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We investigate the nonlinear stage in the development of Jeans instabilities in an expanding 
universe. We show that the relationship between density and velocity in a growing gravitational 
mode is such that in the nonlinear stage, the maximum initial density evolves into a self-confined 
nondissipative gravitational singularity (NGS) . An NGS possesses perfectly well-defined scaling 
relations for the gas density and the field velocity and potential in the vicinity of a singularity. 
Well-developed gravitational turbulence consists of a hierarchical system of NGS on a range of 
scales, where the fields of large-scale singularities confine small-scale ones. Comparison of the 
theory with observational data provides a crude estimate of the original large-scale fluctuation 
spectrum. 

The Friedmann model of a homogeneous and isotropic 
universe is valid only on scales of the order of the radius of 
the horizon. Small deviations from homogeneity tend to 
grow as a result of gravitational forces. On scales much 
smaller than the radius of the horizon, the dynamics of these 
perturbations is of crucial importance in the formation of 
galaxies, galactic clusters, superclusters, etc. It is normally 
assumed that the missing mass, being nondissipative (that is, 
interacting solely through gravitational forces), plays a ma- 
jor role in this  process.'^^ 

Lifshits3 has developed the linear gravitational theory 
that describes the growth of small fluctuations in an expand- 
ing universe, but to ascertain just what structures might 
evolve and continue to exist in the universe, it is necessary to 
study perturbation dynamics in the nonlinear stage. The lat- 
ter is the subject of the present paper. We naturally limit our 
attention to scales much smaller than the radius of the hori- 
zon; the velocity of matter is much less than the speed of light 
on such scales so our treatment can remain within the frame- 
work of Newtonian mechanics. 

We previously considered the nonlinear stage of gravi- 
tational instability4 in a noncosmological setting, assuming 
certain special initial conditions: initial matter-density per- 
turbations Sp were taken to be at rest (v = 0) and to exhibit 
nonlinear characteristics (Sp -p) . We then showed that ev- 
ery maximum of the initial density undergoes three-dimen- 
sional compression and subsequent mixing, resulting in the 
formation of a nondissipative gravitational singularity 
(NGS), a self-confined clump of matter having at its center 
r-0 a singularity of densityp, speed v2, and field potential $: 

where $, = $(0) is the value of the potential 4 at the singu- 
lar point r = 0. Nondissipative gravitational turbulence de- 
velops when there is a random, irregular distribution of ini- 
tial density p( r ) ,  and consists of a hierarchical structure 
containing superposed moving NGS on various scales, with 
smaller-scale singularities being confined by the gravitation- 
al field of larger-scale singularities. The scaling relations ( 1 ) 
hold in every such NGS, both for the gas density and for the 
number density of confined small-scale NGS. 

A different, more general cosmological approach was 
taken by Zel'dovich5 and further developed by him and by 

Arnol'd, Shandarin, Doroshkevich, and others.'s6 In La- 
grangian form, they considered nonlinear perturbations of 
arbitrary form in an expanding universe, and found that the 
main (i.e., the most likely) linear structure is a planar singu- 
larity (a Zel'dovich pancake). In such a singularity 
p - ~ - 2 1 3  and v 2 - ~ 2 ' 3 )  $ - 4, , SO it is not capable of self- 
confinement-that is, it cannot form a stationary structure. 

Note that discussions based on the general properties of 
Lagrangian singularities do not take account of the specifics 
involved in the growth of small fluctuations subject to gravi- 
tational instability. The point here is that prior to the nonlin- 
ear stage, only perturbations of a particular kind will grow 
out of arbitrary small initial perturbations, and consequent- 
ly a special kind of singularity might also emerge. This is 
exactly what proved to be crucial to an understanding of the 
nature of singularities of nonlinear structures that might 
arise in an expanding universe. 

In Sec. 1 of the present paper, we first discuss the 
growth of small fluctuations, given arbitrary initial density 
and velocity perturbations. In so doing, we distinguish 
between two mode~'.~-growing and damped. We show that 
the initial conditions required for an investigation of the 
nonlinear dynamics of the growing mode comprise a well- 
defined scalar combination of density and velocity. As a re- 
sult, we obtain for the growing mode a nonlinear solution 
that is in fact identical with the NGS ( 1 ). 

In Sec. 2, we examine the effect of the damped mode on 
the growing mode during the nonlinear stage of development 
of an instability. We show that it has a significant influence 
only in a very small neighborhood of the singularity. We 
then go on to discuss the relationship between or results and 
Lagrangian singularities. 

In Sec. 3, we study the process whereby a hierarchical 
structure of nondissipative turbulence is produced; we show 
that the scaling laws ( 1 ) also hold in an expanding universe, 
and that they characterize both the matter density distribu- 
tion and the distribution of smaller-scale confined NGS. 

In a brief summary, we point out that the observational 
data not only confirm that a hierarchical structure consis- 
tent with the scaling relations ( 1 ) exists, but they also enable 
us to investigate the initial growth stage of gravitational per- 
turbations for the largest-scale inhomogeneities. By compar- 
ing theory with the latest observations, we can roughly ap- 
proximate the initial spectrum of large-scale fluctuations. 
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1. DYNAMICSOFTHE GROWING MODE 

We consider the stage in the evolution of the universe 
when its expansion dynamics are governed by cold nondissi- 
pative matter. We assume small velocity and density fluctu- 
ations vi and Sp, at some initial time ti, and investigate their 
subsequent evolution. 

The equations describing the motion of a cold nondissi- 
pative gas in an expanding reference frame take the form2 

d d 
- ~ + a - ~ ( v V ) v  + -v+a-'Vcp=O, 
dt a 

(2)  
a - 6+a-'V( (1+6)v )  =O, Acp=aZ6po ( t ) .  
d t  

Herev is the particle velocity, S = [p(x,t) -p,(t) ]/p,(t) is 
the deviation of the gas density from the mean background 
density p,(t), and a ( t )  is a scale factor. In (2),  as in Ref. 4, 
we use a system of units in which 4rG = 1. 

In view of the smallness of the initial perturbations, we 
first investigate their growth in the linear stage. Equations 
(2) then take the form 

a - 6+a-1Vv=0, A(p=a26po ( t ) .  
A t  

The solution of (3)  has been analyzed repeatedly (for exam- 
ple, see Ref. 2), and is of the form 

a ( t )  +vi" { D 2  ( t )  Dl ( i )  -B, ( t )  D2 ( i ) )  +vi'aila ( t )  . 
aiE 

Here a , ,  Si, and vi are quantities that are prescribed at some 
initial time ti, vf and vj  are the irrotational and rotational 
components of velocity, the constant E is defined by 

and D,  ( t )  and D, ( t )  are the growing and damped solutions, 
respectively, of the differential equation 

8 d ( t )  d 
-- D+2 ---- - 
dt' 

D=po ( t )  D. 
a ( t )  dt 

In the remainder of this section we will consider only the 
unstable (growing) mode. This implies that we must choose 
the initial conditions for the velocity and density so that 
there is no damped component in Eq. (4) .  This can always 
be accomplished if at the initial time ti we impose the follow- 
ing conditions: 

Of course, the relations (5)  significantly restrict the class of 
initial functions; the effects of all other initial conditions will 
be the subject of Sec. 2. 

Substituting (5)  into (4), we can readily show that at 
the initial time ti, the growing mode is completely deter- 

mined by a single scalar function, for which we can use the 
initial potential pi (x) ,  whereupon 

Notice that one might also choose some arbitrary den- 
sity Si (x)  for the initial conditions here. Equation (2)  then 
implies that the potential pi (x )  would be determined to 
within some function S (x )  satisfying the equation AS = 0. 

Now consider one arbitrary maximum of the function 
Si (x) .  Near this maximum, the density (and therefore in 
accordance with (5a), the velocity) can always be represent- 
ed in the form 

Let us see how the density and velocity of a collisionless gas 
will vary in the neighborhood of this maximum, starting 
with the system of equations (2) .  

An analysis shows that using (6)  to take the initial ve- 
locity into account simply leads to a renormalization of the 
coefficients in the solution ( lo), ( 13). Without loss of gen- 
erality, therefore, we may assume that vi = 0. It is most con- 
venient to seek a solution in the frame of reference associated 
with the maximum density. In the usual manner, therefore, 
we may go from the expanding reference frame to the rest 
frame via the transformation2 

Substituting (7)  into (2) ,  we obtain 

We supplement (8)  with initial conditions derived from (5)  
and (6) :  at t = ti, 

where 

We have previously obtained4 an exact solution of the system 
of equations (8)  with initial conditions like (9) :  

1 I +  %=- l l /  ( 2  Y X )  It>. 

Here Y = 6 '(JB /Jg),  the functions d ( Y) and X (  Y) are 
determined by the initial conditions ( 9 ) ,  and the time 
T = t - t, is conveniently measured from the initial time t, . 
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Below it will also be convenient to measure 6 in units of 
( ( 1 + 6 ,  ) /Si  ) ' I 2 ,  Y in units of Yo = ~ , $ , ~ / 3 ,  the velocity 
u(6, t )  in units of Ro- ' (3 /p lo )"2 ,  and time T in units of ( 3 /  
p lo )  ' I 2 .  Here Ro = r,( ( 1 + Si ) /S ,  ) ' I 2 ,  and ro is the charac- 
teristic scale length of the density maximum: 

P I O  = p o ( i )  + 6p0( i ) .  At T = 0 ,  the initial conditions (9) 
then take the form 

where A = ( - a f / a ,  ai ( 1 + Si ) ) 'I2. In deriving this equa- 
tion, we made use of the dynamical relation2 between p , ( t )  
anda ( t ) :  

We emphasize that since we have p , ( t )  > 0  and 6, -4 1 ,  the 
expression whose square root is being taken is always posi- 
tive definite. 

The functions A?( Y) and .M ( Y) which satisfy the ini- 
tial conditions ( 12) are of the form 

where 

Proceeding to the linear case in the solution ( l o ) ,  ( 13),  
we obtain a well-known result '-"or R  = 1 : 

16 (x, t) =&, (x) t". ( 1 4 )  

Let us first consider the case in which a  > 0.  An investigation 
of the solution ( lo ) - (  13) shows that the gas is compressed 
under the influence of gravity, and at time 

a singularity appears: the density at the center goes to infin- 
ity. Equations ( 10) and ( 13) imply that at T = r0, all quanti- 
ties in the neighborhood of the singular point = 0  behave in 
the following way: 

These relations are analogous to Eq. ( 2 0 )  of our previous 
paper.4 But we stress once again that the central singularity 
( 15 ) differs fundamentally from planar "pancake" singular- 
ities in that it is a capture singularity, v2 - $ - $, at every 
point. The subsequent mixing of this singularity in multiple- 
current hydrodynamics is described in Ref. 4  in identical 
fashion, and leads to the emergence of the NGS ( 1 ) . 

So far, we have examined the nonlinear dynamics of the 

growing mode of a gravitational instability for the case a > 0.  
For a <O, there will be no singularity at the origin, and a 
kinematic current reversal takes place at a point a certain 
distance away from the density maximum, with the particle 
kinetic energy in the vicinity of the singularity being much 
higher than the potential energy. Outside the neighborhood 
of the density maximum, Lagrangian singularities of general 
form will emerge; these are classified in Ref. 6. 

The sign of a depends on the cosmological model; ac- 
cording to ( 13 ) . 

a=I - A(%)' ( i )  (1+6<). 
2 ai 

Equation ( 1 6 )  may conveniently be expressed in terms of 
the parameter fl = + p , ( t ) / ( a / a ) * ,  which determines the 
rate of expansion of the universe. Thus, we find from ( 16) 
that 

This makes it apparent that the region in which an NGS will 
occur (a > 0 )  depends heavily not just on the initial values 
6 ,  , but also on how close the parameter SZ is to unity. There- 
fore, an analysis of the actual distribution of matter in the 
universe might perhaps enable one to improve the value of 
fl. Taking Ri = 1, we find 

2. THE EFFECT OF DAMPED MODES ON THE FORMATION OF 
A NONDlSSlPATlVE GRAVITATIONAL SINGULARITY 

In treating the nonlinear theory of a growing perturba- 
tion mode, we have completely avoided any consideration of 
the damped mode, thereby considerably restricting the class 
of initial conditions. Indeed, arbitrary initial conditions are 
determined by four scalar functions ( 6 ,  ( x ) ;  v, ( x ) ) ,  while 
there is but one for the growing mode. Since the separation 
into growing and damped modes is only possible in the linear 
stage, however, it is necessary to consider the effects on ( 1 5 )  
of all sorts of perturbations that we have not into account. 
Particle velocities in the damped mode take the form2 

X - X  
v = - D ~  ( t )  a (t) { B ~  (i) ! d3z' hi ( x f )  

' 

I x ' - x ~ ~  

- D, (i) - *I' ] /.E+vIr& . ( 1 8 )  
a ( t )  

Let us first confine our attention to irrotational motion; i.e., 
we assume that v: = 0 .  We shall be interested in the solution 
of ( 1 8 )  in a small neighborhood of the density maximum 
discussed earlier. In general, then, the velocity v can be ex- 
panded in a Taylor series. To first order, we obtain 

The velocity u, and position xB here are made dimensionless 
in the same way as in (12).  

Equation ( 18) only holds as long as S < 1. For S> 1, it is 
necessary to consider the compressed solution described by 
( 1 0 ) .  We denote by E the characteristic magnitude of the 
tensor Uoo at the instant when S  = 1 ;  it depends on the rate 
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of expansion of the universe and the fluctuation amplitude 
6,. For 0 = 1, we have 

An analysis of ( 10) shows that without loss of genera- 
lity, we may consider values of the velocity field for the 
damped mode having V - v = 0. If we then diagonalize the 
matrix Ud (bearing in mind that V x v = 0) ,  we obtain 

In writing out (20), we have chosen a direction along they- 
axis for the velocity gradient near the maximum-density 
point r = 0. 

Let us now investigate how the choice of the initial ve- 
locity (20) at time t = t * (6  = 1 ) affects the compression of 
a clump induced by a growing mode. Since we are interested 
in the neighborhood of { = 0, we look at the solution ( 10) 
expanded about this point during the compression stage, ob- 
taining 

Here r has been normalized to r,, and r to r,. Subtracting 
(21 ) from the complete hydrodynamic system (8) and call- 
ing the differences Sv, &,and 6$, we find 

The initial conditions for (22) are as given in (20). We seek 
a solution of (22) in the form 

where 77 = ( 1 - T) - ' I 3 ;  there is no summation over the sub- 
script k. 

Substituting (23) into (22), we obtain 

Since according to ( 19) we have E < 1, it suffices to examine 
the linear solution of the system (24). Discarding nonlinear 
terms and inserting the initial conditions (20), we have 

We see, then, from (25) that to first order the density 
does not increase, q = 0, but the velocity grows more rapidly 
than that of the main flow (21 ), significantly exceeding the 
latter near the singularity. Let us consider, therefore, the 
nonlinear solution of the system (24), assuming 77 -+ W .  

From the first of Eqs. (24), we obtain asymptotically 

1 dh, -- + h,2=0. 
3 drl 

Equation (26) describes the kinematic motion of particles, 
and it has a solution of the form 

What is important for our purposes is that perturba- 
tions in y grow more rapidly than in the other two coordi- 
nates. The solution (27) becomes singular at v =  1 + &/2 
(as can be seen from the initial conditions (20)).  From 
(26), this singularity is due to a nonlinear kinematic break- 
ing, and is one of the possible Langrangian singularities6 

The statement made in Ref. 6, to the effect that under 
general initial conditions the singularities that occur in the 
system (8)  are Lagrangian, thus turns out to be correct. This 
means that the central singularity ( 15) that we are consider- 
ing gets smeared out over some small neighborhood of = 0 
as a result of mixing due to the advent of a Lagrangian singu- 
larity which itself results from the presence of a damped 
mode. Estimates indicate, however, that this smeared-out 
region is typically extremely small--of order E' (i.e., of or- 
der a:), so this process has no significance under real phys- 
ical conditions. 

To conclude this section, we note that even when small 
rotational velocities vj are taken into account, one simply 
obtains an entirely analogous small smoothing region for the 
central singularity ( 15). 

3. FORMATION OF HIERARCHICALSTRUCTURE 

In the preceeding sections we considered the dynamics 
of a single initial density maximum. In reality, there will be a 
spectrum of initial fluctuations. We shall now assume, as 
usual,'.2 that the spectrum has a maximum at some scale 
length L = L,  . Accordingly, the initial values of the effec- 
tive-density maxima are greatest at L = L ,  : 

Bi(L,)>6*(L) for LZL,. (28) 

This same scale length L,  will then prove to be special, and 
in a time [see ( 14) 1 

a compression of the corresponding maxima will take place, 
leading to NGS with a basic scale length of L ,  . 

Hierarchical structure-NGS on a variety of scales L- 
will develop differently, depending on the value of L. For 
large scales, L > L,, it evolves in the manner indicated in 
Ref. 4, a result obtained by averaging. Following this same 
approach, it can readily be shown that the time for formation 
of an NGS of size L > L,  is 

By virtue of (28), we always have t ,  $t,. Hierarchical 
structure on scales larger than L,  will thus develop consis- 
tently in a time given by (30), and on those scales for which 
it has managed to evolve by some time t ,  it will possess4 the 
scaling relations ( 1 ) both for the gas density and the number 
density of smaller-scale NGS trapped within. 

On small scales L <L, , hierarchical structure develops 
simultaneously with the process taking place at the funda- 
mental scale. To demonstrate that this is so, we must exam- 
ine the compression of one maximum at the fundamental 
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scale L, , assuming that at the initial time ti it contains small 
density fluctuations at other scales L ( L ,  . We can divide 
the development of these fluctuations into three stages. The 
first goes from the initial time ti to the time t  * at which the 
processes taking place as the fundamental scale becomes 
nonlinear: B ( L ,  ,t *) - 1. During this time, according to 
(14), all inhomogeneities increase with time (we have in 
mind, of course, only the growing mode), and by time t,, 
they are in an advanced linear stage: 

The second stage runs from the time when the fundamental 
scale experiences nonlinear compression until the formation 
of the central singularity ( 1 5 ) ,  t ,  zz t  * + t, , t, = t  *Sj"'. 
Small-scale inhomogeneities are transported during this 
stage along with matter, so their number density increases in 
proportion to the density p. At the same time, they undergo 
compression, deformation, and growth; it can be shown, 
however, that this is a minor effect, since t, t *. Except for 
those regions immediately adjacent to the singularity, inho- 
mogeneities in this second stage remain linear. 

Their rapid conversion into a nonlinear phase takes 
place in the third stage, when the first mixing caustic reaches 
the fundamental scale length. Let us consider this process in 
somewhat more detail. 

If we formally continue the solution ( 10) beyond the 
formation of the central singularity, it will take the form 
shown in Fig, 1 .  The extrema depend on the problem param- 
eters: 

Herc 7, = ( T  - T , ~ ) / T ~ )  is the time since reversal, and 
Q, = 30/2cr - o , ~ , , .  The caustic surface Y(c,,gO). g,, sepa- 
rates the multiple-current flow region from that of the hy- 
drodynamic solution ( 1 5 ) .  Consider now the form of the 
solution near the caustic. Taking T ,  4 1, we obtain 

FIG. 1. Form of the solution (10) at time T, = Q,, following the appear- 
ance of a singularity. The location of the caustic is shown by the dashed 
line. On the vertical axis we use the notation 253/9Q,,9,,' = X. 

It is clear from (31) that density and velocity singularities 
on the caustic are usually of the kinematic variety. 

Let us now direct the x-axis along the normal to the 
caustic surface, introduce the variable x = f - g,,(r, ), and 
consider one-dimensional perturbations, since one-dimen- 
sionality will have practically no effect on the way in which 
they grow. The equations for the perturbations (making the 
natural assumption that there are no mass sources) become 

where u(x,t)  and p(x,t)  are chosen to be consistent with 
( 3  1 ). It is convenient to transport from the variables x ,  r ,  to 
z, ~c in (32): 

From ( 3 1 )  and ( 3 2 ) ,  we obtain 

Equation ( 3 3 )  possesses two eigenfunctions. Let us write 
these out explicitly in the vicinity of the wavefront, i.e., for 
z- ( - K )  ' I 2 .  Making use of Eq. ( 3 3 ) ,  we obtain the asymp- 
totic expressions 

6 q , ' = 2 + ' / , ( - ~ ) - " ' ( ( - ~ ) ' - ~ ) 2 f . .  . , 

We see from (34),  then, that the function S p  ; is regular near 
the caustic, while the function Sq, ; has a singularity. If we 
analyze the derivation of (33), (34), it becomes clear that 
this singularity near the caustic is due to the fact that as 
z -  ( - tc) ' I 2 ,  the divergence of the velocity of the main flow 
tends to infinity, which in turn leads to a marked compres- 
sion of the matter comprising it. When this occurs, the den- 
sity perturbation Sp becomes larger than p, or in other 
words, the matter breaks down into small-scale clumps 
which then collapse. The characteristic scale size L of the 
clumps increases with distance from the center of the main 
singularity as (r /L ,  ) 4 / 7 ,  while the time at which they form 
is t, = t ,  + (3/2)tg (r /L ,  )417.  The number density of 
clumps is proportional to the matter density p. 

Thus, hierarchical structure develops on scales L 5 L,, 
at practically the same time that an NGS is produced with 
the fundamental scale size ( 17), while at scales L > L,,, it 
requires the longer time (30).  The exact number of NGS 
formed at the various scales depends quite sensitively both 
on the spectrum and the degree of phase correlation among 
the initial fluctuations, and is not determined by the present 
theory. Furthermore, as can be seen directly from ( 1 ), the 
major contribution to the mass of an NGS does not come 
from the singularity itself, but is instead to be found in its 
outlying regions, which are in fact not governed by the phys- 
ical laws operative inside the NGS, and where other nonlin- 
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FIG. 2. Relative magnitude of initial perturbations 8, ( L ) / & ,  (L, , ,  ) as a 
function of L , , / L  , where L,,, = 10-30 Mpc. The radius of the horizon 
corresponds to L , , / L =  ( 3 - 5 ) .  lo- ' ,  and is indicated by the arrow. 

ear structures may form. It must be assumed, however, that 
in a self-confined and thoroughly mixed state, the only place 
where there wil be a significant rise in density of nondissipa- 
tive gas, i.e., a substantial increase in density psp,,, will be 
within an NGS. It is also very important to note that when 
turbulence is well-developed, the scaling relations ( 1 ) hold 
at all scales, both for the gas density and for the number 
density of smaller-scale trapped singularities. Comparison 
of these theoretical results with the observational data on the 
distribution of galaxies in clusters, the distribution of clus- 
ters in superclusters, and the distribution of the missing mass 
in galaxies and clusters indicates that they are in fairly good 
agreement.4 This affirms the crucial role played by nondissi- 
pative gravitational turbulence in the formation of the large- 
scale structure of the universe, where well-developed turbu- 
lence has been established on scales L ,< 10-30 Mpc. 

As an addendum to our previous brief a n a l y ~ i s , ~  let us 

note that the scaling relations ( 1 ) are not observed on scales 
L > 30-50 Mpc. This means that at these scales, turbulence 
has not yet, up to the present time t ,  become well-developed, 
i.e., t < tL  (30). On larger scales, the nonlinear stage has not 
even been reached, so that effects related to the initial 
growth of perturbations may still be notable there. Indeed, 
recent  observation^'.^ have divulged highly correlated mass 
motion on scales L - 100 Mpc with velocities u=: (4-8) . lo3 
km/sec. This is just the kind of divergent motion expected 
for a growing gravitational mode. The L-dependence of the 
relative magnitude of initial perturbations, using these data 
for a crude approximation, is shown Fig. 2. In this approxi- 
mation, it is clear that the initial spectrum of fluctuations 
falls within a range of large scales proportional to L - I .  This 
is not inconsistent with previously discussed power-law 

and lends credence to the idea that the primordial 
perturbations were adiabatic. 
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