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It is shown that, at high particle energies, the existing theory of coherent bremsstrahlung and 
e+e-  pair production in crystals may break down even at relatively large angles of incidence 8, 
relative to the principal crystallographic directions. These angles may substantially exceed the 
critical Lindhard angle B, for channeling. The theory developed in this paper provides a 
satisfactory description of electromagnetic processes in crystals in a relatively broad range of 
angles of incidence 8,2 8,. Theoretical results are compared with the existing theories and with 
experimental data. 

1. INTRODUCTION 

It is well-known (see, e.g., Ref. 1) that the probability 
of bremsstrahlung and of electron-positron pair production 
by a photon in a crystal may be significantly different from 
the corresponding probability in an amorphous medium. 
The reason for this difference is the coherence of the crystal 
atoms, which occurs for particle energies and angles of inci- 
dence relative to the principal crystallographic axis for 
which the coherence length is given by 

is close to the path traversed by a particle between successive 
collisions with the crystal atoms ( u  = w/(E - a);  Eand w 
are, respectively, the energy of the charged particle and of 
the photon, and f i  = m = c = 1 ) .' The standard theory of 
coherent bremsstrahlung and of pair production's2 is based 
on the Born approximation for the interaction between 
charged particles and crystal atoms. This approach implicit- 
ly assumes that the change in the direction of the charged- 
particle momentum over the coherence length is small in 
comparison with the effective angle ( - E  - I )  for the emis- 
sion of bremsstrahlung or for pair production. The effect of 
the curvature of the charged-particle trajectory during the 
time between collisions is also neglected. 

Several workers have shown (see Ref. 3 and the refer- 
ences sited therein) that the latter assumption is not valid for 
angles for incidence relative to the crystal axes or planes that 
approach the Lindhard critical angle 8, for channeling. 
When this is so, the deflection of a charged particle by the 
crystal field within the coherence length is comparable to the 
angle of incidence of the particles relative to the crystal axes 
or planes, or may even exceed it, and this leads to a signifi- 
cant change in the mean time between collisions. Even for 
zero angle of incidence, the time between collisions with the 
axes (planes) remains finite because of the channeling effect. 

However, it will be shown below that the standard theo- 
ry of coherent bremsstrahlung and pair production may 
cease to be valid even for angles of incidence much greater 
than the Lindhard angle, for which the influence of the cur- 
vature of the trajectory between collisions can be completely 
neglected. The point is that the probability of these processes 

in the case of relativistic charged particles is very sensitive to 
the ratiop = E8, between the angle 8, of deflection of the 
particle by the field and the effective emission angle 
8,, -E  - '  (the angle at which the pair is emitted). Dipole 
bremsstrahlung is emitted when the parameter p is small 
( p g  1) .  In the opposite limit, ~ $ 1 ,  the radiation is emitted 
by a segment of the trajectory that is small in comparison 
with its radius of curvature, so that the field can be assumed 
to be constant within this segment, and the emission spec- 
trum is similar to the synchrotron spectrum. This general 
discussion is given, for example, in Ref. 4 and can be applied 
to our case for which the external field is the crystal field. 
When a fast charged particle travels through the crystal at a 
sufficiently small angle 8,, 9 1 to the crystal axes or planes, 
the effective field acting on the particle is determined by the 
atomic potential on the crystal axes or planes, averaged in 
the longitudinal dire~tion.~.' Suppose that U, is the ampli- 
tude of energy E, incident at an angle 8,2 8, to the crystal 
axes or planes, is given by 8, - U/E8,,. The parameter p in 
which we are interested here is then given by p- U,,/8, and, 
consequently, the existing theory of coherent bremsstrah- 
lung'.2 ceases to be valid even for angles of incidence 
8,) - 8, E U,,. Since we are considering the case of particles 
traveling above the barrier, 8,2 8, and the inequality 
8, 2 8 ,  should be satisfied, i.e., the particle energy should be 
sufficiently high, E % E ,  = l/U,,. It follows that, at ultrahigh 
energies, the parameter p for particles above the barrier 
(8,Z 8, ) can vary between small values (p g 1 ) for 80% 8, 
and relatively large values (p 5 1 ) for 8,s 8,. Accordingly, 
there should be a considerable change in the way these pro- 
cesses depend on the angle of incidence and the particle ener- 
gy. Recent CERN experiments7 at 150 GeV have indeed re- 
vealed a considerable difference between the measured 
probability of production of electron-positron pairs by pho- 
tons incident at small angles to the ( 110) axis in germanium 
and the predictions of the standard theory of coherent pair 
production, even for angles of incidence much greater than 
the Lindhard angle. 

The aim of this paper is to develop a more universal 
theory of radiation and pair production by particles above 
the barrier (8,R 8, ), which will be free from the restrictions 
that apply to the standard theory of coherent bremsstrah- 
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lung'.' and the theory based on the constant-field approxi- 
mation.'-" This will enable us to define more precisely the 
range of validity of the usual approximations, and also to 
explain some of the experimental results7 at ultrahigh ener- 
gies that do not fit existing ideas. 

2. EMISSION OF RADIATION AND PAIR PRODUCTION IN THE 
FIELD OF CRYSTAL PLANES AT ANGLES OF INCIDENCE 
0020' 

Suppose that a particle of charge e and energy E ,  1 
enters the crystal at an angle 8, ( 1 to the crystallographic 
planes, but is quite distant from the principal axes lying on 
these planes. It can then be assumed that the particle experi- 
ences the potential U(x) due to continuously charged 
planes, where the coordinate x is measured along the normal 
to the planes. The probability of emission of radiation by a 
particle above the barrier will be calculated using the general 
approach developed in Ref. 12 in which this probability is 
expressed in terms of transitions between states of transverse 
motion of the particle. Channeled particles (8, < 8, ) corre- 
spond to bound states of transverse motion, whereas parti- 
cles above the barrier (8,2 8, ) correspond to states in the 
continuous spectrum, with transverse energy E > U,. 

According to Ref. 12 (see also Refs. 3 and 13), the dif- 
ferential probability (per unit length) of emission of a pho- 
ton of energy w by an electron (positron) in the field of the 
planes can be written in the following general form, indepen- 
dently of whether or not the particle is channeled or is above 
the barrier: 

-=- d2w ''a x { ( l + u  +ffl) 1 j,-ai.l ' 
dodo 2% 2 

where u = w/(E - a), w,, = ei - E, is the energy differ- 
ence between the transverse states of motion between which 
the radiative transition takes place, a ,  Pare the angular vari- 
ables related to the polar and azimuthal angles 8, p by the 
formulas a = 8 cos p, B = 8 sin p, and do = dado is the 
solid angle element into which the emission takes place. The 
new angular variables that we have just introduced will be 
found more convenient because a is the angle between the 
momentum of the photon and the crystallographic planes 
andBis the angle between the momentum of the photon and 
the plane containing the initial momentum of the particle 
and the normal to the crystallographic planes (a 4 1, P( 1 ). 
The Dirac delta-function in ( 1 ) represents the conservation 
of energy and of the component of the particle momentum 
component on the crystallographic plane during the emis- 
sion process. The current matrix element for the radiative 
transition can be expressed in terms of the wave functions 
$i (x,E), $, (x,E - a) describing the transverse motion of 
the particles as follows: 

The wave functions t,hi, t,hf satisfy the Schroedinger equation 
with the potential U(x), where the quantity E or, corre- 
spondingly, E - w play the part of the mass, aand E~ or, 
correspondingly, E,, plays the part of the transverse energy 
eigenvalue. 

In the discussion given below, we shall be interested in 
the emission process in which the energy of the emitted pho- 
ton can be of the same order as the particle energy ( u  - 1 ), 
and also in the closely related process of electron-positron 
pair production by the photon in the field of the crystal 
planes ii = o/(w - E) > 1 ). The probability ef e-  pair pro- 
duction can be deduced by a cross-transformation from the 
emission probability given by ( 1 ). Because of the change in 
the density of final states, the right hand side of ( 1 ) must be 
multiplied by 2rE/w2, followed by the replacements 
E-, - E, w + - w, ei - - ei . The quantity E is then looked 
upon as the total energy of the transformed positron, E~ is its 
transverse energy, ef is the transverse energy of the electron, 
a is the angle of emission of the photon, and P the angle 
between the projections of the momenta of the photon and 
positron onto the crystallographic plane. The left hand side 
of ( 1 ) is then the probability of pair production per unit time 
per unit positron energy E per unit angle B, where the posi- 
tron is produced in the state of transverse motion lCIi. Similar 
replacements must be introduced in the equation for the 
transverse wave function t,hi with the result that the Schroe- 
dinger equation for the resulting positron differs from the 
corresponding equation for the electron by the sign of the 
potential (and also by the value of the relativistic mass). 

The transverse-motion wave functions above the bar- 
rier ( E  > U,) at high particle energies EB 1 can be written in 
the quasiclassical form 

x 

where Bq = [NT, uq (x)  ] - ' I 2  is the normalizing constant, 
N is the number of planes in the crystal, Tq are the time 
intervals between particle collisions with the planes, and 

Since particles above the barrier travel in the periodic 
potential U(x) of the planes, their wave functions can be 
conveniently written in the Bloch form 

where 

are the transverse crystal momenta of the particles in the 
initial (q = i )  and final (q = f )  states, and 

are periodic functions of period d equal to the separation 
between the planes. When we evaluate the matrix element j, 
of the radiative transition [see (2)] ,  we take the product 
p tp, in the form of the Fourier series 
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The result is 

where the Dirac delta function represents the conservation 
of transverse crystal momentum to within the reciprocal lat- 
tice vector 2nn/d. 

Similarly, the other component of the current is 

over the motion of the classical particle of energy E within 
the collision period. This time is related to the transverse 
coordinate x by the classical equation of motion dx/ 
dt = v, (x) .  The angle of deflection 8, ( t )  due to the field of 
the planes is given by 8, ( t )  = v, (x )  - (v, ). 

Substituting the matrix elements ( 5 )  and (5') into the 
general expression given by ( 1 ), we obtain the following dif- 
ferential probability for emission of an electron (positron) 
above the barrier per unit path in the crystal: 

c:' = (T.Tl) -I" 1 rpi'rp, (v./v,)'" exp (-2ninxid) dx. 
T T 

1 
0 

(X ,  1 ~ : ~ ~ = - J e x p [ - i / ( t ) l d t ,  I. = - J e d ( t ) e x p [ - i l ( t ) ~ d t ,  

(5') 
T o  0 

The sum of ( 1 ) over the final quantum numbers f of the 
f(r)=o'{-of J ~ ~ ( r ) d r + ~ J  1 [0d2(.)-(Ol)]dr)-o.f,  

particles above the barrier must be interpreted as an integral 
Y O  

over (Nd /2n)xf. Integration over the final crystal momenta 
xf can then be reduced to integration over the transverse on=2nn/T, w'=w ( i+u) .  ( 9 )  

energy cf, since dxf = d&,/(uf ), where (uf) is the average 
velocity of the particle, evaluated over the time between the 
planes (in the final state). The collision period T between the particles and the planes 

The integral with respect to the final energy .E~ reduces and the average transverse velocity (v, ) are given by 
the following substitution when the delta function in ( 1 ) is 
taken into account: 

since the effective value of the square of the angle of emission 
can be large ( - vf) compared with l / [E (E  - o) 1, it is more 
convenient to transform to the new angle variable 
a' = a - ( v , ) .  The transverse kinetic energy in the final 
state can then be written in the form 

Suppose now that 

When the energy w of the photon is of the same order as the 
particle energy E, the inequality (7)  signifies that the angle 
of incidence of the particles should be several times greater 
than the Lindhard angle, whereas for softer photons ( u  < 1) 
the inequality is satisfied for practically any angles of inci- 
dence 6, > 6,. 

Under condition(7), and confining our attention to 
terms of order higher than - (0, / ( u ,  ) )' in the expansion 
forpf, we obtain 

The angle brackets in this expression represent time averages 

Next, dO=8 'd8 'dq t ,  a ' = 8 ' c o s q f ,  P=8 ' s i ne , ' ,  and 
8 ',q ' are the polar and azimuthal angles of emission in the 
new coordinate frame in which the polar axis coincides with 
the mean velocity vector of the particle in the field of the 
planes. 

In the limit of relatively soft photons ( u - + O ) ,  the 
expression given by (8)  becomes identical with the result 
obtained earlier in Refs. 3, 14, and 15 in the classical theory 
of emission if we take into account the fact that 
6 '  = (ar2 + P 2 ) ' i Z  is the angle between the direction of 
emission and the mean velocity vector of a particle above the 
barrier. 

The differential ete-  pair production probability per 
unit length per unit energy E per unit solid angle of emission 
of the positron (electron) is obtained by multiplying the 
right-hand side of (8)  by a factor (E /w)' and introducing 
the replacements E- - E, w - - w, u-+ - ii, where 
ii = W/(W - E ) ,  in all the expressions following the summa- 
tion sign in which T and 6, ( t )  must now be regarded as the 
period of motion and the angle of deflection of the positron 
(electron) in the field of the planes, respectively. All this 
yields the following differential probability: 
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The quantity J,  in this expression is obtained from In [see 
(9)  1 by introducing the above replacement. We note that, 
when the pairs are produced by a photon, the parameter tc is 
greater than unity, so that the pair production probability 
can be obtained from the probability of emission of soft pho- 
tons ( o  > E /2) alone. 

For angles of incidence 0, k 0 , ,  in which we are inter- 
ested here, and for which the transverse charged-particle en- 
ergy E ,  z E 0 ; / 2  is much greater than the barrier height U, 
between neighboring channels, the transverse velocity ui ( x )  
can be represented by the first two terms in the expansion of 
powers of U/E: 

vi=eo (1-u/2&). 

The deflection angle is then given by 

where the averages are evaluated over the transverse coordi- 
nate x within the interval between the planes. For angles of 
incidence 0 >) 0 :, the probability of emission by positrons 
is obtained from (8 )  by introducing a'- - a' from the cor- 
responding expression for electrons. The probability inte- 
grated over the angles of emission of the photon is then found 
to be the same for both electrons and positrons, i.e., it is 
independent of the sign of the charge of the radiating parti- 
cle. 

The results that we have obtained become very much 
simpler in two limiting cases. We can then use the more gen- 
eral theory (8 )  to establish the connection between the stan- 
dard theory of coherent bremsstrahlungl.* and the constant- 
field approximation.'-" If the angle of incidence is 
sufficiently large in comparison with the angle 8, = U,, the 
mean square of the angle of deflection ( 0  i) in the argument 
of the delta function in (8 )  can be neglected. We can also 
neglect the second term in the phase f ( t )  [see (9 )  ] as com- 
pared with the first in which case the first term is found to be 
much smaller than the last, so that the corresponding expo- 
nent in I ,  can be expanded into a series, and only the first 
significant terms are retained. The result of all this is that the 
differential emission probability assumes the form corre- 
sponding to the dipole approximation: 

where we have used the following notation: 

It is clear that the Fourier component of the dipole moment 
xn can be expressed in terms of the corresponding Fourier 
component U, of the average potential of the planes. In its 
turn, U, is related to the three-dimensional Fourier compo- 
nent of the potential p(k , ,  k,, k ,  ) of a crystal atom by the 
well-known expression 

where V is the volume of the unit cell of the (monatomic) 
crystal and u: is the mean square amplitude of the thermal 
vibrations of the atoms. Integrating ( 11 ) with respect to the 
angles, we obtain the differential probability of dipole emis- 
sion per unit length per unit photon energy: 

m 

where 0, = u/(2Ew, ) and 17 is the Heaviside step function. 
When ( 13) is taken into account, the expression given by 
( 14) becomes identical with the analogous expression for 
the emission probability in the standard theory of coherent 
bremsstrahlung in the Born approximation [see, for exam- 
ple, equation (4.9) in Ref. 161. The standard theory of co- 
herent bremsstrahlung and e+e- pair production is thus 
seen to remain valid for angles of incidence 0, significantly 
greater than 0,  = U, (and also the critical Lindhard angle 
for charged-particle channeling). 

In the limit 0, g 0 , ,  which is the opposite of the dipole 
case, the probability of emission by particles with ultrahigh 
energies ESE,  contains the contribution due to the relative- 
ly large number of the higher harmonics. We can then ne- 
glect the relatively fine structure of the spectrum, due to the 
coherence of the planes, and replace summation over the 
harmonics n by integration over the quasicontinuous quanti- 
ty a , .  The method of stationary phase can then be used to 
evaluate the components of the current. The phase f(t) [see 
(9 )  ] is then represented by an expansion around the station- 
ary point t , ,  defined by the condition a' = 0, ( t ,  ), and has 
the form 

0' 1 dOd(t 1 (t-t6)3] 
f (t) = - [ (P2+E-') (t--t.) + --(A) 

2 3 dt, 

and the integration with respect to the time T = t - t, is per- 
formed between - co and + m .  The components of the 
current I given by ( 9 )  can then be expressed in terms of the 
modified Bessel function of the second kind, K,., and the 
differential emission probability ( 8 )  assumes the form 
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where{= Ju/(3aE2)1(1 + S2)-312,S = ED,anda = (dU/  
dx)E is the acceleration of the particle at the stationary 
point x, . The emission angle a' for given transverse particle 
energy E, defines, via the expression 8, (x, ) = a', the point 
x, on the trajectory and, hence, the acceleration a = a (x, ). 
Integration of ( 15) with respect to a' then reduces to inte- 
gration with respect to the time of motion within the colli- 
sion period, since da'  = adt. 

We have derived ( 15) in the limit of relatively large 
deflection angles ( p  B 1 ) , but its form is the same as that of 
the expression for the probability of emission by a relativistic 
particle in a constant magnetic field (see, for example, Ref. 
17). The constant-field approximation is usually used in the- 
ory of bremsstrahlung and pair production by channeled 
 particle^,'^," but it is clear that it can also be used in the case 
of particles above the barrier (see for example, Ref, 9).  It 
must be remembered, however, that the condition for the 
validity of this approximation for particles above the barrier 
is satisfied at higher energies E than for channeled particles, 
and the necessary energies increase with increasing angle of 
incidence 8,. 

In the above limit, in which p %  1, we can use (6)  to 
obtain a relation between the total energy loss per unit time 
averaged over all w and the transverse-energy loss: 

Since E$ E,, this result is identical with the analogous 
result obtained in classical electrodynamics by evaluating 
the work done by radiation reaction (see, for example, Sec. 
7.1 in Ref. 3). However, ( 16) has a greater range of validity 
because it is not restricted by the condition w <E, i.e., the 
condition that the energy carried off by an individual photon 
must be small in comparison with the energy of the radiating 
particle. Expression ( 16) is important for the investigation 
of the radiation reaction of the motion of high-energy parti- 
cles in a crystal field. 

To illustrate our theory, the figure shows the integrated 
probability (per unit length of e'e- pair production by a 
photon with energy of w = 3 TeV in a germanium crystal at 
20 "C as a function of the angle of emission of the photon, 8,, 
relative to the (1 10) planes. The potential of the planes in 
germanium was approximated by the parabola 
U(x) = + ~ , ( 2 x / d ) ~ ,  where 1x1 < d /2, U, = 39 eV, 
d = 2.0 A. The components of the current (9)  can then be 
written in the form 

Curve 1 shows the results obtained using the standard theory 
of coherent pair production, curve 2 shows the results ob- 
tained in the theory of pair production in a strong constant 

FIG. 1. Integrated probability of e+e-  production by 3-TeV photons in 
germanium as a function of the angle of incidence relative to the ( 110) 
planes: I-standard theory of coherent pair production, 2-constant- 
field approximation, 3-more rigorous theory. 

field, and curve 3 was calculated from the more rigorous 
expression given by (8 ) . 

The standard theory of coherent pair production pre- 
dicts that, on average, the probability will decrease linearly 
with decreasing angle of incidence, with the coherent maxi- 
ma superimposed on this variation. The theory of pair pro- 
duction based on the constant-field approximation leads to a 
probability that is independent of the angle of incidence. The 
more rigorous theory again leads to the appearance of coher- 
ent maxima at particular angles of the incidence, but the 
positions of these peaks are strongly shifted, especially those 
corresponding to the high-order harmonics, relative to the 
positions predicted by the standard coherent theory. More- 
over, the integrated probability calculated from the general 
theory does not decrease with decreasing angle of incidence 
8,, but, on average, approaches the level typical for the con- 
stant-field approximation. It is important to remember that, 
in practical situations, the photon beam has a certain angu- 
lar spread in 8, and in the energy w.  The result of this may be 
that the frequent and low maxima that correspond to the 
higher ( n  2 1) harmonics on curve 3 may disappear alto- 
gether after the additional averaging over the narrow ranges 
of 8, and w.  

We must now examine the difference between the more 
general formula for the emission probability ( 8 )  and the di- 
pole limit ( 1 1 ) corresponding to the standard coherent 
bremsstrahlung theory. As noted in the Introduction, the 
deviations from the standard theory depend on the param- 
eterp--,E ( 8  :) ' I 2 ,  i.e., on the ratio of the angle of deflection 
of the particle to the effective emission angle. Both in the 
dipole limit and in the general case, the emission probability 
consists of harmonics that correspond to crystal momenta 
transferred during the emission process in different multi- 
ples of the reciprocal lattice vector 2n/d. For a given har- 
monic, photons with maximum energy are always emitted at 
zero angle (8 ' = 0),  i.e., in the direction of the mean velocity 
of the particle in the field of the planes. The maximum ener- 
gy associated with the nth harmonic is 
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and is in general smaller than predicted by the standard the- 
ory of coherent bremsstrahlung because of the presence of 
the term E * (8  i) in the denominator of 6,. 

In the dipole approximation ( 14), the probability of 
emission of the nth harmonic is proportional to the square of 
the corresponding Fourier component of the potential ( 13), 
and decreases relatively rapidly (as n-4 if we ignore the De- 
bye-Waller factor) with increasing number of the harmonic. 
However, in general, the probability is determined by the 
Fourier components of functions that are more complicated 
that U(x), even when the transverse energy is high ( E $  U,) 
and ( 10) is valid. This means that, when the dipole approxi- 
mation (p 2 1) breaks down, all the high-order harmonics 
begin to play a significant part, whereas the intensity of the 
first harmonics gradually declines. 

3. BREMSSTRAHLUNG AND PAIR PRODUCTION IN THE 
FIELD OF THE CRYSTALLOGRAPHIC AXES 

Let us now consider the other characteristic case in 
which the initial momentum of the particles entering the 
crystal is close to the direction of a principal crystallograph- 
ic axis. The angle 8, to the axis will be assumed to be large in 
comparison with the critical Lindhard angle 8 I"' for axial 
channeling. In the planar case, this restriction will enable us 
to neglect the influence of the curvature of the particle tra- 
jectory on the characteristic collision time. 

We take the Cartesian coordinate frame so that the z 
axis coincides with the direction of the initial particle mo- 
mentum and the yz plane lies in the plane containing the 
crystallographic axis and the initial momentum. When the 
charged particle collides with the continuously charged axis 
passing through the origin, and the impact parameter is x ,  
the particle is deflected through the angle 8, in the xy plane 
and the angle 8, in yz plane. If we assume that the angle of 
incidence to the crystal axis is relatively large (8; 3 8 PI'), 
the deflect )a anglc are given by [see ( 10) ] 

where U(p)  is the average potential of the axis andp  is the 
distance from the axis. Suppose that the direction of inci- 
dence of the particle does not lie in any of the principal crys- 
tallographic planes. Planar channeling effects can then be 
neglected. Moreover, the periodic disposition of the axes is 
then unimportant and, in the first approximation, we can 
neglect the coherence of the probability amplitudes due to 
different axes. The problem thus reduces to the evaluation of 
the probability of bremsstrahlung and e'e- pair production 
in the field of an isolated axis. This approximation is also 
possible when the initial direction of incidence lies along the 
direction of one of the principal crystallographic axes, but 
the angle of incidence 8, with respect to the chosen axis is not 
too large in comparison with the critical 8 p' for axial chan- 
neling. The point is that, under these conditions, the scatter- 
ing of the particle by even one or two axes may take it out of 
the initial planar channel (see for example Refs. 6 and 18 ) , 
thus upsetting the coherence of the process. 

If we use the general quantum theory of emission in the 
field of an axis,633 under the above restrictions, we obtain by 
analogy with the planar case the following expression for the 
differential probability of emission of a photon of energy w 

(per unit length) by an electron (positron) incident at an 
angle 8, ( 8  ) 8 F") to the crystallographic axes: 

IPW e2u 0, 
,-I)- J { ( i + u + $ )  ~ ~ ~ - z ~ ~ ~ ~ ~ .  

dodo 2x' S , 

+ (uz/2Ea) 1 zZ 1 '} dx, (17) 

m 

= 5 ~ X P [  -ig (p) I ~ Y .  1. = 5 &(p) exp[ -ig (p) Idy. 

where S is the area per crystallographic axis in the plane 
perpendicular to the axes, w' = w ( 1 + u ), 8, = (8, ,8, ) is 
the two-dimensional vector representing the angle deflection 
of the particle, n, = (8 cos p ,8  sin p ) ,  and 8.p are the polar 
and azimuthal angles of emission. Integration with respect 
to x in ( 17 ) is equivalent to averaging the probability over all 
the impact parameters. 

The emission probability given by ( 17) and the analo- 
gous result for the pair production probability become much 
simpler in two limiting cases. For relative small angles of the 
deflection of the particle by the field of the axis (8,s U,), we 
can use the dipole approximation whic!i, as shown above, 
corresponds to the standard theory of coherent bremsstrah- 
lung: 

In the opposite limit, in which 8,< U,, the current com- 
ponents ( 18) can be evaluated by the method of stationary 
phase. The particle trajectory can be regarded as planar in 
the neighborhood of the stationary pointy,, so that the anal- 
ysis of this limit in the axial case is completely analogous to 
the planar case and leads to an expression analogous to ( 15 ) . 

4. ANALYSIS OF RESULTS AND COMPARISON WITH 
EXPERIMENTAL DATA 

Analysis of the general result given by ( 17), and further 
numerical calculations in the intermediate range of the an- 
gles of incidence 8,- U,, are considerably simplified if we 
use the potential of an axis in the form U(p) = U,a/p, where 
p >p,,, . The potential parameters U,, a and the cutoff pa- 
rameterp,,, are usually determined from the condition that 
the well depth U(p,,, ) and the maximum potential gradient 
U(pmin )/pm,, must agree with the corresponding values for 
the more general potential U(p). In the first approximation, 
which is sufficient for simple estimates, we may suppose that 
Uo=:~e2/2dS,p, , ,  --aza, = 0.88e-2Z-'/3 , where Z is 
the nuclear charge of the crystal atoms and d, is the separa- 
tion between neighboring atoms on the axis.'' 

Using this model together with (17) and the cross- 
transformation of the emission probability, we find that the 
probability per unit length of the production of the ef e- 
pair by a photon is 
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we compare this result with the probability w,,, for the 
amorphous medium, we find that 

+?(I -$)]K,:(c) This ratio increases with decreasing Z,  but it must be remem- 
bered that the photon energy o- E2 for which (20) is still 
valid is then also higher. The above probabilities depend sig- 

+[ ( I - a )  k, + $ ] R i v e ( c ) } d g ,  nificantly on the ratio o / E 2  in the range 6 , 2  U,. For o /  
E2 U< 1, the probability increases with increasing ratio 8,,/U0, 
reaching its maximum value for 

(19) 

00(~'%(2UaE2/o)  ( l + 0 2 / 4 E : ) .  
where Ki, ( c ) ,  K ;,, ( c )  are, respectively, the modified Bessel 
function and its derivative with respect to c, and The value of the probability at this point is 

v= (o'EzIE2)p2$ sin cp, q= (o'E, lE2)pZ$ cos 9, 

The usual procedure is to measure the pair production 
probability integrated with respect to the energy and the an- 
gle of emission (see, for example, Refs. 1, 2, and 7 ) .  The 
corresponding integration in ( 19) in the general case of arbi- 
trary p can be carried out only by numerical methods. How- 
ever, the basic features of the behavior of the integrated 
probability w, as a function of the photon emission angle 0 ,  
can be understood by analyzing the integrands in ( 19) for 
different parameter ratios. 

According to ( 19), the total probability of e+e- pair 
production by a photon depends on two parameters, namely, 
the ratio l/p of the angle of incidence 0, to the angle 6 , r  U,, 
and the ratio of the photon energy w to the energy E2 = a /  
U,. Using the above expressions for the parameters of the 
potential of an axis, we obtain the analytic expression 

. The critical energy e2 is thus seen to de- 
crease with increasing nuclear charge Z of the crystal atoms, 
and to increase together with the Miller indices of the axis in 
proportion to the separation between neighboring atoms on 
the axis. We note that the energy E2 is greater by a factor of 
about 10'2 - ' I 3  than the critical energy E, = 1/U, intro- 
duced earlier. 

For angles of incidence 0 , s  U,, the total probability is 
practically independent of the angle 8, and its value is deter- 
mined exclusively by the ratio w/E2. In this range of angles 
of incidence, the probability at first rapidly (exponentially) 
increases with increasing w/E,, and when the ratio w/E2 
reaches unity, the increase slows down and is subsequently 
described by the expression ( w / E 2 )  ' I 3 .  When w/E2-  1, the 
pair production probability is w, - ( e 2 / r 2 E 2 )  X ( a 2 / S ) .  If 

Further increase in the angle of incidence is accompanied by 
a slow ( - I /@,)  decrease in the probability. 

On the other hand, when the photon energy is relatively 
high, so that w 2 2E2, the behavior of the probability for an- 
gles of incidence do? Uo differs significantly. The probabili- 
ty then decreases monotonically with increasing 8,/U,. 

The table lists the calculated parameters E,, E,, 6 ,  = U, 
for different crystals and different crystallographic direc- 
tions. The potentials of the axes and planes were calculated 
using the Doyle-Turner model of the atomic potential, tak- 
ing into account thermal vibrations at 100". The quantity E2 
was then determined as 1/J V U 1 ,,, , where ( V U )  ,,, is the 
maximum potential gradient due to the axis or plane, and is a 
function of temperature. 

The integrated pair-production probability was mea- 
sured in Ref. 7  for protons with energy between 22 and 150 
GeV as a function of the angle of incidence relative to the 
(110) axis in a germanium crystal at 100". Calculations 
show that, in this case, E2 = 47 GeV for 8, = 5 . 3 ~  loF4 .  

The angle 8, is close to the value at which a sharp differ- 
ence is observed between w, ( 0 , )  and the predictions of the 
standard theory at all photon energies. 

The different behavior of the measured probability as a 
function of photon energy for angles of incidence 5 5. 
and k 5. is also in agreement with the predictions of the 
theory developed here. In particular, the maximum that is 
clearly observed at the lower energies is found to disappear 
altogether for photon energies in the range 90-120 GeV. 
This is in agreement with the theoretical value w z 2 E 2  = 94 
GeV for which this effect should be observed. 

5. CONCLUDING REMARKS 

The characteristic features of electromagnetic pro- 
cesses in crystal at high incident-particle energies can thus 
be explained only by a theory that takes into account the 
nondipole nature of the processes. The following point must 
also be taken into account in detailed calculations and in 

TABLE I. 

I ( l l O ) c d  I ( ' l o )  ~d I ( l lOlSi  I (11))Si  I (1iO)Ge I (1iO)Ge 
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comparisons between calculations and measurements. The 
fact that the photon beam is not strictly monochromatic is 
equivalent to an additional averaging of the pair production 
probability ( 19) over the photon energy. Thermal vibra- 
tions of the atoms lead to a change in the potential param- 
eters and to an additional background in the probabilities, 
which is due to the interaction between the particles and the 
individual crystal atoms. The background differs from the 
pair production probability in the amorphous medium only 
by the factor - u , / a ,  under the sign of the radiation loga- 
rithm [see for example Refs. 1 and 31 and, according to the 
estimate given by (20), it is particularly significant at rela- 
tively low energies w <E,. The influence of the curvature of 
the particle trajectory on the characteristic time of their in- 
teraction with the axes or planes must be taken into account 
for angles of incidence approaching the Lindhard an- 
gle.6.9.14, 15 

The above theoretical analysis of the e+e-  production 
by ultrahigh energy photons shows that, for small angles of 
incidence 8,s 8, ,the production probability may be higher 
by an order of magnitude as compared with the amorphous 
medium (8, does not depend on the energy and is deter- 
mined exclusively by the properties of the crystal lattice). 
An estimate analogous to (20) is ~ a l i d ~ . ~  for the ratio of the 
emission probabilities in a crystal and in the amorphous me- 
dium. As a result, the effective avalanche length in the crys- 
tal for particles entering at angles of incidence 9,s 0, should 
also be lower by an order of magnitude. 

For particles heavier than the electron (for example, 
muons), the angle 8, is found to be significantly smaller 
because it is inversely proportional to the particle mass M, 
whereas the critical energies E,, E, are greater by a factor of 
M 2. The production probability is then lower by a factor of 
M 2 .  

I am indebted to V. I. Glebov for help with numerical 
calculations and for useful discussions. 
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