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We show that the quasi-particle current in a superconductor-semiconductor-superconductor 
junction can increase considerably due to the resonant passage of quasiparticles along special 
trajectories from periodically arranged localized centers. I t  follows from the developed theory 
that when the resistivity of the junction increases one observes a transition from a current excess 
to a current deficit in the current-voltage characteristic (at  high voltages). We also study the 
effect ofthe transparency of the boundaries on the resonant tunneling in such junctions. 

I. INTRODUCTION these we use the Gor'kov equations written in integral form, 

Superconducting junctions with semiconductor layers using Keldysh's method" (we neglect the interelectron in- 
(S-Sm-s) belong to the most interesting work couplings: the teraction and the interaction between the electrons and 0th- 
Josephson effect is combined in them with a unusual mecha- er quasiparticles): 
nism of current flow. The properties of such systems can 
differ strongly from the properties of tunnel junctions and 
depend on the density of localized centers (LC) in the semi- 
conductor. A theoretical treatment of the superconducting 
current flow in S-Sm-S junctions was given in the papers by 
Aslamazov and one of the present authors.'-4 In particular, 
the elucidated the important rBle played by the fluctuations 
produced in the large-scale potential by inhomogeneities in 
the arrangement of charged LC and they analyzed the posd- 
bilities for resonance tunneling. It turned out that in a wide 
temperature range the superconducting current of an S-Sm- 
S junction is determined by the resonance passage of Cooper 
pairs through the semiconductor layer along special trajec- 
tories from the periodically arranged LC (Lifshitz's reso- 
nance-percolation trajectories"). However, although the 
probability for forming such trajectories is small, when the 
density of LC increases, and even well in advance of the 
onset of degeneracy, the resonance mechanism for current 
transmission turns out to be preferable to the usual tunnel- 
ing, thanks to the smallness of the damping of the coherent 
electrons. 

A large number of papers have been devoted to an ex- 
perimental study of the properties of S-Sm-S junctions, and 
recently particular attention has been paid to junctions with 
a layer of amorphous semicond~ctors.~-I'  On the basis of a 
comparison with the theory of the dependence of the Joseph- 
son current on the temperature and on the thickness of the 
semiconductor layer, it was concluded in Ref. 6 that a reso- 
nance mechanism causes its transmission. At the same time 
the assumption was expressed in the literatureh.' that the so 
far theoretically unexplained peculiarities in the current- 
voltage characteristics (CVC) of S-Sm-S junctions, as cur- 
rent excess of deficit at large voltages, which are characteris- 
tic for structures with a direct conductivity, also arise thanks 
to the resonance mechanism of current transmission. To ex- 
plain these and a number of other features we find in the 
present paper the quasiparticle current of an S-Sm-S junc- 
tion when there is resonance tuneling of the electrons. 

2. GENERAL EXPRESSION FOR THE TOTAL CURRENT 
THROUGH A JUNCTION 

The current density can be expressed in terms of the 
Keldysh Green function G(r,t; r',t ' )  of the system; to find 

( l a )  

The heavy lines correspond here to the exact Green func- 
tions G,  F +, and F (the latter two are anomalous ones) of a 
system with superconducting 2rder parameter A(r, t)  and 
external perturbation operator U(r, t)  (in the case of interest 
to us this is simply the potential of the applied electric field); 
the thin lines correspond to the normal unperturbed system; 
the lines with the symbols R ( A )  denote retarded (ad- 
vanced) functions, and the lines without symbols denote 
Keldysh functions; the incoming and outgoing wavy lines 
corresp^ond to factors iA and - iA*; the cross corresponds 
to - iU. 

In an unperturbed stationary system the thermodynam- 
ic identity, 

is satisfied. We rewrite ( 2 )  in diagram form: 

where the triangle correspond to the function 

o d o  
f . ( t ,  t r )  = j  th- 2T e r p [ - i o ( t - t r )  ] - 2n ' 

When ^U(r,t) and A(r, t)  are switched on adiabatically the 
system becomes, generally speaking, nonstationary and non- 
equilibrium so that Eq. (3 )  for the exact Green functions 
does no longer hold. To express the Keldysh functions in 
terms of the retarded and advanced ones we introduce new 
functions (they correspond to the so-called anomalous parts 
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of the Keldysh functions13) in accordance with the equa- 
tions 

Substituting (3 )  and ( 4 )  into ( l b )  and using ( l a )  we get 

Equations (5 )  uniquely determine the functions we in- 
troduced. Using ( l a )  and the identity f;,(t,t ' )  = -f;,(t ' , t )  
( a  consequence of the fact that tanh ( w / 2  T )  is an odd func- 
tion) we can easily check by direct substitution that the for- 
mulae 

give a solution of the set (5 ) .  It is no longer possible to 
change in these formulae directly to an electric field which is 
constant in time: the terms containing A,(t , , tz)[U(t ,)  
- U(t, ) ] deviate significantly from zero for any arbitrarily 

slow switching-on of U(r,t), but they vanish when we substi- 
tute U(r,t) = U(r) .  Nonetheless one can transform Eqs. 
(4) ,  (6a) to a form in which this substitution is legitimate: 

G(r. t ;  r', t') =I dti[GR(r, t; r', t,) f t  (rr, tl, tl) 

- ff  (r, t ,  t ~ )  GA (r, tl; r', t') ] 

1 + - 1 8.1 dtl atz{[ V..p (r,, ti, t2) 1 2m 

-GA(ri, t2; r', t l )  Vr,GR(r, t; r ~ ,  t i))+ [ Vrjf-(r~r ti, t2) I 

x {FR(r. t; rl,  t i )  V.,F+.'(r,, tz;rl, t') 

-(Vr,FR(rl t; r ~ , t ~ ) ) F + ~ ( r ~ , t Z ;  r ' , t l ) l) ,  ( 7 )  
where 

1, 

~ ( r ,  tl, ti) =jl(tl,  tz)exp[ *ij ~ ( r ,  t)dt]. 
1, 

To check that Eq. (7 )  is identical with Eqs. ( 4 ) ,  (6a) ,  it is 

sufficient to integrate the integral over r ,  by parts, to use the 
Gor'kov equations to get expressions for the Lablacians 
which appear, and to integrate the terms with derivatives 
with respect to t ,  and t ,  by parts over the time variable. We 
have dropped in ( 7 ) the terms which depended explicitly on 
h ( r , t ) ,  since they are identically equal to zero due to the 
Josephson time dependence of the phase of the order param- 
eter [the fact that only U(r,t) is the physical perturbation 
manifests itself here]. 

We denote the region occupied by the barrier by B and 
its boundary with the banks by a,  and a,. The integration 
over r ,  in ( 7 )  is practically only over B, where there is an 
electric field, and hence, V f ' # O .  Putting U(r,t) = U ( r ) ,  
Fourier transforming over the time difference, and using the 
identity 

we can easily transform Eq. (7)  into 

w+U, + th ---- 
3T 

[F , ,R(r ,  t; r , )  Y,,F,+"(r,; r', t ' )  

1 o -C( r , )  
- -- d'r, [ I l l  - -  [GwH(r,  t :  r , )  \ ,,'G<,;'(r,: r', t ' )  

2nz ,, 

o+U(r , )  
- (V,,2G,R(r, t; r l )  ) GoA (r,; r', t') 1 +th [FwR(r,  t ;  r i )  

2T 

o-U(r') a -U(r)  
2T 

- tll 
3 T 

( 8 )  
where U,,U, are the values of U( r )  at the banks of the junc- 
tion, so that the voltage U = U, - Uz; the vector d S is di- 
rected outwards from B. 

In what follows we shall assume that the points r,rf lie in 
the region B. Using the Gor'kov equations and assuming, 
since the electron-phonon interaction constant is small, that 
the order parameter vanishes in the layer we can easily prove 
the validity of the equations 

GoR(r. t; r l )  Vr,2GOA ( r ~ ;  r', t r )  

- (V,,2GWR(r, t ;  r l )  )GOA (rl ;  r', 1 ' )  

=2,n[GCoR(r, 1;  r1)6(rl-  r r ) -  f i(r--rI)GcdA(r;  r', t ' ) ] .  (9a)  

FOR(r,  t; r l )  Vr,2Fw+A (rl; r', t ' )  
-FOCZi (r,; r', t ' )  VI,'FwR(r, t ;  rl)=O. (9b) 

Substituting ( 9 )  into ( 8 )  we discover that the last three 
terms in (8 )  must be dropped. Using now the expression for 
the current density 
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we get the following general expression for the total current 
J through the junctions: 

(o is an arbitrary surface passing through the whole of the 
layer). In deriving ( 11 ) we changed the sign of w in the 
anomalous functions and at the same time we swapped the 
indexes 4-1, 3-2, and we used the identity 
FR': A)(r, t ;r ' )  = F;,' + ') (rl;r,f); we also used Eqs. ( 9 ) ,  in- 
tegrated over B with a change to integrals over the surfaces 
o, and a,. In ( 11 ) the henceforth U ,  = U, U2 = 0. 

Equation (1  1) is very convenient for finding the cur- 
rent in an S-Sm-S junction as it enables us to take easily into 
account the explicit coordinate dependence of the Green 
functions. Because of the complicated form of the potential 
barrier this makes our method preferable for this problem as 
compared to the method of Green functions integrated over 
the energy variables. I' We note that Eq. ( 1 1 ) is applicable to 
any kind of weak coupling. 

3. CURRENT IN A NORMAL JUNCTION WITH A 
SEMICONDUCTOR LAYER 

We demonstrate the method of calculating Green func- 
tions and the current using Eq. ( 11) first of all in the sim- 
plest case of a normal junction, and more so as many expres- 
sions obtained can then be used with small changes also for 
the case of a superconducting junction. 

For the sake of simplicity we shall assume in what fol- 
lows that the layer is a plane layer of thickness L. We find the 
Green functions of such a junction with a chain of N local- 
ized centers (LC) of energy ED in the points a , ,  ..., a, of the 

layer, where a ,  is positioned close to the plane u, at a dis- 
tance y , ,  and a, close to a, at a distance y, from it. We 
choose the potential of a single LC in the form 
( r )  = r - a r  r 0 - a ,  r ,  with 
x,,r,, 1, where the sub-barrier momentum is 

( V - p is the height of the barrier in the semiconductor). 
We then have 

where G cim, ,G are, respectively, the Green functions of a 
junction with and without an LC. Putting in (12) 

1 r,r' - a, I $ r,, we get 

L 
Gu (r ,  1') =GUR(r,  1') - ~ c r ~ ' G . ~ ( r ,  ai)  ~ f i r n p  (ai, r e ) .  

(13) 

If, however, we put in (12) r = ai ( i  = 1 ,..., N), / r '  - a, I )r,, 
we get a set of linear equations to determine G,tim, (a i , r l ) :  

Solving it and performing in ( 13 ), ( 14) a renormalization of 
the LC potential through the introduction of a finite scatter- 
ing length for scattering by the LC 

(for details see the Appendix) we get 

(16) 
where 9 is the determinant and the 9 are the algeb~aic 
cofactors of the elements with indexes i, j of the matrix 9 R ,  

In Eq. ( 17) we have used the following notation: R 
2 k 1 + 2 x  inE2 (m) + 9 - k?, 2 

g1.2 (w) = 
1c;. ,-t xa 

(19) 
mx 1 k?,, + xa ' 

G(r t , r2 )  =-- h ( l r t - r 2 1 ) ,  h ( r )  = - e x p ( - x r ) ,  
2n xr while in a normal junction simply nt, = 1 (the meaning of 

( 18) these symbols is that it is easy to change over to the case of a 
mr, n superconducting junction, when Renf: has the meaning of 

G : ~ ( W )  = - g l , : ( ~ ) D 1 , C  (2y1,2),  the density of states of the quasiparticles in the banks), k ,,, 
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are the Fermi momenta in the banks, and D ,,, the transpar- 
encies of the boundaries a, and a? .  

We put in Eq. ( 11 ) u = u2 and introduce the operator 

equation ( 11 ) can then be rewritten in the case of a normal 
junction in the form 

X (GoR imp (rl, rz) GoAirnp (r3, rO ) (21) 

[the last term in ( 11 ) does not contribute to the current]. 
Splitting off in ( 16) the main terms, we get for the Green 
functions in (2 1 ), 

To evaluate the current by using Eqs. (2  1 ) and (22) it is 
necessary to use the equations 

=GoR (r, r') -GwA (r, r f ) ,  (23) 

which are valid if r , , r '  are close to one of the boundaries 
a , ,a , .  This equation can easily be obtained if we integrate 
Eq. ( 10) over the region B and afterwards change to an inte- 
gration over the surfaces a,  and a, (one of these integrals 
will be exponentially small and we must drop it). It is neces- 
sary to note here that although the three-dimensional Green 
functions G : ' A '  ( r , r r )  become infinite when r = r', this di- 
vergence is contained only in their real part, while their 
imaginary part is finite (see Appendix) 

2i Im G,R(a,,hr,, =G~:~, ( W - - U ~ ( ~ ) )  -G& ( O - U ~ , ~ , ) .  

(24) 

From Eq. (21), through (22)-(24) and using the fact that 
9 7% = 9 <, , = G(a,,a,)  ... G(a, , ,a, ), we get the follow- 
ing expression: 

As in Refs. 3 and 4 we shall assume that the points a , ,  ..., a, 
form a resonance trajectory with maximum statistical 
weight, i.e., / a ,  - a,\ =:. . . - , \ajv - , - a, / ~ 2 y ;  we then 
find 

where the matrix QR is obtained from G R  by dividing all its 
elements by G(2y) while 3 iS,2 = D ,., h(2yI , ,  )/h(2y). Not- 
ing that 

where QN ( x )  = sin(N + 1 )8 /sine, cosB = x is a second 
rank Chebyshev polynomial, and introducing the width B of 
the resonance zone 

v>- p B = -  exp ( - 2 ~ 1 ,  
XY 

(27) 

we can easily show that 

It is clear from (26),  (28) that electrons with frequen- 
cies /w - ED I (2B enter into resonance. The levels ED are 
spread out by the large-scale fluctuations of the potential 
over the band gap of the semiconductor. One must thus aver- 
age Eq. (26) over E D ,  i.e., in fact, over the position of the 
trajectory along the area of the junction3: 

where Y ( E )  is the distribution function of the random po- 
tential. The calculation for this integration are considerably 
simplified in the case x = k ,  = k,, when gt, = in:,. We re- 
write the integral in Eq. (29):  

where the integrals on the right-hand side of (30) are taken 
in the sense of principal value. In view of the analyticity of 
the corresponding Green functions @ (QR ) as functions of 
E, there are no zeroes in the upper (lower) half-plane. 
Hence, assuming n:, (w) to be purely real functions, i.e., np 
= nf = n, we can conclude that Eq. (30) is determined by 

the residues in the zeros of the function QR - @, and, in 
fact, of the polynomial Q, - , . As a result we get 

(31 
Equation (31) has a simple physical meaning. In the 

case of resonance tunneling one adds (rather than multiplies 
as in the case of the usual tunneling) the resistivity of the 
boundaries R ,  a (D ,n , ) - I ,  R 2  a (D,n,)-I and the resistiv- 
ity of the resonance zone R B  a (n*r/m*) - '  where the effec- 
tive electron density n* a B and the mass m* a B - ' ,  while 
the time T is connected with the departure of the electron 
from the band into the banks and is determined by the pene- 
trability ofthe boundaries, T a ( D , n ,  + D,n,) -I. Adding all 
resistivities we get the resistivity of the junction correspond- 
ing to Eq. (31). 

As in Ref. 5, one must average Eq. ( 3  1 ) over y and the 
angle B which is determined by the bending of the trajectory, 
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and furthermore over y,,y2. For the probability for the for- 
mation of the trajectory we have5 

where c is the density of the LC in the semiconductor and 
a = tt, ' the radius of the LC. 

We average Eq. ( 3  1 ) (using the fact that n , = n2 = 1 ) 
over y,,y, for the case where the boundaries are very trans- 
parent D,,D2 2 h(2y),  and as a result we get for the conduc- 
tivity of a single resonance trajectory (in units of e2/fi) 

A A 

(the condition 9 ,-g2- 1 is satisfied for characteristic 
yI,yZ).  Averaging over y,6' we finally get with exponential 
accuracy the dependence of the junction conductivity on the 
thickness L of the semiconductor layer: 

(the optimal value is 2y,, -- (La 1 lncLa2 ( ) ' I 2 ) .  It is clear from 
Eq. ( 3  1 ) that resonantly tunneling electrons do not "feel" 
the barriers at the boundary provided the condition 
Dl,D2 2 h(2y) is satisfied (it is natural to call such boundar- 
ies clean ones). As a result Eq. (34) is the same as the corre- 
sponding expression obtained in Ref. 5 under the assump- 
tion that there were no barriers at the boundary. 

We consider the opposite case: to fix the ideas, let us 
k v ~  D l  = min{D,,D,) < h(2y,,). When the condition 
9,92 < 1 is satisfied, the conductivity of the resonance tra- 
jectory averaged over ED equals 

and is independent of y. The optimal value of y is thus deter- 
mined from the con$ti%n that W(y,B) is a maximum under 
the restriction that 9 ,g2 < 1. Starting from that condition 
and Eq. (35) one can easily show that the optimal y,,y, are 
determined from the conditions h (2y1 ) - 1, h (2y2) 
= D,/D,, and y from the condition h(2y) = D l ,  i.e., 2y; z 

alln(min{D,,D,)) 1 ;  in that case the optimal conductivity of 
the trajectory equals 

and using the probability for the formation of a trajectory 
the resistivity is determined by the expression 

Inz (min { D l ,  Dz) ) 
LOU 

(In (ca3) I 

(^wh~n this condition is satisfied the trajectories with 
9 ,g2) 1 give a small contribution which also guarantees 
the self-consistency of the calculation). We note that al- 
though in contrast to the preceding case the conductivity of 
the optimal trajectory is determined by the boundary bar- 

riers &r the optimal trajectories we have as before 
9 ' l = 2 3 2 z l .  

4.QUASlPARTlCLE CURRENT IN A SUPERCONDUCTING S- 
Sm-S JUNCTION 

We first of all elucidate the time dependence of the 
Green functions which occur in Eq. ( 11). To do this we 
regard the superconducting order parameter A(r,t) 
= A(r)exp[ - 2iU(r)t]  as a perturbation. Writing out the 
corresponding diagram series and bearing in mind that 
A ( r )  = 0 in the semiconductor layer we easily understand 
that 

Using (38) we get from (1 11, if we take (20) into account, 
an expression for the quasiparticle current: 

[the last term in (1 1 ) does not contribute to the constant 
current 1. 

From among all the Green functions occurring in (39), 
in ajunction without LC, the G-functions with k = 0 and the 
F-functions with k = 0, - 1 have no assured smallness, and 
in the series corresponding to them we must drop, as being 
exponentially small, the diagrams which contain "tunnel" 
lines, i.e., lines connecting vertices in which the integration 
goes over difficult sides of the junction. However, using the 
Gor'kov equations we see that all functions necessary for 
evaluating the current are obtained from the corresponding 
Green functions of a stationary junction without an external 
field through a simple substitution of the frequency: 
w-+w - U, or w - w  - U,, depending on which bank the 
two coordinates are close to. 

In a junction with LC the tunnel lines introduce no 
smallness because of the possibility of resonance tunneling 
and, generally speaking, all Green functions in (39) are im- 
portant. To determine them it is necessary to solve a set of 
equations which is analogous to ( 12), 

We have written Eqs. (40) in a coordinate-time representa- 
tion; the thin lines correspond to junctions without LC and 
we consider the LC potential as a perturbation. Substituting 
Eq. (38) into (40), and solving the infinite set of equations 
which we obtain by the method developed in the preceding 
section, we get in matrix block form 
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~i',", (Oh, r ;  r', O )  =F+R ( O R ,  r ;  r', O )  (6k,of 6k,-1) 

- 2-" ( k ,  r ) I f z ( k )  -31+R(k,  r ) g ~ , , ( k + l )  - j 2 + R ( k + l ,  r ) 2 , t p ( k ) ,  

a R ( k ) = & " ( o r ) ,  3 -" (k )=aA(-a , , ) ,  

g * R ( k ,  r ) = ( G R ( f  a,,. r; a , ,  f m k ) ,  . . . , G R ( A w h .  r; a,, t . ~ , , ) ) ,  

We exchanged the positions of a, tnd r' at the same time as 
transposing in (42);  the matrix S R  (w) is given by Eqs. 
(17)-( 191, 

tion. However, the second possibility can be realized only 
when at least one of the frequencies - w or - (w - 2U) 
together with w falls into the resonance zone. In that case, 
clearly, there appears a limitation on the LC energy: E ,  <2B 
or IE, - 2 U  / <2B. If the characteristic value B 4 A , , ,  the 
contribution to the current from resonance tunneling taking 
Andreev reflection into account will be proportional to B  "A 
and we can neglect it in comparison with the contribution 
from the usual resonance tunneling which is proportional to 
B. We may thus assume, when B < A , , ,  , that only the fre- 
quency w falls into the resonance zone and as a result Eqs. 
(39), (41),  and (42) can beconsiderably simplified: in (39) 
there remains only the G-functions with k = 0 where 

Noting that these relations are practically the same as Eqs. 
( 16) and ( 17) (the only difference being the actual form of 
the functions nt,) we can at once write down Eqs. 
(25),  (26) for the quasiparticle current and also Eq. ( 3  1 ) in 
which 

where (see Appendix) in ( 19), (43) 

Equations (39), (41 ), (42) take into account the possi- 
bility of resonance tunneling, both the usual one and also 
when we take into account processes such as Andreev reflec- 

[B(w) is the Heaviside function]. Averaging, as in the pre- 
vious section, Eq. (31 ), taking into account (45) ,  we get in 
the case of "clean" boundaries 
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where R is given by Eq. (34).  In the case of high barriers at 
the boundary the quasiparticle current is described by the 
formula 

and R is given by Eq. ( 37). 
It is clear from Eqs. (46) and (47) that for large vol- 

tages U) A,,, we must observe on the CVC a current deficit; 

We consider now the case B S A  and we restrict our- 
selves to the range of high voltages U S  A. It is clear that Eq. 
(39) differs from Eq. (21 ) for a normal junction only in the 
frequency ranges I w - U 1 - A, and Iw 1 - A,. We consider 
the range Iw 1 - A,; for such frequencies all anomalous func- 
tions except F + ' R ( ~ )  in Eq. (42) are small in the param- 
eter A/U. Bearing in mind that the frequencies w and - w 
fall simultaneously in the resonance zone (provided 
ED 5 B ) ,  we choose in Eq. (39) o = a, for the G functions 
and o = o, for the F functions [the possibility of such a sepa- 
rate choice is provided by Eq. (9b) 1 .  In the main approxi- 
mation we get then from (41 ) and (42) 

where &" defines the matrices 

%., = (eR ((o) F~~ ((I)) 
P2+ (u) Bzl (- 0)) 1 

Expressing the algebraic cofactors in (49) in terms of 

the minors of the matrices $ R  ,& A and using the analogous 
formulae for GA ,FA and also formulae like (23) (with dif- 
ferent combinations of G and F fun$ons^), we get for the 
result of the action of the operators L ,  . L,,) on the Green 
functions in (39) the following expression: 

Considering the optimal trajectories which we determine 
above we put 

sin cp sin v=w/2B, cos cp cos $=ED/2B, 

in that case 

QRL=2 (cos2 9-cos2 $) - I  (COS 2N9 cos2 (P--COS 2Nq cos' 4 3  

+n2* ( o )  [cos 2Nq sin2 $-cos 2N$ sin' cp] 

- i  ( I f  nZR(o))  [sin 2N(p cos cp sin $-sin 2N$ sin cp cos $1) 
(52) 

(for the sake of simplicity of exposition we put x = k ,  = k?) .  
As w - A, < B we have sinp =: 0, cosp =: 1. When ED < B we 
can put cos$zO, sin$= 1 and then 

X (A,) = 1 + lpzR(0) l 2  
I l+nzR(a)  1 ' 

To study Eq. (52) when ED -B we use the following 
fact. In (52) X(A,) as function of p,$ has beats with a char- 
acteristic period n-/2N. When 2Np / r r  and 2N$/n- are inte- 
gers with the same parity, X(A,) is, as before, the same as 
expression (53) (and for any x,k ,,, ), but in the intervals 
lying between these values it does not exceed it (when x < k it 
is even small -x /k) ,  but everywhere X(A,) 
- X(Az = 0 )  > 0. Hence it follows that Eq. (53) is applica- 

ble for any ED 5 B, if we are only interested in the difference 
of the CVC from Ohm's law for high voltages. 

Combining (53) with the analogous expression which 
is valid in the region (w - U ( -A, we finally get 

Expression (54) is the same as the formula obtained for 
clean microbridges in Ref. 14; it follows from it that in the 
CVC when U S  A,,, we must observe (under the condition 
B)  A ,,, ) an excess current: 

When we evaluate the integral in (54) exactly we find 
a = 3,  but in view of the approximations made we can state 
only that a - 1. 

5. DISCUSSION OF THE RESULTS 

The results obtained show that the quasiparticle cur- 
rent is in a broad range of parameters of the semiconductor 
layer determined by resonance tunneling which is caused by 
the presence in the semiconductor of trajectories of LC 
which are arranged at approximately equal distances 2y 
from one another. As a result a narrow zone of width B is 
formed [Eq. (27)]  in which the electron current occurs 
without damping. 

It turns out that resonance tunneling is sensitive to the 
presence of barriers at the boundaries of the semiconductor. 
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If the barriers are small (clean boundaries) so that the con- 
dition 

is fulfilled, the main contribution to the current comes 
from trajectories with distances between the LC 2y,, 
- (Lalln(cLa2) 1 ) ' I '  which is independent of the magnitude 
of the barriers. A comparison of the tunneling and resonance 
exponents in the expression for the current shows that the 
resonance tunneling becomes the main one for LC densities 
satisfying the relation 

It is necessary to note that the restriction on the density is 
much weaker than for a Josephson j u n c t i ~ n . ' ~ ~  This is con- 
nected with the fact that the quasiparticle current is propor- 
tional to B and not to B ' as in the case of Cooper pairs. 

When condition (56) is not satisfied (large barriers) 
resonance tunneling turns out to be most favorable along 
chains of LC arranged at distances 2y;) -alln min{Dl,D2)i. 
The current is in that case determined by Eq. (47) .  In that 
case, the way the jun~t ion resistivity depends on the thick- 
ness of the semiconductor, Eq. (37),  changes strongly when 
we change the transparency of the boundaries. We can use 
Eq. (37)  to explain the change in the slope of that function, 
observed in Ref. 8, when the boundaries are oxidated at the 
junctions with amorphous silicon. It is necessary to note that 
in contrast to SIS junctions for which the CVC starts from 
U = A,I5 in S-Sm-S junctions even when there is a barrier 
present on one of the boundaries the CVC starts from 
U = 2 A .  This is connected with the possibility of resonance 
tunneling through the whole of the junction (together with 
the barrier). 

The magnitude of the quasiparticle current for high vol- 
tages depends strongly on the relation between Band A. For 
small thicknesses of the Sm layer 

in the clean case, and when the condition 

A 
nlin {D,,  D2} > - 

v-k 
(59) 

is satisfied the zone B is sufficiently broad in the case of high 
barriers ( B >  A) for Andreev reflection to lead to an excess 
current [Eq. (55 ) 1 .  It is clear that when 3% A the S-Sm-S 
junction occupies an intermediate position between a super- 
conducting structure and direct conductivity and an SIS 
junction: there is an excess current and an exponential de- 
pendence of the resistivity on the thickness of the semicon- 
ductor. In the opposite case ( B <  A) and Andreev reflection 
is unimportant, since its contribution is proportional to B '/ 
A rather than to B. This leads to a current deficit for high 
voltages [Eq. ( 4 8 ) l .  Indeed, in Ref. 9 a transition was ob- 
served from current excess to deficit in the CVC when the 
junction resistivity was increased (with an increase in the 
thickness or a change in the composition of the Sm layer). 
Only a current excess was observed in Refs. 6 and 7, since the 
weak condition (58) was satisfied for all junction thick- 
nesses used. However, with junctions with oxidated boun- 
daries"'." a current deficit was observed in the CVC which is 

connected with the impossibility to satisfy the rigid condi- 
tion (59) .  

The authors express their gratitude to A. A. Abrikosov, 
A. I. Glazman, A. I. Larkin, and K. A. Matveev for useful 
discussions of the results obtained. 

APPENDIX 

Using the method of Ref. 2 we can find the Green func- 
tions of the one-dimensional stationary junction without 
LC: 

where the coordinates y,yl are inside the barrier, and to fix 
the idea close to the side S, (y,yl are reckoned from a , ) .  
Bearing in mind the uniformity of the junction we go over to 
the three-dimensional functions 

wherer = ( y g ) ,  a n d p  is thechemical potential. We then get 
Eqs. (18) , (43)  directly. In (14) we get 

where x0 from Eq. ( 15) satisfies the relation 

In the limit as ro-0,  8- CC, if (A4)  is satisfied, we get Eqs. 
(16) and (17).  
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