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Electromagnetic generation of longitudinal sound in metals is theoretically investigated under 
conditions of nonlinear anomalous skin effect, when the main source of the acoustic oscillations is 
the deformation force of the electron-phonon interaction. The nonlinearity mechanism is 
magnetodynamic-it is due to the influence of the magnetic field of the radiowave on the 
dynamics of the conduction electrons. The analysis is carried out in a wide range of variation of 
the external-signal amplitude r a n d  covers the cases of both weak and strong nonlinearity. The 
dependence of the excited-sound amplitude on the radiowave amplitude jr, on its frequency w ,  
and on the electron mean free path I are calculated. It is established that the longitudinal sound 
contains only even harmonics of the incident wave. The nonlinear conversion of electromagnetic 
energy into acoustic is not very sensitive to the sample surface state. 

1. INTRODUCTION 

Theoretical and experimental study of contactless gen- 
eration of sound is the subject of many papers (see, e.g., Ref. 
1 and the citations therein). In most of them the analysis is 
restricted to the linear situation, when the external magnetic 
wave of frequency w has a small amplitude X and generates 
therefore in the metal acoustic oscillations of the same fre- 
quency. The effectiveness of the electromagnetic excitation 
of sound increases with increase of incident-signal power 
and mean free path I of the conduction electrons. With in- 
crease of the parameters 2Y and I, however, nonlinear pro- 
cesses begin to develop in the sample quite rapidly. The most 
relevant in contemporary experiments on pure metals at low 
frequencies is in fact just the nonlinear regime. 

Nonlinear electromagnetic generation of acoustic oscil- 
lations under normal-skin-effect conditions I<S (6 is the 
skin-layer depth) was investigated theoretically in Refs. 2 
and 3. Particular interest attaches to the anomalous skin- 
effect situation which is typical for metals: 

This case was considered in only one theoretical paper,4 in 
which the weak-nonlinearity regime was investigated. The 
results of Ref. 4 demonstrate the important role of nonlinear 
electromagnetic processes in sound excitation. Thus, for ex- 
ample, in metals having a spherical Fermi surface longitudi- 
nal sound is generated only as a result of nonlinearity. The 
amplitude of the nonlinear sound is in this case larger by a 
factor ( I / S ) ' >  1 than in the normal skin effect. 

The nonlinear mechanism in metals is connected with 
the influence of the radiowave magnetic field on the dynam- 
ics of the electrons and by the same token on the sample 

the absolute value of the charge, p ,  is the Fermi momentum 
of the electron, and c is the speed of light. Let us estimate the 
strength of the magnetic field h in which the nonlinearity 
parameter b = 1. For typical pure metals at  low tempera- 
tures S- 10-1-10-4 cm and I- 10- ' cm we obtain h -0.5-5 
Oe. The amplitudes A? of the electromagnetic wave reach in 
experiments tens and even hundreds of Oersteds, so that 
both weak ( b  & 1 ) and strong (b  % 1 ) nonlinearity can be 
realized in experiment. 

In the case of weak nonlinearity ( b &  1 )  the electron 
trajectories in the skin layer are almost straight lines slightly 
bent by the wave's magnetic field. Under these conditions, 
the nonlinear effects manifest themselves in the approxima- 
tion quadratic in the amplitude X.4.5 

In the strong-nonlinearity regime ( b >  1 ) the electrody- 
namic properties of the metal are formed by a group of 
trapped  electron^,^ attention to which was first called in a 
paper by Babkin and Dolgopolovh devoted to current states. 
This group is due to the fact that the spatial distribution of 
the radiowave magnetic field is of alternating sign. The 
trapped electrons move along the sample surface along tra- 
jectories that weave around the magnetic-field sign-reversal 
plane (see Fig. 1 ) .  The stay all the time in the skin layer and 
therefore interact most effectively with the electromagnetic 
wave. Thus, under conditions of strong nonlinearity, the 
conversion of the electromagnetic energy into acoustic 
should be determined by the trapped particles. 

We investigate theoretically in this paper electromag- 
netic excitation of longitudinal sound in a wide range of vari- 
ation of the radio-wave amplitude 27 (of the nonlinearity 
parameter b) under the normal-skin-effect conditions ( 1.1 ) . 
The analysis is restricted to the quasistatic case 

conductivity. This mechanism is called magnetodynamic. 
The parameter b, which characterizes its effectiveness, is de- 
termined by the ratio of the mean free path I to the electron 
path length in the inhomogeneous magnetic field of the skin 
layer ( 8 ~ 6 ) " '  (see Ref. 5) :  

FIG. 1. Trajectories of effective electrons in the electromagnetic field of 
HereR = c ~ ~ / 2 e p ' i s t ~ e ~ ~ a ~ a c t e r i s t ~ c  curvature radius a,, electromagnetic wave: transiting (untrapped) ( I ) ,  trapped ( 2 ) ,  and 
the electron trajectory in the skin-layer magnetic field, e is glancing ( 3 ) .  
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when the frequency w of the external wave is much lower 
than the electron relaxation frequency v. The inequality 
( 1 . 3 )  allows us to neglect the change of the magnetic field 
during the entire time of the electron free path. Regardless of 
the degree of nonlinearity, the main source of the generated 
sound is the deformation force. A detailed analysis of the 
dynamics of the conduction electrons in a non-uniform mag- 
netic field yielded a general expression for the deformation 
force. This equation makes it possible to analyze, from a 
unified standpoint, the cases of both weak and strong nonlin- 
earity. We calculate the dependence of the excited-sound 
amplitude on the external-signal amplitude Z, on its fre- 
quency w,  on the mean free path I, and on other parameters 
of the problem. We show that for any degree of nonlinearity 
the generated longitudinal sound contains only even har- 
monics (2w,  401,. . .) of the incident wave. It is established 
that nonlinear electromagnetic generation of acoustic oscil- 
lations is not very sensitive to the sample surface state. 

2. FORMULATION OF PROBLEM. PHYSICAL ANALYSIS OF 
THE PHENOMENON 

1. Consider a metallic half-space with a plane mono- 
chromatic electromagnetic wave of frequency w and ampli- 
t ude r inc iden t  on its surface. We direct thex axis along the 
inward normal to the metal ( x  = 0 on the metal-vacuum 
boundary), and they and z axes parallel to the vectors of the 
electric and magnetic components of the electromagnetic 
field (Fig. 1 ): 

E ( x .  t )={O,  E ( s ,  I), O}, H ( x ,  t )={O,  0, I l ( x ,  1 ) ) .  

We investigate electromagnetic generation of a longitu- 
dial sound wave in which the displacement vector is 

The set of equations describing this process consists of the 
Maxwell equations, the Boltzmann kinetic equation for the 
nonequilibrium increment x ( i A . , . / a ~ )  to the electron Fermi 
distribution functionf,., and the elasticity-theory equations. 
Since the electron and ion mass ratio is small, the solution of 
the set of equations breaks up into two stages. We determine 
first the nonlinear perturbation of the electron subsystem by 
the external magnetic field and the distribution of the fields 
E ( x ,  t )  and H ( x ,  t )  in the metal. The kinetic equation is 
linearized in this case with respect to the electric field E ( x ,  
t ) ,  and the nonlinearity is due to the magnetic field H ( x ,  t )  
and is contained in the Lorentz force. This stage constitutes 
essentially the problem, solved in Ref. 5, of the nonlinear 
anomalous skin effect. 

The sound is generated because the elasticity-theory 
equation contains the driving force F ( x ,  t )  exerted on the 
lattice by the conduction electrons: 

In our very simple model with quadratic and isotropic elec- 
tron dispersion, the component A,, ( p )  of the deformation- 
potential tensor is given by 

where m is the "deformation" mass, v the velocity, v,. the 
Fermi velocity, p = mv the momentum, and m the electron 
mass. In expression ( 2 . 3 )  for the force we have taken into 
account only the deformation mechanism of the electron- 
phonon interaction. Analysis shows that the inductive con- 
tribution to F ( x ,  t )  is negligibly small under the anomalous 
skin effect, regardless of the degree of nonlinearity. 

The equation for the acoustic oscillations can be easily 
solved by using the Fourier expansions of the displacement 
u ( x ,  t )  and the force F ( x ,  t ) :  

1 
u ( x ,  t )  = - e-tnwt dk sin (b) Enu ( k )  , 

n - - a  0 

1 
F (z, t )  = - cinrf S dk sin ( k r )  F.. ( k )  . - 

At large distances ( x >  I)  this solution takes the form of a 
superposition of plane waves: 

where q is the wave number and s is the speed of the longitu- 
dinal sound. The amplitude of the nth harmonic is then 

Herep,, is the density of the metal. It was recognized in the 
derivation of ( 2 . 6 )  and ( 2 . 7 )  that the yound damping length 
I ,  is the largest parameter of the problem. Indeed, for nonre- 
sonant electron-phonon interaction we have 1, $ 6 ,  1, - u ,  / ~ q  
$ 1  / q  and I ,  - Iv/w 9 1. 

The problem of electromagnetic excitation of sound re- 
duces thus to calculation of the amplitudes u,, ( 2 . 7 ) .  

2. Before we proceed to the asymptotically exact solu- 
tion, we obtain the dependence of u, ,  on the amplitude of the 
electromagnetic wave X ,  starting from simple physical con- 
siderations. At low temperatures, under conditions of the 
quasistatic (a v )  anomalous skin effect, particular interest 
attaches to the case when q s < l ( w < s / 6 ) .  According to 
( 2 . 7 ) ,  in this case the amplitude of the excited n-harmonic is 
described by the following qualitative formula ( k - 6 -  ' ) :  

From a comparison of ( 2 . 3 )  with the analogous expression 
for the current density j it is easy to obtain a relation between 
the deformation force F the value ofj :  

The current density is then 

and the conductivity u in the interior of the electromagnetic 
skin layer S  can be determined with the .aid of Pippard's 
ineffectiveness concept. 

In the strong-interaction regime (6% 1 )  the electrody- 
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namics of the metal is determined by the group of trapped 
 electron^.^ Their relative number is of the order of (S/R ) "', 
so that in Pippard's mode their conductivity takes the form 

where o,, is the static conductivity of the bulk metal. From 
the Maxwell equations, the connection between the skin-lay- 
er depth S and the effective conductivity u is 

Substituting (2.11 ) and ( 1.2) in (2.12) and solving the re- 
sult for S we get 

In accordance with (2.8)-(2.13) we get 

In the advanced nonlinearity regime ( b s  1 )  the amplitude 
of each sound-field harmonic increases thus with 2'7 in ac- 
cordance with one and the same law. This distinguishes the 
situation b s  1 in principle from the case of weak nonlinear- 
ity ( 6 4  1 ), when the nth harmonic amplitude is proportion- 
al to b 2" a X " ( n  = 2,4,  6, ...). Note also that the amplitude 
of the excited sound is R /S$1 times larger than under nor- 
mal skin-effect  condition^,^.', when the main generation 
source is the inductive electron-phonon interaction mecha- 
nism. 

3. DEFORMATION FORCE 

The deformation force F ( x ,  t )  is determined by solving 
the kinetic equation. Since the nonlinearity is contained 
there in the Lorentz force, to find F (x ,  t )  it is necessarry first 
to examine the dynamics of the electrons in the magnetic 
field H ( x ,  t )  of the radiowave. Recall that our analysis is 
restricted to the quasistatic case. Under conditions (1.3),  
the motion is in a non-uniform but constant magnetic field 
H(x ,  t ) ,  since the phase of the wave remains unchanged dur- 
ing the entire free-path time. In other words, the "electro- 
magnetic time" t in the equations of motion and in the kinet- 
ic equation does not change and plays the role of an external 
parameter. 

We represent the vector potential A(x,  t )  of the mag- 
netic field in the form 

~ ( s ,  t ) = J  dxf~(x', t ) - -H(O,  t ) a ( z ,  t ) .  (3.1) 
0 

In the chosen gauge, the integrals of the electron motion are 
the free energy, equal to the Fermi energy E,.., and the gener- 
alized momentap, = mu, andp, = - eH(0,t)X /c. To sim- 
plify the exposition, we have introduced the function a ( x ,  t )  
and the conserved quantity X. 

The electron motion in a plane perpendicular to the vec- 
tor H ( x ,  t )  is described by the velocities u,  ( x )  and u ,  (x) :  

u,(x) =-!![X--a(.r. t )  ]sign 11 (0, t ) .  
I ur (2) 1 =Q {RL2-- [A-a (x, t ) ]  9 ".. (3.2) 

Here 

FIG. 2. Plots o f X  = f R ,  + a(x ,  I)  in the region ofexistence of electron 
groups (see the text): I-surface untrapped electrons; 2-bulk untrapped 
electrons; 3-whirling (trapped) electrons; 4-surface electrons, a- 
a ( ~ ,  t )  >O, b-a(m, t )  <O. 

The distinctive properties of electron motion in the field 
H ( x ,  t )  are determined by the character of the a ( x ,  t )  de- 
pendence. The electromagnetic field in the metal oscillates 
and is damped at a distance on the order of the skin-layer 
thickness 6. We assume therefore that for x < 6  the function 
a ( x ,  t )  z x  reaches a maximum a(x,,, t )  at the point 
x = x,,(t) where the magnetic field H(x ,  t )  vanishes, and 
that for x s S  it tends to a constant value a (  W ,  t ) .  The latter 
can be either positive or negative (depending on the instant 
of time t ) .  In addition, since the skin effect is anomalous, it 
followsthat a(x,,, t ) -S<R,  a n d a ( ~ ,  t ) - S < R , .  

Figure 2 shows the region of possible values of the elec- 
tron coordinate x and of the integral of motion X for a (  W ,  
t )  > 0 (Fig. 2a) and a (  W ,  t )  < 0 (Fig. 2b).  In accordance 
with the requirement that the radicand in (3.2) be positive, 
this region is bounded from below by the curve X = - R, 
+a(~ , t ) , andf romabovebythecurveX= R,  + a ( x ,  t ) . I t  

is seen from Fig. 2 that, depending on the value of X, the in 
respect to the character of their motion the electrons break 
up into four groups: surface untrapped, bulk untrapped, 
trapped (whirling), and surface electrons ( a  more detailed 
description of the electron groups is contained in Ref. 5 ) .  

A solution of the kinetic equation must be sought for 
each electron group separately. For electrons having turning 
points in the interior of the sample, the boundary condition 
for the solution is the continuity of the distribution function 
at these points. A condition on the metal boundary x = 0 is 
formulated only for surface and surface-untrapped elec- 
trons. We choose the simplest of these conditions (the Fuchs 
condition7), in which the interaction of the electrons with 
the sample surface is characterized by a phenomenological 
parameter, the probability p of specular reflection from the 
boundary (O<p< 1 ). Ultimately, for the spatial Fourier sine 
transformation 

1945 Sov. Phys. JETP 67 (9), September 1988 Makarov et a1 1945 



~ ( k ,  t )  = 2  J dx s i n (hx )F(x ,  t )  
0 

we obtain 

Here g ( k ,  t )  is the spatial Fourier component of the electric 
field E ( x ,  t ) ,  namely, 

c4 

e (h ,  1 )  = 2  1 dx cor ( k x )  E ( x ,  t )  . ( 3 . 6 )  
0 

The coefficient C ,  ( k ,  k ' )  is due to the surface untrapped 
electrons and is given by 

I 1 dX 
c T , ( k , i f ) = - - I - J - J  dxcos(kx)  

nel ,, r l ,  R ( t )  

- I<_-kc1 ( . t , , , .  t j C S G  R,  

for a( - ,  t)>O, -R,Sa (x,,  t ) d X f  R,+a(m, t )  
for ! I ( = ,  I)<(). 

For the coefficient C, of the bulk untrapped electrons we 
have 

30~1; dv dY 
1 .  i - I-- 1 I r  cos(bx)  

nel 11 1.r R ( t )  ,, 

and f?,<SdR,S-u(m, 1 )  for a(- ,  t )  >i), 

-H,tu(oc, I )  <X<--R,S u(x, ,  t )  for (~ (m,  t )  (0. 

The contribution of the trapped electrons to the density of 
the deformation force is described by the term 

3 o k  dl: d X  
(,+ = -% J -+ J -$,,-I ( v ~ , , , , )  3 r 

1 , L H ( t )  

d l r r ( Z )  
X d l  cur ( h r )  - ( 3 . 9 )  

I c x  1 I 

+ c l ~ [ v ( T  ,,,, - r ( x , xL ) - -? (x f , . r2 ) )  I } ,  
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R,+a(oo, t)<X<R,+a(x,, t )  for a ( - ,  t )  >O, 
RL<X~R,+a(x , ,  1 )  for a ( m ,  t )  <O. 

Finally, surface electrons give rise to the coefficient 

-p csp (-Y T,,,, ) ] -' . 

vY ( x ' )  
X J dr (kx)*)j d r r  cos ( k ' r ' )  - 

0 I vx(5)  I ,, 1 L ! ~ ( x ' )  I 

-R,<X<-R,+a(xo, t )  for a  (a. t )  >O, 

-R,d.YG-K,+rc(x,, t )  

In Eqs. ( 3 . 7 ) - ( 3 . 1 0 )  we have introduced the notation: 
R ( t )  = u,; /R,  T ( X ,  x ' )  is the time of electron motion from 
the point x  to the point x' in the magnetic field H ( x ,  t ) ,  

5' 

7 ( x .  x t )  = J dxll/l ~ ~ ( x l l )  1, ( 3 . 1 1 )  

x ,  and x ,  are the turning points, 2T,,,,, - 2 r ( x , ,  x 2 )  is the 
oscillation period of the trapped electrons, and 2T,,, = 2 r ( 0 ,  
x 2 )  is the oscillation period of the surface electrons. 

Under conditions of the anomalous skin effect (a</, 
S g R) the expressions for the coefficients ( 3 . 7 ) - ( 3 . 1 0 )  can 
be simplified by replacing them with asymptotes. The main 
contributions to the integrals with respect to X, x ,  and x' are 
made then by the vicinities of those points where the velocity 
l u ,  ( x )  1 is zero. These are the turning points in the integrals 
with respect to x  and x' and the end points of the integral 
with respect to X, i.e., the limits of the existence regions of 
each electron group. The asymptotes of coefficients ( 3 . 7 ) -  
( 3 . 1 0 )  differ substantially in the case of small external-wave 
amplitudes ( b  < 1  ) and large amplitudes ( b >  1  ). We consid- 
er therefore these two cases separately. 

4. WEAK NONLINEARITY (SMALL AMPLITUDES 2') 

In the weak-nonlinearity regime ( b <  1  ) all the electron 
groups make equal contributions to the density of the defor- 
mation force ( 3 . 5 ) .  Its asymptotic form is 

1 1% ool h  ' 
( k f k ' ) '  

E ( k ' ,  t )R(h- t -k ' ,  t )  
4 In c 

U 

C C I S  ( k x ' )  + I  I d x 1  ( A  ( x ' ,  t )  (x ' -x )  
L1 , I  
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Here g ( k ,  t )  is the spatial Fourier sine transform of the 
magnetic field H ( x ,  t )  : - 

Expression (4.1 ) was obtained in the first-order approxima- 
tion in the nonlinearity parameter b 4 1 (F(  k, t )  a b 4 ) .  The 
electric and magnetic fields g ( k ,  t )  and H ( k ,  t )  are solutions 
of the linear Maxwell equation and contain only first har- 
monics ( n  = , 1 ) of the radio wave incident on the metal. 
Consequently, the asymptote (4.1 ) has azeroth ( n  = 0 )  and 
second ( n  = f 2 )  harmonics. Since the expansion under 
weak-nonlinarity conditions is in terms of the parameter 
b 0~ f l ,  there are no odd harmonics ( n  = + 1 ,  + 3, 
+ 5, . .  . ) in the considered longitudinal sound, while the even 

harmonics with In1 > 2 are small compared with the second 
( In I = 2 )  in respect to the parameter b 2'"1 - 4 1 .  

Equation (4.1 ) generalizes the result of Ref. 4 to in- 
clude the case of arbitrary electron reflection from the sam- 
ple boundary. In specular reflection ( p  = 1 ) the second term 
in the curly brackets of (4.1 ) vanishes, and the first becomes 
the corresponding expression of Ref. 4. 

Let us determine the amplitude of the second harmonic 
u, of the generated longitudinal sound. T o  this end, we ex- 
clude $2,, ( k )  from (4.1 ) and substitute the result in (2.7).  
We calculate the amplitude u2 using the equations of Ref. 8, 
in which the distribution of the electromagnetic field was 
obtained in the linear regime for an arbitrary value of the 
specularity parameterp. The final expression for u ,  is quite 
unwieldy. We present therefore only its asymptotic form for 
large and small q6, . 

If the sound wavelength q -  ' is much larger than the 
depth of the skin layer S2 of the linear theory 

we have with logarithmic accuracy 

where 

z, ,=r l  arccos p. 

The explicit form of the function M ( z )  is given in Ref. 8 (see 
also Ref. 9 ) .  The quantities x,, x2, and M(  - 1) depend 
smoothly only on the specularity parameter p .  For diffuse 
reflection (p  = O ) ,  

In the case of specular reflection (p  = 1 ) 

In the long-wave region (4.3 ) the sound amplitude 1 u, 1 in- 
creases with increase of qS, like (qS, lnqS, / .  

Under conditions when the sound wavelength q -  ' is 
much less than the skin layer So, 

the asymptotic form of u, is 

It follows from (4 .4)  and (4.9) that the character of the 
interaction of the electrons with the metal surface exerts no 
substantial influence on the process of electromagnetic 
sound generation in the weak-nonlinearity regime. The only 
exception is the region of extremely small values of the pa- 
rameter p and short sound wavelengths: 

The sound amplitude is proportional here to (q6, ) -'lnqS,, 
rather than to (qS, ) - ' as fo rp  $0. 

5. STRONG NONLINEARITY (LARGE AMPLITUDES F7 

1. To  obtain the asymptotic density of the deformation 
force p ( k ,  t )  in the case b )  1 of strong nonlinearity it is 
necessary to calculate the coefficient C,  ( k ,  k  I ) .  We put 
v, ( x )  = - vI sign H(0 ,  t )  in expression (3.9) and expand 
lv, 1 in the vicinity of X = R,, using the smallness of a ( x ,  t )  
compared with R,. Changing to an integration variable 
Z = X - R,, we obtain 

r. 

cos (kx) cos ( k ' s ' )  x ( 5 . 1 )  

where B(x )  = 1 for x > 0 and B(x )  = 0 for d < 0. In the 
asymptotic form (5.1) we have neglected the small terms 
- mvi of expression (2.4) for A,, . The integrals with re- 

spect to x,  x, and x' can be calculated by using a quadratic 
expansion of the "vector potential" a ( x ,  t )  near the point 
x  = x, ( t ) .  The asymptotic form of the coefficient C ,  ( k ,  k  ') 
is then 

' F 

kooR 
C3 ( k ,  k T )  =-Ln rign(U(0, t )  )- J dv, c th(vT)  cos ( k ~ . )  

0 

Xo x cos (k 'x , )  [ k J ,  ( k x o ) l o  ( I C ' X , )  -krJ,(kxo) J i  ( k ' d  
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Here J, ( x )  and J ,  ( x )  are Bessel functions of zeroth and 
first order; 2Tis the limiting period of the whirling electrons 
with velocity v, tending to zero and with distance x ,  - x ,  
between the turning points, i.e., 

where the prime in ( 5 . 3 )  marks a derivative with respect to 
x .  The quantity xo(O<x0<xo)  is determined from the equa- 
tion 

and is the maximum distance from the point x ,  to the turn- 
ing point closest to the metal surface. For a (  CC, t )  G O  we 
have xO = x,,. 

We substitute ( 5 . 2 )  in the expression for the deforma- 
tion force ( 3 . 5 ) .  We use for the field E ( k ,  t )  the result of Ref. 
5 .  The amplitude of the nth harmonic ( 2 . 7 )  of the excited 
sound takes then the form 

u, = - 
5[1+(-I)"] 1 fiia cp,  r4 - --- 

216nb ( 4 )m poor e6 
B(nq6),  ( 5 . 5 )  

where 

.., - 

x 5 dq'a(q') cos c p t  exp 1 ir t  (cpl) 1 
- 2  P 

X o  t 
x 5 dlp exp I in-irg ( c p )  I -  J d t  - coS ( 5  2) 

-n 2 6 , c3-ir 
- 

112  cos (qxo /6 )  
q 2 -  (nq6)'  q 2 - t 2  

The functions a ( p )  and { ( p )  are given by 

The penetration depth 6  in the strong-nonlinearity regime is 

It must be noted that under conditions of the nonlinear 
anomalous skin effect the electromagnetic field contains 
only odd harmonics of the incident wave. The summation 
index r in ( 5 . 6 )  takes on therefore in fact only odd values 
( r  = + 1 ,  + 3, ... ) .  The deformation force ( 3 . 5 )  and also 
the displacement vector u ( x ,  t )  ( 2 . 5 )  are consequently peri- 
odic in time with a period v / w  and contain only even har- 
monics of the external electromagnetic wave. The number n  
of the harmonic in ( 2 . 5 ) ,  ( 2 . 6 ) ,  and ( 5 . 5 )  takes on therefore 

even values ( n = 0 ,  + 2, 4,.. . ) , and there are no odd har- 
monics in the excited longitudinal sound. 

Equations ( 5 . 5 ) - ( 5 . 8 )  pertain the case of diffuse reflec- 
tion of electrons from the metal surface, inasmuch as at 
p = 0  it is precisely the trapped electrons that make the prin- 
cipal contribution to the conversion of the electromagnetic 
energy into acoustic. I f p  # O  the amplitude of the generated 
sound remains unchanged, since the whirling electrons do 
not interact with the sample boundary. Insignificant differ- 
ences occur only at near-specular reflection. In that situa- 
tion an important role in the sound generation is played not 
only by the trapped particles, also by the glancing electrons 
(see Fig. 1, trajectory 3 ) ,  whose contribution C , ( k ,  k ' )  to 
the kinetic coefficient is of the order of C ,  ( k ,  k  ' ) .  

2. Let us analyze the dependence of the amplitude u,, 
( 5 . 5 )  on the value of (9Y in the limiting cases of small and 
large values of the parameter ln /q .  When the inequality 

is met, the function B ( n q 6 )  ( 5 . 6 )  is equal, in first-order ap- 
proximation, to the constant B ( 0 ) .  Under these conditions 
we obtain for the amplitude of the nth harmonic of the gener- 
ated sound 

The result ( 5 . 1 0 )  agrees with that obtained in Sec. 2  on the 
basis of qualitative considerations. 

In the opposite situation, when the length of the sound 
wave is much shorter than the skin-layer depth 

the main contributions are made to the integral ( 5 . 6 )  with 
respect to 77 by the region of the large values 7- lnIq6$1, 
and to the integral with respect to p by the interval where 
xo = x,,. Using the asymptotic form of the Bessel function 
J ,  (77xo/6) for large values of the argument, we obtain from 
( 5 . 6 )  and ( 5 . 5 )  

We present in conclusion an interpolation equation for 
the dependence of the amplitude of the second harmonic of 
the excited longitudinal sound on the value of Y? ; this equa- 
tion is valid for arbitrary degree ofnonlinearity and for any 
value of the parameter q6: 

where 

The electromagnetic-field penetration depth6 is determined 
by the solution of the equation 
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