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The ground state of a particle in a two-well symmetric potential and the rate of relaxation of the 
particle to the ground state are investigated. In the vicinity ofthe point a = 4 ( a  is the constant 
describing the interaction of the particle with the thermostat) a sharp change occurs in the 
behavior of the rate of relaxation and frequency of oscillation of the population of the wells in the 
two-well potential. At temperature Tequal to zero the relaxation rate remains nonzero for 
arbitrary values of the coupling constant a. The temperature T, above which the temperature 
dependence of the relaxation rate becomes important is found. 

1. INTRODUCTION 

The behavior of a quantum particle in a two-well sym- 
metric potential and interacting with a thermostat has been 
actively investigated in recent years. The principal results 
pertaining to this problem are described in the review Ref. 1. 

In the absence of interaction with a thermostat the 
probability of finding the particle in the first (or in the sec- 
ond) well if at t = 0 it was localized in, e.g., the first well 
oscillates in time with a frequency A, equal to the magnitude 
of the splitting of the ground-state level in the two-well po- 
tential.' Interaction with a thermostat leads to a renormal- 
ization of the frequency of the oscillations and to the appear- 
ance of a nonzero relaxation rate y. In addition, so-called 
incoherent terms, with a power-law decay, appear. ' At large 
times t %  y - ' the incoherent terms also decay exponentially. 
This picture remains valid in all cases so long as the effective 
coupling constant a of the interaction with the thermostat is 

tends to infinity while the coupling constant a, of the inter- 
action with each individual oscillator tends to zero. 

As is well known,' in such a model the interaction with 
the set of oscillators is determined by a single function J ( w )  
of the frequency: 

where _+ x, are the positions of the minima of the potential 
U(x).  We shall assume that "viscous friction" is present in 
the system, i.e., that the function J ( w )  is proportional t o o  as 
0-0:  

I (o) /2n=ao ( 3 )  

for w 4 a,, where a, is the frequency of small oscillations 
about the minimum of U(x)  : 

less than $. MQPz= (dZU/dx2).=,,. 
In Refs. 4-7 it was stated that that at temperature T = 0 

and with a thermostat-particle coupling constant a > 1 the We shall assume also that the interaction (3 )  is effectively 
particle is localized in one of the wells. This statement is cut off at a frequency w, of the order of a,. A method of 
extremely important for an understanding of the dynamics introducing the cutoff will be given below. 
of a quantum particle. 

To check this statement, below we shall investigate the 3-GROUNDSTATEOFTHESYSTEMAT T=O - 
ground state of the system at T = 0 and find the rate of relax- 
ation to the ground state. The ground state turns out to be 
nondegenerate for arbitrary values of the thermostat-parti- 
cle coupling constant, and the relaxation rate is nonzero. 

Hence, the conclusion that the particle is localized 
when a > 1 appears to us to be erroneous. 

2. DESCRIPTION OF THE MODEL 

We replace the interaction of the quantum particle with 
the thermostat by interaction with an infinite set of oscilla- 
tors' and write the Hamiltonian of the entire system in the 
form 

When the coupling constant of the interaction with the 
thermostat is equal to zero the states of the system can be 
classified by their parity and by the excitation number n of 
each oscillator k (i.e., by the set {k, n}). The classification 
with respect to parity is preserved in an obvious manner in 
the presence of interaction with the thermostat. In addition, 
we shall assume that in accordance with the theorem that 
there can be no crossing of terms with the same symmetry,' 
upon change of the coupling constant from its value a to zero 
any eigenstate of the Hamiltonian ( 1 ) goes over into a state 
with the same, well defined set {k, n}, and the set {k, 0) 
corresponds to the ground state. 

Let 11 + (x)  be the wave functions of a quantum particle 
in the absence of the interaction: 

We write the wave function of the ground state of the system 
where M is the mass of the quantum particle, U(x) is the in the form 
two-well potential, and the quantities mk, w, ,  and y ,  are the 
mass, frequency, and coordinate of the k th oscillator. $+-9- 
Henceforth we shall assume that the number of oscillators 

$+=a {Y~I  + @ { - Y ~ I  7 . ( 6 )  
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Substituting the ?pression (6 )  into the eigenvalue equation 
for the operator H, we obtain 

E@ {Y*) 

h 

where E is the eigenvalue of the operator H: 

Setting 

we obtain from formula (7 )  an equation for the function 
@{z, ): 

By direct calculation we can verify that the following 
formula is valid: 

where 

Taking into account the remarks made above, we shall seek 
the ground-state wave function by iterating Eq. ( lo) ,  in 
which, as the zeroth approximation, we take the wave func- 
tion (12). 

Performing N interactions using the formula ( 11 ), we 
obtain 

The functions a ,  and b ,  depend on N times t , ,  ..., t,,., and 
satisfy the recursion relations 

Multiplying both sides of Eq. ( 10) by @,{z,) and integrat- 
ing over the variables {z,), we obtain an expression for the - 
quantity E+ : 

Using the recursion relations ( 14) we can rewrite Eq. ( 15) 
in the form 

A0 I N  I=- lim -, 
2 N+m IN-1 

where 

Equation ( 16) for the quantity E + can be rewritten conve- 
niently in the form 

This equation determines not only the ground-state en- 
ergy E+ but also the energy g of the odd state without real 
excitations in the system of oscillators. In order to obtain the 
value of& it is necessary in Eq. ( 18) to perform the analyt- 
ic continuation in the energy g in such a way that g be posi- 
tive for a = 0. 

To prove this statement we write the odd solution with- 
out real phonons in the form 

By making use of the energy of this state in the form (9 )  with 
g +  replaced by g -  we obtain for the quantity 6 { z , )  an 
equation that differs from formula (10) by the replacement 
of the quantity A,, by - A,: 

Using the formulas ( 11 ) and (20) and repeating the 
arguments that lead to the formula (18), we find that the 
energy - satisfies the same equation ( 18). For the ground 
state of the system the quantity g +  is always negative and 
the integrals in formula ( 18) can be calculated without any 
complications. For the odd no-phonon state the quantity 

_ for a = 0 is positive, and, as was noted above, in formula 
(18) it is necessary to perform analytic continuation in g. 
When the discrete set of oscillators is replaced by a contin- 
uous distribution the energy of the odd state without real 
excitations of the oscillators is found to lie on the back- 
ground of the continuous spectrum. As a result, the quantity 
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E- acquires an imaginary part, the magnitude of which de- 
termines the rate of relaxation of the populations of the 
wells. We turn now to the calculation of the integrals in for- 
mula ( 1 8 ) .  

Using the recursion relation ( 14), for the quantity a, 
we obtain the expression 

N 

The behavior of the system depends in an essential way 
on the quantity J ( w )  given by formula ( 2 ) .  We shall assume 
that for small values of w the relation ( 3 )  is fulfilled and the 
equality 

holds. Using the expressions ( 2 1 )  and ( 2 2 ) ,  we find 

L n Z k + t  L n l k  

It follows from this that in a narrow neighborhood of 
the point a - 4  a sharp change occurs in the dependence of 
the quantity E o n  the value of the coupling constant. In the 
region a <J the important values of all the times t a re  of the 
order of lE I - '  , and from the formulas ( 2 3 )  and ( 1 8 )  we 
obtain 

The functionx(a ) is equal to 1 at a = 0 and has a singularity 
( 1 - 2 a )  - ' at values of a close to 4. In the vicinity of the 
point a = 4 the expression ( 2 4 )  for the quantity + ceases 
to be valid. In the region / 1 - 2 a (  < 1 the quantity E + can be 
found from the equation 

where the constant A is a number oforder 1 and will be found 
below. 

In the region a > 4, in the formula ( 2 3 )  for E+ the 
important values of r , ,  are - IE+ I - ', and the important 
values of t , ,_ , are - a; '. Taking this remark into account, 
from the formulas ( 16), ( 18) ,  and ( 2 3 )  we find 

and ( 2 6 )  in the regions a > ; and a - 4 < 1 ,  we obtain for the 
constant A the value 

From the formulas ( 2 4 )  we find expressions for the splitting 
SE and relaxation rate y in the region a < 4: 

From the formulas ( 2 8 )  it follows that 

The formula ( 2 9 )  in the region a < $ coincides with the re- 
sult cited in the review Ref. 1. 

For the analytic continuation in formulas ( 1 7 )  and 
( 18) we first of all replace Et by - t. After this the analytic 
continuation reduces, in a very simple integral, to the re- 
placement 

The contour r is shown in the figure, and the quantity 
( 1 - w,  t / E )  is defined so that it is equal to 1 at t = 0 

In the region a > k i n  the leading approximation we 
obtain for the quantity E  the same value ( 2 6 )  as for the 
quantity E +  . Allowance for the correction leads to the ap- 
pearance of splitting and of an imaginary part of the energy 
E- : 

The functions $, and $, arise as a result of the integration 
over the contour r. In  order of magnitude, 

where T ( x )  is the gamma function. 
For sufficiently large values of the parameter a and not 

very low temperatures, when coherent processes are unim- 
portant, the relaxation rate y is given by the e~pression' .~." 

A 2 
0 

= 4T (na) '" exp{-2. l n ( 3 ) ) .  

Comparing the expressions ( 3  1 ) and ( 33  ), we find the tem- 
perature To below which the relaxation rate does not depend 

Comparing the values of E +  obtained from formulas ( 2 5 )  
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on the temperature: 

The expression for the general energy shift (26) coin- 
cides with the result obtained by Ivlev in Ref. 9. 

4. CONCLUSION 

We have obtained an expression for the quantity 6E- 
the difference of the levels in the odd state and the even state 
without real excitations of the system of oscillators in the 
entire range of values of the coupling constant a. In the re- 
gion a < 4 all important values of the times are of the order of 
1 1  ' a& increase with increase of the parameter a. How- 
ever, in a narrow neighborhood of the point a = 4 the behav- 
ior of the system changes sharply: The important values of 
some of the times begin to decrease rapidly and, as the cou- 
pling constant passes through the point a = 4, become of the 
order of w: ', i.e., of the order of the inverse-cutoff frequen- 
cy. Thus, for a complete description of the system in the 
region a > 4 it is necessary to take into account higher excit- 
ed states in-the potential U ( x ) .  

For an arbitrary value of the coupling constant a the 
ground state is found to be nondegenerate and the relaxation 
rate nonzero. 
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We note once again that the frequency cutoff at  a, be- 
comes important at values a > ;. Neglect of unity alongside 
the term wt in formula (22) would lead to a widening of the 
region of applicability of formula (24) for g ,  to values 
a < 1 and to the appearance of a singularity at the point 
a =  1. 

In conclusion the author expresses his gratitude to A. I. 
Larkin, B. I. Ivlev, and S. A. Bulgadaev for a useful discus- 
sion of the results obtained. 
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