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Nonlinear reduction of collisionless cyclotron absorption reduced the permittivity of an electron- 
hole plasma in cadmium so much that a new Doppler wave was observed. The new doppleron was 
due to a Doppler-shifted cyclotron resonance of "lens" electrons, but its circular polarization was 
opposite to that of the familiar doppleron. A linear plasma bleaching effect was observed also in 
samples of tungsten. 

Nonlinear behavior of the rf impedance of a silicon 
plate in a static magnetic field perpendicular to its plane was 
investigated by us earlier. ' We studied nonlinear character- 
istics of the impedance in the vicinity of the threshold for the 
formation of a hole doppleron. We demonstrated that the 
nonlinearity was due to the effect of the magnetic field (T of 
an electromagnetic wave on the paths of "lens" electrons 
responsible for the collisior~less cyclotron damping of this 
doppleron. The Lorentz force associated with this magnetic 
field modulated the velocity of electrons along the static field 
H at a frequency proportional to the square root of the wave 
amplitude. Such modulation of the longitudinal velocity of 
electrons suppressed strongly the cyclotron absorption by 
hole dopplerons. This increased greatly the amplitude of os- 
cillations of the impedance in the vicinity of the hole dop- 
pleron threshold. 

In the present study we found experimentally that at 
high amplitudes of the rf field a new wave propagated in 
cadmium and the excitation of this wave in the cadmium 
plate resulted in strong oscillations of the impedance in the 
case of a positive circular polarization above the range which 
the hole doppleron was observed. This wave appeared be- 
cause the majority of electrons on the Fermi surface were 
trapped by the wave field and ceased to contribute the colli- 
sionless absorption process. The only electrons which were 
not trapped were those in the vicinity of a certain limiting 
point of the Fermi-surface lens. Consequently, the region of 
collisionless absorption was limited on the short-wavelength 
side, which gave rise to a new doppleron. In contrast to the 
familiar electron doppleron, the nonlinear doppleron was 
characterized by normal dispersion and was observed when 
the circular polarization was positive. 

1. EXPERIMENTS 

We investigated the surface resistance of a cadmium 
plate subjected to a static magnetic field H perpendicular to 
its surface. The plate was cut from a single crystal character- 
ized by the resistance ratio 5 X 10" The hexagonal axis of the 
crystal was at right-angles to the plane of the plate. The 
method used in the resistance measurements differed from 
that described in Ref. 2 by t5e presence of an additional coil 
which made it possible to create a circularly polarized excit- 
ing field. The surface resistance R was determined as a func- 
tion of H and the results obtained for the negative circular 
polarization are shown in Fig. la, whereas those obtained for 
the positive polarization are given in Fig. lb. Suitable vari- 
ation of the amplitude of the exciting field altered also the 
gain so that the records obtained in the linear regime practi- 

cally coincided for different amplitudes. Curves 1 and 3 were 
obtained when the exciting alternating magnetic field was 4 
Oe. Severalfold variation of the amplitude of the alternating 
magnetic field did not change these curves, i.e., the linear 
regime was obtained at these amplitudes. Oscillations of 
curve 1 were associated with the excitation of an electron 
doppleron in the plate and this was due to a Doppler-shifted 
cyclotron resonance (DSCR) of electrons at a limiting point 
of the Fermi-surface lens. Curve 3 showed no such oscilla- 
tions because the amplitude of the Gantmakher-Kaner oscil- 
lations in the negative circular polarization case was two 
orders of magnitude less than the amplitude of the dop- 
pleron oscillations. The amplitude of the hole doppleron os- 
cillations, due to the DSCR of holes from the Fermi-surface 
monsters observed in the same polarization, was also small. 
Therefore, these oscillations could not be seen in the case of 
curve 3. Curve 4 was obtained when the amplitude of the 
alternating magnetic field was 40 Oe, and curves 2 and 5 
were recorded when this amplitude was 75 Oe. Curve 2 did 
not differ significantly from curve 1. The changes were basi- 
cally as follows. The oscillations spread to higher fields and 
the maxima of their amplitude also shifted to higher fields; 
moreover, the limiting value of the period decreased some- 
what at higher fields. The changes between curves 4 and 5 
were more striking. First of all, in the nonlinear regime we 
observed singularities' associated with the DSCR of holes, 
identified by arrows on curves 4 and 5. Moreover, in the case 
of curve 4 in the range of fields where the electron doppleron 
oscillations were observed in the negative polarization, we 
now found two irregular maxima. Under strongly nonlinear 
conditions (curve 5)  the singularities in the range of exis- 
tence of the electron doppleron became regular. The ampli- 
tude of the oscillations exhibited by curve 5 was greater than 
those exhibited by curve 1. The oscillations began above the 
hole doppleron threshold and, as in the negative polarization 
case, extended to values of H which increased on increase in 
the amplitude of the exciting field. The period of these oscil- 
lations decreased monotonically on increase in H and 
reached a limiting value very close to the limit of the dop- 
pleron oscillation period in the negative polarization (com- 
pare with curve 2 ) .  Therefore, the properties of the oscilla- 
tions of curve 5 indicated that a new doppleron appeared in 
the nonlinear case when the polarization was positive. The 
proximity of the limiting values of periods of oscillations of 
curves 2 and 5 indicated that the new doppleron was due to a 
DSCR of electrons which shifted beyond the cyclotron peri- 
od by an amount very close to the shift of the electrons at the 
limiting point. 
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2. DISCUSSION 

R, 3 

a. Electron paths. We shall assume that a monochro- 
matic plane wave of frequency w and with a wave vector k 
propagates along a static magnetic field H ( z  axis) directed 
parallel to the axis of an electron Fermi-surface lens. The 
electron paths can be found conveniently in a coordinate 
system moving along the z axis with a velocity w/k. In this 
system there is no electric field of the wave and the magnetic 
field is equal, apart from terms of the order of (w/kc) ', to its 
value in the laboratory coordinate system. In the case of the 
positive circular polarization the magnetic field of the wave 
can be written in the form 

R- A 

Zz=Z cos kz, %,=% sin kz. ( 1 )  

a 2 

The electron paths are governed by the equation of motion 

4, p. v 
I 5 

FIG. 1 .  Dependences of R ( a )  and R , ( b )  on 
the magnetic field H o f  frequency 32 kHz applied to 
a cadmium plate of thickness 1.71 mm at 1.4 K.  

.t 
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where v = d ~ / d p ;  ~ ( p )  is the energy of an electron with a 
momentum p; - e is the electron charge; c is the velocityof 
light; a dot above a symbol denotes differentiation with re- 
spect to time. The law of conservation of energy 
~ ( p )  = E = const follows from Eq. ( 2 ) .  In cylindrical co- 
ordinates u,, v ,  , and @ such that u ,  = u ,  cos@ and 
u ,  = v ,  sin@, the equations of motion become 

pz--hto,mu,(~, p,) sin (kz-@I, ( 3  

where h = # / H ,  w, = eH /mc, and m is the cyclotron mass 
of an electron which we shall assume to be constant. 

Since we are interested in small values of h, it follows 
that the second term of the right-hand side of Eq. (6 )  can be 
ignored and the solution of this equation becomes @ = w,  t. 

In the linear case ( h  -0) the cyclotron absorption is 
due to electrons with a longitudinal momentum p, =p,,, 
which is described by the equation 

on the right-hand side of Eq. ( 3  ) and retain the term linear in 
Sp on the right-hand side of Eq. (4 ) .  Consequently, Eqs. ( 3 )  
and ( 4 )  can now be represented in the form' 

i=-S2 sin a, a=S2~, (8)  

where 

P(p.0) = [ h m ~ I ( ~ z o ) m o ~ ~ ( ~ z o )  l'", m ~ - ' = ( ~ v , / ~ p ~ ) ~ , , ~ , , ,  

where a is the angle between the wave field and the trans- 
verse electron velocity v, . 

The system of Equations ( 8 )  is characterized by an in- 
tegral U = s2/2 - cos a = const. Using this integral, we can 
transform the equation for a to 

U=2Rp[I. - ($ tin :)' ] '' , 

where 

p= [ ( U + i ) / 2 ] ' "  sign s. (13) 

The solution of Eq. (12) can be expressed in terms of the 
Jacobi amplitude. If lpj > 1, the angle a can assume any val- 
ues and the motion of an electron is unbounded with respect 
to this angle. We shall call these transit electrons. If jpl < 1 
the motion of an electron is finite with respect to a and the 
turning points can be found from vanishing of the radicand 
in Eq. ( 12). Such electrons will be called trapped. This trap- 
ping of electrons, responsible for the cyclotron absorption, 
by the magnetic field of a wave is similar to the trapping of 
electrons by the field of longitudinal sound." 

Since the angle a of the trapped electrons ranges from 
- a,, to a,, , where a,, = 2arcsin Jpl, it follows that during 

one half of a period of the oscillations the wave field acceler- 
ates an electron along the z axis, whereas during the other 
half it slows the electron down. Consequently, the change in 
the electron energy in the laboratory system of coordinates is 

ku.(pzo)=o, ('I 
zero. Therefore, the trapping of resonance electrons by the 

If h < 1, in the case of electrons close to a resonance we can wave field in the nonlinear regime is responsible for the dis- 
assume that p, =p,, + Sp. We shall ignore the quantity Sp appearance of the collisionless cyclotron absorption. 
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6. Role of collisions. The situation is as described above 
if the oscillation frequency SZ exceeds the oscillation fre- 
quency v. However, if i2 is much less than v, then a collision 
"knocks out" an electron before it completes an oscillation. 
In this case there is no trapping of electrons by the wave field 
and the cyclotron absorption is the same as in the linear 
regime. 

I t  is important to stress that the oscillation frequency SZ 
is different for different sections of the Fermi surface. In fact, 
according to Eqs. ( 10) and ( 1 1 ), the value of R2 is propor- 
tional to the ratio v, (p, )/v,  (p, ). Therefore, the frequency 
SZ is high if the section for resonance electrons (p, = p, ) is 
near the equator of the Fermi-surface lens where u, is low 
and tends to zero in the vicinity of the limiting point of the 
lens characterized by v, -0. We can therefore have a situa- 
tion when for the majority of the values ofp, the frequency 
SZ exceeds v, but it is much less than v for sections near the 
limiting point. Electrons belonging to such sections remain 
of the transit type and are responsible for the collisionless 
cyclotron absorption of the wave. The other electrons are 
trapped by the wave field and may not participate in the 
collisionless absorption process. In this case the nonlinearity 
"paralyzes" the majority of the electrons on the Fermi sur- 
face. The cyclotron absorption region is then limited not 
only on the long-wavelength side, as in the linear case, but 
also on the short-wavelength side and the wavelength inter- 
val where this absorption is observed is very narrow. Sup- 
pression of the nonlinear cyclotron absorption threshold re- 
sults in a strong dispersion of the permittivity of the electron 
gas and creates a new doppleron. Since the Doppler shift of 
the frequency of this doppleron kuz exceeds w ,  for the transit 
electrons, the difference w,  - kv, becomes negative so that 
the nonlocal Hall conductivity changes its sign. The result is 
that the field of a nonlinear doppleron rotates in the direc- 
tion opposite to the rotation of electrons, i.e., this doppleron 
exists in the positive polarization case. 

c. Model of the Ferrni surface and the spectrum ofelec- 
tromagnetic waues. It follows from the above that a qualitita- 
tive description of the wave properties of a metal in the posi- 
tive polarization can be provided simply by considering the 
contribution of the transit electrons to the nonlocal conduc- 
tivity a ,  ( k )  and the contribution of the trapped electrons 
in the local approximation. The situation is simpler in the 
negative polarization case. For this polarization in the linear 
regime there is a doppleron due to a DSCR of electrons at the 
limiting point of the Fermi-surface lens. The wavelength of 
this doppleron is greater than the shift of the limiting-point 
electrons in one cyclotron period. In other words, the wave 
vector k is such that the cyclotron absorption condition of 
Eq. ( 7 )  is not satisfied by any electrons on the lens surface. It 
follows that the field of such a doppleron does not trap elec- 
trons and the whole electron lens contributes to the nonlocal 
conductivity u ( k ) .  Therefore, in the case of the negative 
polarization there are no such dramatic nonlinear changes in 
the wave properties as in the positive polarization case. 

The limiting point of the lens of cadmium is nearly para- 
bolicin the HI I C, geometry,' i.e., the shape of the lens in the 
vicinity of its vertex is close to the shape of a paraboloid. ( In  
the case of a paraboloid Fermi surface the longitudinal ve- 
locities u, of all the electrons and, consequently, their displa- 
cements in one cyclotron period are the same.) The dop- 

pleron field equalizes even more strongly the longitudinal 
velocities of electrons. In fact, it follows from the equations 
of motion (3)-(5) that the wave field reduces the longitudi- 
nal velocity of electrons at the limiting point, but increases 
the transverse velocity. Conversely, the longitudinal veloc- 
ity of those electrons which are near the end of the truncated 
vertex of the lens increases, whereas the transverse velocity 
decreases. In other words, the doppleron field alters the 
transit electron paths in such a way that their displacements 
become almost identical. Therefore, we can demonstrate the 
wave properties of cadmium in the nonlinear regime by con- 
sidering a simple model in which the Fermi surface of elec- 
trons is a parabolic lens. The hole Fermi surface is assumed 
to be a corrugated cylinder. The axes of the cylinder and lens 
coincide with the direction of the static magnetic field H and 
with the normal to the plane of the cadmium plate. We shall 
assume that the maximum displacement of holes is one 
quarter the displacement of electrons. Then, ignoring carrier 
collisions, we find that the transverse nonlocal conductivity 
of this metal is 

where 

p, is a constant with the dimensions of the momentum (this 
constant represents the displacement of electrons), and n is 
the carrier density. The first term in the square brackets of 
Eq. ( 14) describes the nonlocal Hall conductivity of elec- 
trons and the second the corresponding conductivity of 
holes. 

The dispersion equation for an electromagnetic wave in 
a metal characterized by k 'c' = 4 ~ i w a  + can be written 
conveniently in the form 

FIG. 2. Dependences of the functions @ on H.  
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FIG. 3.  Spectral curves for the circular polarizations calculated at the 
exciting field frequency o/2n = 32 kHz. 

where 

We shall assume that the parameterp,, is such that the 
limiting value of the period of an electron doppleron is equal 
to the half-sum of the limiting values of the periods of the 
oscillations exhibited by curves 2 and 5 in Fig. 1. This condi- 
tion corresponds top,, = 1.42fi ..&-I. We shall assume that 
the carrier density n is such that the threshold of an electron 
doppleron existing in the negative polarization is equal to the 
observed threshold. This is true for n = 2 X lo2 '  cm '. 

Since the quantity ' is proportional to HI, it follows 
that we can solve Eq. (16) conveniently by plotting graphs 
of the functions @ + . These graphs are shown in Fig. 2. The 
solutions of the dispersion equation are obtained at the 
points where curves 1 and 2 are intersected by horizontal 
lines corresponding to different values of H. The depen- 
dences of k on H for the two polarizations are shown in Fig. 
3. A branch 1 describes the electron doppleron spectrum in 
the negative circular polarization case, whereas branches 2- 
4 are the spectra of an electron doppleron, a hole helicon, 
and a hole doppleron in the positive polarization case. We 
shall not be interested in branches 3 and 4. A characteristic 
property of spectral curves 1 and 2 is that they extend to high 
magnetic fields, whereas the spectrum of an electron dop- 
pleron obtained in the linear regime is limited on the high- 
field side. Calculations indicate that the maximum of the 

amplitude of oscillations of the impedance corresponding to 
dopplerons I and 2 is shifted considerably toward higher 
fields compared with the maximum of the amplitude of oscil- 
lations of a linear doppleron. 

The nature of changes in the oscillation period due to 
dopplerons 1 and 2 is the most convincing proof of displace- 
ment of all the transit electrons. Curves 1 and 2 in Fig. 4 
represent the calculated dependences of these periods on the 
field H, deduced from the spectra 1 and 2 in Fig. 3. The 
points in Fig. 4 represent the experimental results corre- 
sponding to curves 2 and 5 in Fig. 1. We can see that these 
points are strikingly close to the calculated curves. 

Finally, we shall comment on the reduction in the limit- 
ing period of oscillations exhibited by curve 2 in Fig. 1 ,  com- 
pared with the limiting period of curve 1. This reduction can 
be explained by the fact that the limiting-point electrons ex- 
hibiting the largest displacement are unavoidably character- 
ized by a smaller displacement in the nonlinear regime. 

Figure 1 shows the R , (H) dependences recorded 
when the exciting field frequency is 32 kHz. This frequency 
is selected in such a way that a doppleron appears most clear- 
ly in the positive polarization case (curve 5 ) ,  i.e., when the 
number of regular oscillations is as large as possible. When 
the frequency is increased, the range of existence of an elec- 
tron doppleron in the linear regime (corresponding to the 
negative polarization) shifts toward higher fields. This re- 
duces the nonlinear effect so that a new doppleron is ob- 
served as clearly. When the frequency is reduced, the range 
of existence of this doppleron shifts toward weaker fields and 
becomes narrower. Narrowing of this range reduces the 
number of oscillations in the experimental curves. However, 
a shift toward weaker fields is accompanied by enhancement 
of the influence of the nonlinearity on the oscillation profile. 
Figure 5 shows the dependences R (H)obtained for differ- 
ent amplitudes of the exciting field at a frequency 8 kHz. 
These curves manifest even more strongly the nonlinear 
changes which we discussed when comparing curves 1 and 2 
in Fig. 1. Moreover, the oscillations become sharper and 
asymmetric. The slopes of the maxima exhibit abrupt jumps 
indicating resonance "flipping." In the region of such a jump 
the surface resistance becomes a multivalued function of H 
and behaves differently when the magnetic field is reduced 

AH, kOe . 
I 

FIG. 4. Dependences of the oscillation periods for two circular polariza- 
tions on the magnetic field. The curves are calculated and the points are 
the experimental values ( o / 2 n =  32 kHz).  

FIG. 5. Dependences R (HI recorded for a cadmium plate of thickness 
1.71 mm at a frequency of 8 kHzat 1.4 K.  Curves 1,2,  and 3 wereobtained 
using an exciting magnetic field of intensity 4. 126, a6d 200 Oe, respective- 
ly. The dashed parts of curve 3 represent jumps of the surface resistance. 
The inset shows a fragment ofcurve 3 on a scaleextended along theHuxis. 
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FIG. 6. Dependences of the derivative of the surface resistance dR /dH 
obtained for a tungsten plate of thickness d = 2.0 mm at a frequency 
o / 2 r  = 4 kHz at T = 1.6 K. Curves 1 and 2 were obtained using an excit- 
ing field of amplitude 20 and 126 Oe, respectively. 

or increased. This hysteresis is demonstrated in the inset in 
Fig. 5 which shows, on a scale magnified by a factor of 10 in 
respect of H, a fragment of a record obtained for one of the 
extrema of curve 3. 

The bleaching effect in a metal was observed in the non- 
linear regime not only for cadmium but also for tungsten. 
Figure 6 shows the field dependence of the derivative of the 

surface resistance dR_/dH of a tungsten plate 
( P , ~  /p4 zz 50 000) obtained in the negative circular po- 
larization using a magnetic field directed along the normal 
to the surface: Hll [OOl] [In. In the linear regime (curve 1) 
there are Gantmakher-Kaner oscillations of amplitude 
which increases smoothly on increase in H. In the nonlinear 
regime (curve 2 )  these oscillations are much greater than 
those of curve 1. In stronger magnetic fields (H k 4 kOe) the 
amplitudes of the oscillations are practically the same in the 
linear and nonlinear regimes. In weak magnetic fields we can 
see from curve 3 that there are clear oscillations character- 
ized by a larger period. We can assume that, as in the case of 
cadmiun, these oscillations are associated with the excita- 
tion of a new doppleron wave in a polarization opposite to 
that in which a doppleron propagates in the linear regime. 
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