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One possible deviation from a Newtonian gravitational potential that occurs in supergravity 
theories, as well as in recently hypothesized interactions that contribute to the gravitational 
interaction, is of the form V(r) = - G, ( M / r ) ( l  + a exp( - r/r,)). We describe here an 
experiment to test the gravitational interaction between two spherical masses separated by a 
distance in the range 3.8-6.5 mm. Over this range we detect no dependence of the gravitational 
constant on the distance between the test masses. Limits are placed on possible values of the 
parameters a and r, emerging from our results. 

INTRODUCTION 

The possibility of a deviation from Newton's Law of 
Universal Gravitation has been the subject of numerous re- 
cent studies. One particular problem that has been posed 
concerns the dependence of the gravitational constant on the 
distance between interacting masses. This problem has 
aroused interest for a number of reasons. Of all the constants 
of physics, the gravitational constant is the least accurately 
known, and the values determined in different laboratories 
do not always agree to within their quoted systematic er- 
rors.' Possible modifications to the law of gravitation arise in 
certain versions of the scalar-tensor theory of gravity and 
~ u ~ e r ~ r a v i t y , ~ . ~  and it has been claimed in a number of ex- 
perimental papers4,"hat a distance-dependence has been 
detected for the gravitational constant. 

A variety of theoretical approaches lead to a gravita- 
tional potential due to a mass M a t  distance r given by 

Besides the usual Newtonian term, there is a term in the form 
of a Yukawa potential, which might be looked upon as an 
additional interaction due to the exchange of virtual parti- 
cles with nonvanishing mass and a corresponding finite 
range r,. The dimensionless constant a characterizes the 
strength of the latter interaction as compared with gravita- 
tion. 

A series of laboratory  experiment^"-^ conducted at dis- 
tances between 2 and 10 cm, however, failed to reliably de- 
tect any distance-dependence of the gravitational constant. 
A recent hypothesis'" suggests the existence of a new form of 
interaction having a range of the order of several hundred 
meters-the so-called "fifth force." This force contributes to 
the gravitational interaction between masses and is also de- 
scribed by the potential ( 1 ), with a being proportional to the 
ratio of the baryon numbers to the atomic masses of the in- 
teracting matter. Other suggestions have also been made re- 
lating a to the atomic structure of the matter constituting the 
interacting masses." Experiments designed to detect a new 
interaction have thus far yielded contradictory results, and 
they neither confirm nor refute its hypothesized exis- 
tence. ''-I5 

The range of terrestrial distances for which gravitation 
has been tested experimentally thus extends from centi- 
meters to kilometers. Distances less than 1 cm are also of 
interest, but progress in that realm entails overcoming cer- 
tain problems. In this paper, we describe an experiment that 

tests Newton's Law of Gravitation at distances from 3.8 mm 
to 6.5 mm. 

EXPERIMENTAL ARRANGEMENT AND MEASUREMENT 
TECHNIQUE 

As the distance between masses (for example, spheres 
of radius R )  decreases, the gravitational force between them 
decrease at least as R 4, and it becomes difficult to distinguish 
it from the background gravitational attraction of surround- 
ing masses, as well as seismic noise. With this in mind, we 
opted for a Cavendish design for our experiment, but making 
use of a torsion balance operating under dynamic rather 
than quasistatic conditions, and taking advantage of the res- 
onant enhancement of the oscillation amplitude of such a 
balance when a test mass mounted at one end of the balance 
arm was subjected to a periodically varying attractive gravi- 
tational force from a third, movable mass. 

Figure 1 presents a block diagram of the arrangement 
used to measure the gravitational force between two spheri- 
cal masses. Two spheres were affixed to the ends of the beam 
of the torsion balance, which was then suspended in a vacu- 
um chamber (evacuated to a pressure of less than 
Torr) by a quartz fiber 5 p m  in diameter and 14 mm long. 
The fiber was aluminized to mitigate the effects of electro- 
static charge. A test mass A (m, = 59.25 +_ 0.1 mg) was 
prepared from platinum. The torsional oscillation period of 
the balance was T = 42 sec, and the relaxation time was 
T* = 2.5.10' sec, the latter was governed by losses in the 
surface layer of the suspension fiber. The vacuum chamber 
was fitted with a cylindrical insert having a thin end-wall 
0.25 mm thick. The balance was suspended and adjusted in 
such a way that test mass A was located adjacent to the cen- 
ter of the cylindrical insert, 0.2 mm from its surface. An- 
other mass B was located outside the chamber but within the 
cylindrical insert, from whence it exerted a gravitational 
force on mass A .  Mass B was a 706 f 0.5 mg tungsten sphere 
attached to the end of a fine molybdenum needle. The exter- 
nal mass could be moved along a guide by a servo-controlled 
motor, and could be set at a series of specified distances from 
mass A .  

Torsional oscillations of the balance were detected by a 
capacitive parametric displacement transducer whose high- 
frequency drive was provided by a stabilized quartz oscilla- 
tor. The effective capacitance was that between the end wall 
of the cylindical insert and test mass A .  This same sensor 
recorded pendulum oscillations of the balance arm perpen- 
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FIG. 1 .  Block diagram of theexperimental arrangement for measuring the 
gravitational force between two spherical masses. 1 ) Vacuum chamber; 
2 )  torsion balance; 3 )  capacitive displacement transducer; 4) amplifier; 
5 )  filter; 6 )  electromagnet; 7 )  photodetector; 8 )  displacement control 
system for mass B; 9) laser; 10) strip-chart recorder; 1 1  ) voltmeter. 

dicular to the plane formed by the arm and the suspension 
fiber, and the two types of oscillation were discriminated by 
appropriate filters. 

To reduce the effective noise temperature of torsional 
oscillations of the balance induced by seismic effects, we in- 
stituted damping of the pendulum modes. Pendulum oscilla- 
tions both in the plane of the balance arm and suspension 
fiber and perpendicular to it were detected by optical and 
capacitive sensors whose outputs were amplified and set to 
electromagnets with the appropriate phase. The latter then 
drove the entire vacuum chamber, including the balance sus- 
pension assembly, synchronously with seismic oscillations 
of the balance arm. The phase of the drive was so chosen as to 
quench spurious pendulum oscillations. In the process, the 
relaxation time of pendulum oscillations was reduced from 
10' sec to several tenths of a second, significantly diminish- 
ing the coupling of pendulum-mode energy into the torsional 
mode, and lowering the effective noise temperature of the 
torsional oscillations to 3. lo3 K (at night). This enabled us 
to achieve a sensitivity in measurements of the torque acting 
on the test mass A ofP,,,,, --5.10W10 dyne.cm for an integra- 
tion time of T-- lo3 sec. 

The measurements were made as follows. Gauge blocks 
were used to set the closest position of mass B, at a distance r ,  
from test mass A.  The displacement control system, driven 
by the signal from a torsional oscillation sensor on the bal- 
ance, was then turned on. Mass B was automatically moved 
from its closest position to its farthest (40 mm travel) synch- 
ronously with the oscillations of the balance. Depending on 

the phase of the motion of mass B, torsional oscillations 
would first be excited by the gravitational attraction between 
masses A and B, then damped. The amplified and filtered 
signal from the sensor output, which was proportional to the 
displacement of the test mass, was recorded by a strip-chart 
recorder, and for every oscillation period, its amplitude was 
measured by a digital voltmeter. A new closest position was 
then set up for mass B, corresponding to a distance r,, and 
the measurement cycle was repeated. 

The change in oscillation amplitude per period under 
the influence of a periodic torque that consists of a series of 
rectangular pulses of amplitude Po, with a repetition rate 
equal to the natural frequency of the balance and a phase 
shift p, is given (when Q% 1 ) by 

where a,. is the amplitude of the ith oscillation cycle, K is the 
stiffness of the oscillator, and Q is its quality factor. Depend- 
ing on the value of p, oscillations of the balance will either be 
amplified or attenuated. 

We used Eq. (2)  and the observed amplitudes to calcu- 
late the gravitational torque acting on the test mass for an 
optimal choice of phase p: 

where unprimed quantities refer to amplified oscillations of 
the balance (a  total of N periods), and primed quantities 
refer to damped oscillations ( N  ' periods total), and 

V A' ' 

Calculating the torque for both amplified and damped 
oscillations enabled us, for example, to eliminate the Q of the 
torsional balance from the calculations, thereby reducing 
the final error. Equation (2)  is approximate, but with the 
balance actually used (Q% 1 ) it yields an error that is small 
compared with the overall measurement error. 

The change in the total torque acting on the balance as 
mass B was moved resulted from interactions between that 
mass and the needle to which it was affi'xed, test mass A, the 
second mass of the balance, the balance arm, and the mirror. 
The gravitational attraction between masses A and B were 
the dominant factor, the remainder contributing less than 
5%. From the measured torques, we calculated the ratio 
[F(  r ,  )/F(r,) ] .., . Measurements were made for two values 
of the distance between the centers of spheres A and B, 

r, = 3.773 k0.040 mm, r, = 6.473 k0.040 mm. 

Measurements were carried out on eleven occasions. 
Statistical processing yielded the result 

The quoted error is at the l a  level, and is the product of 
fluctuations in the amplitude of balance oscillations caused 
by seismic noise. 

STATISTICAL AND SYSTEMATIC MEASUREMENT ERRORS 

The measured values of the gravitational force acting 
on the balance at two different positions of the mass B were 
compared with the calculated ratio [F( r ,  )/F(r,) ],,,, ar- 
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rived at by applying Newton's law. Since we measured a 
ratio of forces, the principal error in the calculated value of 
this ratio was due to inaccuracies in the measured mutual 
separation of the interacting masses. The comparatively 
large magnitude of the relative error may be due to the small- 
ness of the measured distances themselves, as well as the 
presence of a number of partitions between the interacting 
masses. 

Another source of error in the computed force ratio 
may perhaps be the contribution to the overall force coming 
from the attraction between the mirror, the balance arm, and 
the second mass comprising the balance, as well as the needle 
supporting the movable mass B. This error was dominated 
by inaccuracies in the measured masses and the dimensions 
of the balance, and amounted to at most 10% of the total 
error in the computed ratio. The value obtained for the 
quoted distances was 

In carrying out this experiment, it was necessary to 
minimize those effects that might mimic deviations from 
Newton's law. Such effects include nonlinearities in the 
transduction from mechanical oscillation of the balance to 
an electrical signal, i.e., dependence of the conversion factor 
on the amplitude of angular oscillations of the balance. Mea- 
sures were taken in this regard to maximize the linearity of 
the capacitive displacement transducer and electronic am- 
plifiers. Furthermore, in measuring at the closest and far- 
thest positions of mass B, the balance was driven to approxi- 
mately the same oscillation amplitude, thereby significankly 
reducing nonlinearities. 

Equation (2) determines the precision to which the 
phase difference between the motion of mass B and that of 
the balance must be held constant, seismic noise induces er- 
rors in this phase. The amplitude to which oscillations of the 
balance had to drop before the active drive was turned on 
was chosen on the basis of the required signal-to-noise ratio, 
so as to assure the necessary accuracy in the determination of 
the phase of balance oscillations. 

Besides gravitational interactions between the masses, 
magnetic interactions due both to magnetization of the 
masses in the earth's magnetic field and the presence of fer- 
romagnetic impurities in the balls could also contribute. 
Test measurements were made to determine the magnetic 
properties of the masses employed in the experiment. In ad- 
dition, the forces between masses placed in an external 10-0e 
magnetic field induced by a solenoid were measured. These 
tests made it clear that magnetic interactions between the 
masses in fields of the order of magnitude of the terrestrial 
field were due mainly to induced magnetic moments. The 
error engendered was less than the systematic errors. 

The size of the systematic error in the measured ratio 
[F(r,)/F(r,)] induced by the above effects were therefore 
at most 0.5%. 

DISCUSSION OF RESULTS 

Comparing the experimentally determined values of the 
force ratio (4) between the masses at two different distances 
with the calculated values (5 )  based on Newton's law, we 
find that there is no significant discrepancy between these 
quantities at the l a  level: 

I [F(r1)/F(r2) I,,, - [F(r,)/F(r,) =(1.0&5.4) (6) 

FIG. 2. Bounds on feasible values of the parameters r,, and a given by the 
present experiment (solid curves), as compared with results from Ref. 7 
(dashed curves) and Ref. 9 (dash-dot curves). 

This means that we detected no deviation from Newton's 
Law of Gravitation in the present experiment. 

If we start with the assumption that the gravitational 
potential is described by Eq. ( 1 ) , then (6) provides bounds 
in the parameters r, and a. It is then necessary to take ac- 
count of the fact that the distance r separating the centers of 
the interacting masses is comparable to their radii R ,  and R,, 
and that the masses cannot be considered point masses. The 
gravitational potential energy between the two spherical 
masses A and B can be calculated by integrating Eq. ( 1 ) over 
their volumes: 

V A B  (r) 

where 

Figure 2 shows the bounds placed on feasible values of 
the parameters a and r, by the present experiment at the 1g 
confidence level; the figure also show corresponding curves 
derived el~ewhere.'.~ These bounds on a and r, enable one to 
narrow the range of possible masses of the hypothetical par- 
ticles associated with the correction of Newtonian gravita- 
tion arising in supergravity models (for example, see Refs. 3, 
8, 16). 

The work cited in Refs. 10-15 has recently aroused in- 
terest in the possible connection between the coefficient a in 
the expression for the modified gravitational potential (1) 
and the atomic structure of the interacting matter. Indeed, r, 
has been assumed to lie in the range 10 ' - lob ,  although 
there is no theoretical prerequisite for such an assumption. 
The coefficient a may be written in the formJ5: 

where charge q i  is a linear combination of the baryon num- 
ber Bi /p, and the projection of the nuclear isospin I,, /pi 
normalized to unit mass of the interacting objects, pi = mi/ 
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m, is the atomic mass measured in units of the mass of the 
hydrogen atom, and {is a universal interaction constant. If 
we assume that [ B  /p], = 1.008093, [ B  /p] ,, = 1.008009, 
[I,/p], = 0.19675, and [I,/p] ,, = 0.20208, the experi- 
mental estimates for a make it possible to derive correspond- 
ing values of { for small values of r,. 

The authors thank V. B. Braginskii for useful discusions 
and assistance. 
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