Nuclear Research 

L. I. Men'shikovand M. P. Faifman 

I. V: Kurchatou ZnstituteofAtomic Energy 
(Submitted4 February 1988) 
Zh. Eksp. Teor. Fiz. 94,61-69 (October 1988) 

The deexcitation of the mesic molecule ddp from the weakly-bound J = u = 1 rotational- 
vibrational state to the J = 1, u = 0 state with conversion on an electron in the [ (ddp)dee] 
complex is examined. The deexcitation rate is calculated by perturbing theory in the interaction 
operator between electrons in the complex [ (ddp )dee] and the mesic molecule ddp. It is shown 
that including the contribution due to second-order terms representing virtual E 1 transitions in 
the ddp molecule leads to a significant cancellation of the contribution due to first order terms, 
which correspond to E 0 transitions. The calculated rate2 ,,, = 0.22. lo8 sec- ' is much lower 
than the previously calculated E 0 transition rateA,(m) = 1.90. 108sec- I .  

1. The measuredI4 rate of production of the mesic 1 
molecules ddp is a function of the rates of different processes l t j i 1 2 = -  I T ~ ~ I ~ .  ( 3  

2'4-1 2&,,MJV 
that accompany p-catalysis in d e u t e r i ~ m , ~ ~ ~  including the 
rates of decay and stabilization of the mesomolecular corn- In first-order perturbation theory, the matrix element T p  is 
plex [ (ddp)dee] that contains the ddp rn~lecule .~ .~  One of given by 
the stabilization channels is the deexcitation of the mesic T ti- -v(I) tt -(f - lHin;li>, 
molecule ddp produced in the J = 1, u = 1 rotational-vibra- 
tional state in which the total nuclear spin is I = 1: 

(4) 

v$' - dR dr dp Y!:!:, ( r ,  R) Q ( ~ ) *  ( p )  ( p )  V ( r ,  R) . 
[ ( d d y )  dee ]  -+ [ ( d d y )  ,.,,de] ++e. (1 

The energy released in this reaction is transferred to the con- 
version electron. If we recall that the deuterons are identical, 
and use the nonrelativistic approximation, we find that the 
transition from the J = 1, I = 1 state can occur only from the 
state with odd J (Ref. 7-9), i.e., (J = 1, u = 1 ) - (J' = 1, 
v' = 0)  is the only possible transition. 

In this paper, we present a perturbation-theory calcula- 
tion of the rate of deexcitation of the mesic molecule ddp, 
using only the monopole and dipole terms in the operator 
expansion for the interaction between the electrons in the 
molecular complex [(ddp)dee] and the ddp molecule, 
which is justified because the ratio of the dimensions of the 
mesic molecule to those of the complex is small. 

In second-order perturbation theory, the contribution 
of the dipole term to the rate of the transition ( 1 ) from the 
J = u = 1 state tends to cancel the contribution due to the 
monopole state. This effect was previously examined in Refs. 
10 and 11. 

2. The rate of deexcitation of the mesic molecule ddp in 
the process defined by ( 1 ) is given by (in the system of units 
in which e = f i  = 1) 

where E, = + E,, Ef = + q2/2me are the total ener- 
gies of the complex [ (ddp)dee] in the initial and final states, 
respectively, E,, is the binding energy of the mesic molecule 
ddp, E, is the binding energy of the electron in the ground 
state of the complex, q is the momentum of the conversion 
electron, dTf = d q / ( 2 ~ ) ~  is the number of final states of the 
Auger electron, and 

where t f L f '  (p) and \y"zf' (r,R) are, respectively, the wave 
functions of the conversion electron and the mesic molecule 
in the initial and final state, p is the positron vector of the 
electron, measured from the center of mass of the mesic 
molecule, R is the radius vector joining the nuclei of the 
mesic molecule, and r is the positron vector of the negative 
muon, measured from the center of the segment R. The for- 
mula given by (3)  has been averaged over the projection M, 
of the orbital angular momentum J in the initial state, and 
summed over the projection M ;  in the final state. 

It will be sufficient to evaluate the rate (2)  and the cor- 
responding transition matrix element (3)  for the deexcita- 
tion of the mesic molecule ddp in the analog of the hydrogen 
atom: 

The required rate A,,, of process (1 1 can be expressed in 
terms of the deexcitation rate A ::,' of the process (5)  as fol- 
~ o w s : ~ ~ . I ~  

where x is the ratio of the electronic densities near the nu- 
cleus in the hydrogen molecule H, and in the hydrogen atom 
H (Refs. 12 and 13): 

The wave functions of the conversion electron in (5 )  in 
the initial and final states have the formI4 

9'" ((P =qis (p) = (rn,S/r~)"e-"~,  ( 8 )  
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The wave functions of the mesic molecule ddp in the 
bound state ( J v )  were calculated in the one-level approxi- 
mation using the adiabatic method of the three-body prob- 
iem15: 

Y ;:'' (r, R) (r; ~ ) q % ' ~ )  (R), (11) 

where @,sgg is the even solution of the problem of two centers 
of force,I6 normalized by the condition 

The expression given by ( 1 1 ) does not take into account 
excited states in the motion of the muon. Their contribution 
can be neglected when the deexcitation rates are calculated 
with the required precision.8 

The wave functions q, j:f) ( R )  describe the relative mo- 
tion of the nuclei: 

and are normalized by the condition 

j dR [X: : )  ( R )  ]'=I. 

The transitions in the mesic molecule ddp occur under 
the influence of the pe r t~ rba t i on~-~  

where e, and R, are, respectively, the charge and the distance 
of the two deuterons and of the meson from the center of 
mass of the mesic molecule. 

For R, <p & 1 the perturbation ( 13) has the following 
form in the monopole 

where M, and M, are, respectively, the mass of the deuter- 
ium nucleus and of the muon. For p $ R,  , the operator ( 13 ) 
is given by the following expression in the dipole approxirna- 
t i ~ n ~ - ~ :  

CJ'j H1,t=Hint =-dp/p3, (16) 

d=- (R,+R~-&) =-(I + " ) .  
2Md+MW (17) 

According to the definition given by (4) ,  the perturba- 
tion ( 16) does not induce dipole transitions between bound 
states of the mesic molecule ddp because the wave functions 

Y:if' (r,R) given by ( 11 ), which describe these states, have 
the same parity g (in the nonrelativistic approximation) un- 
der inversion of the coordinates of the meson 
r- - r(Y(r,R) = Y( - r ,R))  (Refs. 7 and 8) .  The EO 
transitions, which correspond to the interaction operator 
( 14), are thus the only nonzero transitions in first-order per- 
turbation theory (4). 

The matrix element (4)  is given by the following 
expression in the monopole approximation after integration 
with respect to the coordinates p of the electron: 

where 

Integrating with respect to the electron momenta q in 
(2) ,  we obtain 

where 

3. The deexcitation rate (23) calculated in first-order 
perturbation theory is of order ( ~ , / a , ) ~ .  It follows from 
Refs. 10 and 1 1 that the rate of transition from the state with 
low binding energy I&,, I 4 I E, I contains a similar contribu- 
tion due to the interaction ( 16) in second-order perturba- 
tion theory. This means that the total rate for process (5)  is 
determined by the transition matrix element (4)  of the form 

(I) (11) T f i =  Vfi + Vti , (25) 

where the sum is evaluated over all the states of the ddp 
molecule and the atomic complex [ (ddp)e] with energies 
E~ and En,  respectively. 

The main contribution to the sum over the electron 
states in (26) is providedI0 by continuum states with charac- 
teristic electron momenta q )  1 (in atomic units). This con- 
dition enables us to describe the motion of the electron by the 
plane wave 

Qp (p) =efq.P (27) 

rather than the wave function (9) .  
As already noted, matrix elements of the form ( J '  = 0; 

21dl J= I) ,  which corresponded to E 1 transitions between 
the bound states of the mesic molecule ddp, are all zero, so 
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that the index Nin (26) labels the J ' =  L = 0; 2 states only in 
the continuous spectrum of the ddp molecule, i.e., the sys- 
tem dp + d. The wave function describing this system in ' 
states to which the transitions takes place has the form 

where @,,, is the odd solution of the problem of two centers 
of force,I6 and the function xZ",' (R)  is normalized by the 
asymptotic condition 

and is evaluated in Ref. 17 and 18. 
In view of (27) and (28), the expression given by (26) 

reduces to 

M J ;  v-1) QaT(k), 

where 

and the sum is evaluated over the twice repeated indices 
L = 0; 2 and a,y = x,y,z. The quantity Q,, (k)  is evaluated 
in the Appendix and is given by 

QaT ( k )  =A6a7+ Bq~qrlq'.  (33) 

The explicit expressions for A = A  (k)  and B r B (k  are also 
given in the Appendix. 

Using (33) and the definitions given by ( 11 ), ( 12), and 
(28) together with the Wigner-Eckart theorem19 

where d, are the cyclic components of the vector 

d(d, = (d, , idy)a ,d ,  = d,) and c : ' ~ , , ,  are the 
Clebsch-Gordan coefficients, we find that (30) takes the 
form 

v:': ( q )  =lJ dk{ [ A+B (i-M:) ]Do 
3 

where 

DL=(JPlldllL) (LlldllJ), 

and, according to the theorem (34), the reduced matrix ele- 
ments ( J  JJdJJL ) are given by 

The matrix element (3) corresponding to the transition 
(5) is given by the following expression when ( 18) and (35 ) 
are taken into account: 

If we go to second-order in perturbation theory and in- 
tegrate over the electron momenta, we find that the expres- 
sion for the deexcitation rate (2)  becomes 

where il is given by (23). 
When the quantities u%'(q) were evaluated, the wave 

functions describing the motion of the electron in the contin- 
uum were chosen in the form of the plane waves (27), where- 
as v"' (q) was 'calculated using the exact Coulomb functions 
of the hydrogen atom, given by (9). Since the main contribu- 
tion to the integral Q,, (3 1 ) is provided by values ofp  de- 
fined byp 5 q- ' 4 1 atomic units (see Appendix), the substi- 
tution 

*,") (0) =[2nq/ (1-exp (-2nq)) 1'" 

with $, (0) = 1 introduces the following uncertainty into 

G I 1 ' :  

The quantity E"'(q) calculated from (19) with 
$'I' (0) = 1 substituted in (20) is subject to a similar uncer- 
tainty. It follows that the value of the rate il $:: can be im- 
proved by writing (40) in the form 

Since ve (q) = u(!k, (q),  it is clear from (36) and (6) 
that the final expression for the rate deexcitation in the ddp 
molecule is 

where 

4. The figure shows the reduced matrix element 
(JuJldllLk ) (38) as a function of kand ofthe orbital angular 
momentum L = 0; 2 associated with the relative motion of 
the mesic atom dp  and the nucleus d. 

The deexcitation rate A,,, of the mesic molecule ddp, 
calculated from (42)-(44), is given by 

The following table gives the numerical values of inter- 
mediate quantities (in the system of units in which 

1992 Sov. Phys. JETP 67 (lo), October 1988 Bakalov eta/ 1992 



FIG. 1 .  The quantity DL (k) and the reduced matrix elements (JvldlLk ) 
as functions of momentum k (in the system of units in which 
e = f i = m =  l ) f o r ( a ) L = O ( c u r v e l - ( J =  1 , u =  llldllL=O,k),and 
2-Do(k), 3- (J=  1, u = Olldl(L = 0, k ) ,  and b) L = 2 (I-(J= 1 ,  
U =  llldl(L = 2, k ) ,  2-D,(k), 3-(J= 1, ~ = O ( l d ( l L  = 2, k ) ) .  

e = fi  = m = 1 ), obtained during the calculation of the rate 
A,,, , together with the rate Ahm'  of the monopole transition 
(J= 1, v = 1) - (J= 1,v = 0),  given by (43): 

Comparison of the rates A Am' and A,,, (45) shows that 
the inclusion of the dipole term ( 16) in the expansion for the 
interaction operator ( 13) in second-order perturbation the- 
ory leads to a significant reduction in the deexcitation rate 
obtained when only the monopole term ( 14) is taken into 
account. 

An analogous cancellation effect was noted when the 
correction for the finite size of the mesic molecule was intro- 
duced into the energy levels of complexes of the form 
[ (ddp )dee] in Ref. 10, and was calculated numerically in 
Ref. 1 1. According to these calculations, the first term in the 

matrix element Tf i  (25) is almost completely canceled by 
the second if ( f ) = liand ( E ~ ,  I 4 El. In this calculation of the 
deexcitation rates, 1 f) # li) and I E ,  I / 4 / El I but / ~ , ~ j  b /El I 
(E,,  = - 1.96 eV, e,, = - 226.61 eV, E, = - 13.61 eV), 
so that the cancelation is less complete. 

5. The deexcitation rate A ,,, that we have calculated is 
important for calculations of the probability w of nuclear 
fusion in the mesic molecule ddp. This probability is given 
by5v6 

where Af = A , ,  + A,,, and r lo8 sec- ' are, respectively, 
the rates of stabilization and decay of the molecular complex 
[ (ddp )dee] formed in the resonance reactions5 
(A,,  = 4.3 X 10' sec- is the rate of the nuclear reaction in 
the J = v = 1 state of the ddp molecule.20) Once we know 
the probability w, we can accurately determine the energy 
level of the weakly-bound state with J = v = 1 from the 
measured rate of production of the ddp molecules. 

The main uncertainty in the calculated deexcitation 
rate is due to the use of the plane-wave description (27) for 
the electron state instead of the wave functions of the excited 
electronic states of the complex [ (ddp )dee] . However, as 
noted in Refs. 12 and 13 and in the present paper, the use of 
(6)  and (41) leads to a precision of about 10% for A,,, . This 
is quite sufficient for calculations of the wave functions in 
the discrete and continuous spectra of the mesic molecule 
ddp in the one-level approximation ( 1 1 ), (28) of the adiaba- 
tic method.I5 

The scheme presented above has a degree of generality 
and is valid for many problems in which the cancelation ef- 
fect has to be taken into account when transition rates are 
calculated. 

The author is indebted to L. I. Ponomarev for his inter- 
est in this research at all its stages. 

Before we can calculate the deexcitation rate, we must 
evaluate the integral Q,, (k) in ( 3  1 ). In view of (8)  and 
(27), the matrix elements in the integrand are given by 

The integral then reduces to the form 

whence, after integration over the directions of the momen- 
tum q', we have 

where 

We write the integral F, ( 8) in the form 
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The expression for G(0) was obtained from (A8) by the 
replacement x+x-' and setting P = 0. 

Using the integrals 

listed in the tabulation given in Ref. 2 1, we obtain the follow- 
ing expressions for F, and F, in (A51 and (A6) : 

Finally, the quantities A and B defined by (33) are given by 

For q = q, = 3.94, k = 1.76.. '2, the numerical values of A 
and B (in atomic units) are A = 9.5, B = - 4.2. 
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