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The effect of anharmonicity on the spectrum of the vibrational excitations in a one-dimensional 
chain of interacting quantum anharmonic oscillators is investigated theoretically. The problem is 
reduced to that of determining the wave functions of a many-particle system of lattice phonons 
with point interaction As a result of solving the Schrodinger equation it is predicted that 
complexes ofbound phonons are formed, and for these complexes the spatial width, exact 
dispersion law, and effective mass are determined. The question of the relation of the 
multiphonon complexes to the anharmonic solitons that arise in the given model in the classical 
limit is considered. I t  is demonstrated that the parameters of the solitons and the complexes 
coincide. The time after which the soliton is subjected to quantum-mechanical dispersion is 
determined. The results of the paper can be be used to describe interacting bosons in quasi-one- 
dimensional systems, both in continuous space and for a lattice. 

The quantum theory of the elementary excitations of 
crystals is based historically on the concept of noninteract- 
ing quasiparticles. This has led to the appearance and formu- 
lation of the concepts of "electron in a crystal," "phonon," 
"exciton," and "magnon." These ideas have turned out to be 
very convenient in the analysis of the properties of solids, 
and time itself has proved their usefulness. However, the 
further development of the theory of solids has required that 
the interactions between quasiparticles be taken into ac- 
count. Certain phenomena in solids can be explained only by 
invoking such concepts as "polaron," "polariton," "Cooper 
pair," "biexciton," and "biphonon." In the latter case we are 
concerned with a two-phonon bound state that arises as a 
result of the anharmonicity inherent in the vibrations of the 
crystal lattice. A detailed investigation of the properties of 
biphonons can be found in a review (Ref. 1 ) . The biphonons 
predicted theoretically were later discovered in experiments 
in the study of the infrared spectra of molecular crystals and 
the spectra of the Raman scattering of light by polaritons. 
Allowance for the anharmonicity turned out to be important 
in the determination of the widths of the bands of two- 
phonon states, the magnitude of the dispersion, the presence 
of gaps in the polariton spectra, and also the contributions of 
the biphonons to the nonlinear susceptibilities of the crys- 
tals. With regard to the prospects for further investigations, 
the authors of Ref. 1 point to three-phonon and more-com- 
plicated phonon complexes, the study of which has already 
begun in Refs. 2 and 12. In the opinion of the authors of Ref. 
1, the study of biphonons in one-dimensional and two-di- 
mensional systems may be of great interest. 

In the present paper we shall investigate the multi- 
phonon states that arise in a one-dimensional chain of mole- 
cules. The study of this system also has a further aim-the 
quantization of solitons. In Ref. 4 it was shown that in a one- 
dimensional chain of interacting molecules, when the anhar- 
monicity of the intramolecular vibrations is taken into ac- 
count, solitary waves of vibrational excitations, i.e., wave 
packets that do not change their shape with time as they 
propagate along the chain, are formed. However, this phe- 
nomenon arises only in a classical description of the system, 
i.e., it is assumed that the number of vibrational quanta ex- 

cited in the chain is sufficiently large. But what will happen 
in the chain if the number of vibrational quanta is small? In 
this case the classical description of the vibrational degrees 
of freedom of the molecules becomes incorrect and it is nec- 
essary to invoke the quantum formalism. To  answer this 
question it is necessary to make use of the Hamiltonian of an 
anharmonic soliton chain and to quantize the variables ap- 
pearing in this Hamiltonian. The resulting problem turns 
out to be equivalent to the problem of the multiphonon com- 
plexes in a one-dimensional system. 

At the beginning of the paper we formulate the princi- 
pal features of the model and the physical con'tent of its pa- 
rameters. The Schrodinger equation for the wavefunction of 
the multiphonon states is obtained, a method of approximate 
construction of all the wave functions of the system is indi- 
cated, and the energy states of the system are found. In Sec. 3 
a discussion of the distinctive features of the resulting quasi- 
particle-dispersion laws, both in the discrete and in the con- 
tinuum case, can be found. The last two sections are devoted 
to a comparison of the properties of solitons and multi- 
phonon complexes, and to the related question of the corre- 
spondence of the quantum and classical properties of the 
chain. 

1. DESCRIPTION OFTHE MODEL 

The physical system under investigation is a one-di- 
mensional lattice with molecules firmly attached at the sites, 
each molecule having an internal vibrational degree of free- 
dom. We assume that the vibrations of the molecules are 
sufficiently well described by the anharmonic-oscillator ap- 
proximation, i.e., the dependence of the energy of a vibra- 
tional level on its number Nis  determined by the well known 
formula5 

where G = 2753, - E, is the anharmonicity energy, and &I, 
is the energy of the basic vibrational quantum. The Hamilto- 
nian of such an oscillator in the second-quantization repre- 
sentation can be obtained from the expressign ( 1) by replac- 
ing the level number N by the operator N =  A + A  of the 
number of quanta: 
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Between neighboring molecules there is an interaction 
which permits them to exchange molecular-vibration quan- 
ta. The role of this interaction can be played by the dipole- 
dipole interaction between the dipole moments induced in 
the molecules as a result of the vibrations. The operator of 
this interaction between the nth and (n + 1) th  molecules 
has the form 

where Q is the matrix element corresponding to the transi- 
tion of one quantum from one molecule to another. Finally, 
the model Hamiltonian takes the following form: 

The dimensionless operators A ,+ and A,, obey commutation 
relations of the Bose type. 

Before determining the spectrum of the Hamiltonian 
(4) ,  we shall consider particular cases in which the spectrum 
can be found easily. The one-dimensional crystal under in- 
vestigation goes over into a set of unbound molecules in the 
limit Q = 0. In this case the spectrum of the elementary exci- 
tations of the system consists of the set of quanta given by the 
expression ( 1 ) . As the energy increases we get one-quantum 
and then two-quantum excitations concentrated on one mol- 
ecule, two-quantum excitations on different molecules, 
three-quantum excitations on one molecule, and so on (Fig. 
1 ). The levels form groups characterized by an equal num- 
ber of excited quanta. Each level is multiply degenerate and, 
when the interaction is "switched on," undergoes splitting 
into a phonon band characterized, in addition, by a certain 
set of phonon wave numbers. 

Another limiting case is the absence of anharmonicity. 
For G = 0 the Hamiltonian becomes quadratic in the cre- 
ation and annihilation operators of the vibrational quanta 
and is diagonalized by going over to creation operators of 
phonons with a certain value of the wave number: 

FIG. 1. Diagram of the energy levels of a chain of anharmonic oscillators. 
The limiting cases of unbound oscillators (Q = 0)  and chains of harmonic 
oscillators (G = 0) are also illustrated. 

A,,= ( 2 ~ ) - '  Bkeikn dk ,  Bk= (k)-" &,,e-"n . ( 5 )  

The Hamiltonian in this case decomposes into a sum of 
Hamiltonians of the individual phonons: 

Rr=o = J (hmO-Q cos k )  Bk+Bk dk. (6 )  

If in such a system several phonons are excited, the energy in 
the chain is equal to the sum of the energies of the individual 
phonons: 

The latter relation is a direct indication that for G = 0 the 
quasiparticles (phonons) are noninteracting, and this prop- 
erty, like the relation (7 ) ,  is violated when the anharmoni- 
city is taken into account. 

Turning to the determination of the spectrum of the 
Hamiltonian (4) ,  we note that this Hamiltonian commutes 
with the operator of the total number of quanta 

This implies that the wave functions of the stationary states 
of the N t h  group of levels can be sought conveniently in the 
form of an expansion in functions with a definite number of 
vibrational quanta: 

where 10) is the ground state of the chain. 
We note that only those functions @ that do  not change 

on interchange of any pair of numbers have physical mean- 
ing, since the asymmetric part in the summation (9 )  drops 
out by virtue of the Bose commutation relations and does not 
make a contribution to the actual wavefunction. In this form 
we have here the principle of indistinguishability of phon- 
ons. 

After substituting (9)  into the time-independent Schro- 
dinger equation we obtain 

where S,,,, is the Kronecker 8-symbol. Our problem is to 
determine the spectrum of the eigenvalues and eigenfunc- 
tions for arbitrary Q and G. 

2. DERIVATION OF THE WAVE FUNCTIONS 

We shall elucidate the physical content of Eq. ( 10). The 
coupling Q of the oscillators leads to the appearance of a 
term in the form of a second-order difference derivative with 
respect to the coordinate n , .  If we consider functions @ that 
are slowly varying with the number n , ,  this term can be re- 
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placed by the second partial derivative with respect to the 
coordinate n,; consequently, this operator is analogous to 
the operator of the momentum squared. The term associated 
with the anharmonicity has the form of an interaction poten- 
tial that is nonzero only when the coordinates of the particles 
coincide. This implies that the general equation (10) de- 
scribes a gas of N bosons with a point interaction potential, 
with the coordinates of the particles taking a discrete series 
of values. 

Turning to the determination of the solutions of Eq. 
( l o ) ,  we make use of the fact that the interaction potential is 
equal to zero when the particle coordinates do not coincide. 
At points where this is the case, the equation has the form of 
the Schrodinger equation for free particles, and its solution 
will be a set of plane waves. One of these regions will be n ,  
> n, > ... > n,, and in this region we choose a solution in the 
form of one wave, characterized by a set of wave numbers k ,  , 
k,, ..., k,: 

The wave function ( 11 ) corresponds to the energy 

We shall find the conditions for joining of the wave function 
with the solutions in other regions. The latter solutions 
should correspond to the same energy eigenvalue E N .  There- 
fore, the plane waves that appear in the solution can differ 
from ( 11 ) only in the ways in which the set of wave numbers 
(k ,  ,k, ,..., k,) is arranged in their products with the coordi- 
nates n, ,n ,,..., n,. The number of possible combinations is 
reduced considerably if we take account of the continuity 
condition, which consists in the fact that the expressions 
obtained for the wave function in, e.g., the regions n ,  > n, 
> ... > n, and n, > n, > ... > n, should give the same result 
for n, = n,. Thus, for ( 1  1 )  in the region n, > n ,  > ... > n,,, 
the solution will contain only two plane waves, differing in 
the arrangement of the quasimomenta k and k, : 

cDn2>,,,>. . .>,,,=A exp [i(klnl+k2na+. . .+k,nN)] 

4-.8 exp [i(k2n,+kln2+ . . . +kNnN)] , (13) 

where A + B = 1. The second equation for the coefficients A 
and B can be obtained from Eq. ( 10) itself, considered for 
the case n,  = n, . The coefficients A and B turn out to depend 
only on the momenta k ,  and k, : 

here E = Q /G is the relative anharmonicity. 
The joining coefficients obtained make it possible to de- 

termine the wave function in all regions. 
However, the wave function obtained will be approxi- 

mate, since it does not satisfy Eq. ( 10) on lines on which the 
coordinates of three or more particles coincide. Neverthe- 
less, this approximation leads to qualitatively correct, physi- 
cally noncontradictory, and quantitatively reliable results. 
It is straightforward to show that in this approximation the 
wave function has the form of the Bethe ansatz,'as for exact- 
ly integrable many-particle problems. In the weak-anhar- 
monicity case of interest to us ( E <  1 ), the model under inves- 

tigation is close to being exactly integrable, and this makes it 
possible to select this approximation. 

The wave function ( 11 ) describes a bound state of all N 
particles, with complex quasimomenta, and is already sym- 
metric by construction. In order that the energy remain real 
for complex k, = k f + ik r,  it is necessary that the orthogo- 
nality condition 

be fulfilled. Then the energy is calculated from the formula 
Y 

For complex quasimomenta the wave function should re- 
main finite. In the region n ,  > n, > ... > n, the coordinates 
n ,  and n, can increase without limit while leaving n ,  > n,. 
In order that the wave function not increase when this hap- 
pens, the conditions Im(k ,  ) > 0 and Im(k ,  ) > Im(k, ) must 
be fulfilled. Taking these relations into account in the region 
n, > n, > ... > n, and requiring that the wave function be 
finite when n, - cc , we obtain the condition A ( k , ,  k, ) = 0 
Using analogous arguments for the transition into each re- 
gion n, +,  > n,, we arrive at the system of equations A (k, ,  
k ,  + , = 0, or 

sin k,-sin k,+,=ie, s= l ,  2 , .  . . , N-4, (17) 

which determines the energy of the bound state of all Nparti- 
cles. 

From the form of the system ( 17) we readily note that 
the quantities sink, form an arithmetic progression with step 
i ~ .  It is not difficult to express these quantities in terms of the 
first term sink, of the progression. 

To determine this term it is necessary to make use of the 
orthogonality condition ( 15), which can be satisfied by se- 
lecting the wave numbers in a symmetric manner: k: 
= k, , ,, . The solution of the system in this case depends on 

just one real parameter k = Re(k ,  ). Going over to real 
quantities, we obtain the solution of the system ( 15), ( 17) in 
the form 

cos k,' sh k," =e(N+l-2s)/2=eS, ( 18a) 

sin k,' ch kSu=sin k,' chk," =R(k),  s= l ,  2, . . . , N/2. 

(18b) 

From the latter expressions, by eliminating, e.g., k f', it is not 
difficult to obtain the quantities determining the energy 
(16):  

The analytical expressions obtained for the energy of 
the bound state of N quasiparticles describe, in fact, the en- 
tire spectrum of the system. States in which groups of N, 
particles are bound can be constructed analogously, and for 
each group of particle quasimomenta a system of equations 
of the form ( 15), ( 17) arises. Therefore, the general expres- 
sion for the energy bands of the system has the form 
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FIG. 2. Dependence of the real parts of intermediate wave numbers 
of a complex on its momentum k = Rek, for an even ( N  = 8) and 
an odd ( N  = 7 )  complex for E = 0.2. The numbers label curves 
corresponding to intermediate wave numbers k ,  with different la- 
bels s = 1, 2, 3, 4. 

L L the parameter k in the interval from n-/2 to r / 2 ,  while for 

k ; i ,  ; . . . ; k N )  = E , , N.=N odd N there exists a certain value k,:,, above which the sys- 
*=i S-1 tem is incompatible (Fig. 2 ) .  Fork  > k,,, it is not possible to 

satisfy the equation for the intermediate quasimomentum 
( 2 0 )  with number ( N  + 1) /2 .  The value of k at  which this hap- 

and expresses the absence of residual interaction between pens can be found easily from the system ( 18) if we take into 
complexes of bound particles. account that k ;, + ,,,, = 0 and k > + ,,,, = n / 2 :  

3. BAND STRUCTURE IN THE CONTINUUM AND LATTICE sin2k,,,=1+~2p2/2-~p[~2p2/4+l ]'", N=Zp+l. (21 ) 
MODELS 

We shall ascertain the values of the wave number k for 
which a bound state can be formed. For a chain, k varies in 
the range from n to a, but we shall consider only positive 
values, since the spectrum is symmetric because of the equiv- 
alence of the two directions along the chain. By assumption, 
Im(k,  ) > 0. From ( 18a) fors# 1 it follows that this is possi- 
ble in the region 1 k 1 < 7 ~ / 2  if E > 0, and in the region 
a / 2  < Ik I < n-if& < 0, whichcoincides with theconditionsfor 
the appearance of  soliton^.^ The coupling constant Q ap- 
pears in all the equations in the combination Q cos k, and the 
coupling changes its character in accordance with whether 
the vibrations of neighboring molecules are in phase or a out 
of phase. Therefore, in the discrete case, in contrast to the 
continuum case, bound states arise for all signs of the con- 
stants Q and G. Below we confine ourselves to considering 
the case when Q > 0 and G > 0. 

The calculations show that in the case of an even num- 
ber of particles the system ( 18) has solutions for all values of 

With increase of N and E the region of admissible values of k 
for the odd complexes becomes narrower. I t  is evident that a 
pair potential cannot always bind an odd number of parti- 
cles. 

In Fig. 3 one can trace the characteristic changes that 
occur in the dispersion law of even and odd complexes with 
increase of the relative anharmonicity E = G /Q. For even 
complexes the dispersion law has a mildly sloping part adja- 
cent to the value k = a / 2 ,  the width of which grows with 
increase of E. We note that this part corresponds to the exci- 
tation of heavy quasiparticles of low mobility. For odd com- 
plexes the mildly sloping part is absent because of the cutoff 
of the spectrum at k > k,,, . In both cases the width of the 
band of bound states decreases, albeit differently, with in- 
crease of the anharmonicity. The width of an odd band never 
becomes smaller than the half-width of the one-particle 
band, while the even bands narrow to zero (Fig. 4) .  

Of special interest is the continuum approximation, for 
which various authors7 have already obtained, for the analo- 
gous problem, a solution with which our result can be com- 

i7 2 Y c 
FIG. 3. Variation of the dispersion laws of an even ( N  = 8 )  and an odd 
( N  = 7 )  complex with increase of the relative anharmonicity ( E  = 0; FIG. 4. Decrease of the bandwidth of a complex with increase of the 
0.05; 0.02). The energy values are reckoned from the quantity N h , , ,  and relative anharmonicity. The half-width Q of the one-particle band is taken 
Qis taken as the unit of energy. The arrow indicates the order of the curves as the unit of width of the band. The numbers label curves corresponding 
with increase of E .  to different N = 2, 3, 4. 
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pared. This comparison illustrates that our chosen approxi- 
mation for the wave function is more accurate the smaller E. 

In order to convince ourselves that the problem under 
investigation is one for which the continuum limit can be 
taken, we shall consider wave functions that vary slowly 
with change of the discrete coordinates n,s. This is possible if 
all the wave numbers are small in magnitude: 1 k ,  I 4 1, which 
gives the following conditions for the transition to the con- 
tinuum: 

When the conditions (22) are fulfilled, in the system ( 15), 
( 17) we can replace all the trigonometric and hyperbolic 
functions by their arguments, and in this case we obtain for 
the wave numbers the formulas of the continuum theory: 

and for the dispersion law the expression 

The dependence of the energy on the wave number has the 
form of the dispersion law of the free particle, and this parti- 
cle is the complex of bound phonons. 

The last term in (24) is the binding energy of the parti- 
cles in the complex, and has a cubic dependence on the num- 
ber of particles. An analogous result was obtained in Ref. 7. 
In the discrete model the binding energy of the particles in 
the case of strong anharmonicity, as follows from (16) and 
( 19) for E $  1, is proportional to the square of the number of 
particles: 

This result agrees with the unbound-oscillator limit ( 1 ), but 
the correction for the anharmonicity is smaller by a factor of 
2. Thus, in this, worst case, our approximation gives a quali- 
tatatively correct result. 

To conclude this section we shall consider the mutual 
disposition of the bands of free and bound states. If the an- 
harmonicity is set equal to zero, the imaginary parts of the 
wave numbers (23) will vanish and the real parts will be 
equal. Then the bound-state wave function ( 11) goes over 
into a wave function of free particles with equal momenta. 
Therefore, when the anharmonicity is "switched on" the 
bound states split off from the band of free states along the 
line in momentum space on which the momenta of the quasi- 
particles are equal (Fig. 5).  From the physical point of view, 
this is obvious: Particles moving with different velocities in- 
teract for a limited time and therefore cannot form a com- 
plex. 

The continuum and lattice models have many differ- 
ences in the structure of the bound states. The most impor- 
tant and decisive difference is the restriction on the range of 
variation of the wave number for the chain, a consequence of 
which is the sharply expressed band structure of the spec- 
trum. The restrictions (22) are the conditions for applicabil- 
ity of the continuum model to the description of a discrete 
chain, but not of the continuum model itself. In the latter the 
wave number is unrestricted, and therefore the width of each 

FIG. 5. The arrangement of the band of biphonons with respect to the 
band of free phonons in configurational momentum space is shown for the 
example of a band of two-particle states. The units of measurement of the 
energy correspond to those in Fig. 3. 

band is infinite (see (24) ). The main property unifying the 
two models is the fact of the appearance of bound states of 
particles; in the lattice model, unlike the continuum model, 
bound states arise for all signs of the constants Q and G. 

4. SOLITONSAND MULTIPHONON COMPLEXES 

Our solution of the quantum problem of multiphonon 
complexes makes it possible to compare their characteristics 
with the parameters of solitons. For this we shall need cer- 
tain characteristics of anharmonic solitons, the detailed der- 
ivation of which can be found in Ref. 4. 

In the classical description of a chain of oscillators the 
quantity A,, is a dimensionless complex number, the modu- 
lus of which is equal to the amplitude of the vibrations of the 
nth molecule, divided by the amplitude of the zero-point 
quantum fluctuations. In this case, from the Hamiltonian 
(4)  we obtain the equations of motion of the vibrational 
excitations in the form 

Here we have introduced the dimensionless time 
T = uO t ,  dimensionless coupling q = Q /&a,, and dimen- 
sionless anharmonicity g = G/&a,.  

Equation (26) is the difference analog of the well 
known nonlinear Schrodinger equation (NSE), and was the 
second equation to be integrated by means of the method of 
the inverse scattering problem (ISP).' Despite the outward 
simplicity of Eq. (26) and its similarity to the NSE, to our 
knowledge nobody has yet obtained its exact one-soliton so- 
lution. Therefore, to determine approximate solutions we 
shall make use of the continuum approximation in a form 
that takes maximum account of the discrete properties of the 
chain: 

A,,. (T) =exp [ik(n+s)] ( l + ~ ~ , - l - ~ / ~ s ~ ~ ~ ) A  (n, z), 

The difference equation (26) is replaced by a partial differ- 
ential equation, the one-soliton solution of which will have 
the form 

1899 Sov. Phys. JETP 67 (9), September 1988 A. N. Oraevskii and M. Yu. Sudakov 1899 



A ( n ,  T )  = A o  exp ( - i Q r )  sech [0  (n -no-vz )  I .  (28) 

The soliton velocity v, amplitude A,,  and frequency R are 
related to the basic parameters (the wave number k and in- 
verse half-width 8) by 

Q=1- (1+02 /2 )  q  cos k ,  v=q  sin k ,  Ao2=B2q cos klg .  

(29) 

The energy stored in the chain when one soliton is excited in 
it can be calculated by substituting the solution (28) into the 
expression for the Hamiltonian: 

rn 

I [ ( I - p  cos k )  I A 1 '-0.5g 1 A 1 4 +  0.59 cos k  1 3.A 1'1 dn  

In the classical case the soliton amplitude A,, and, with 
it, the energy E take a continuous series of values. In accor- 
dance with the rules of quasiclassical quantization we shall 
require that the number of quanta bound in the soliton take 
integer values. This requirement leads to a further relation: 

Co 

N = j I A ( n ,  r )  1' dn=2A00-'. 
- m 

If for the basic parameters of the soliton we take the number 
of quanta N and the wave number k, the parameters we need 
(the energy and inverse half-width) will be expressed as 

0=GN/2Q cos k ,  (321) 

In order to compare the energy and width of the soliton 
with those of the complex, in the system (17) determining 
the dispersion law of the complex it is necessary to make use 
of a suitable continuum approximation. The first step will be 
to assume that the real parts of all the intermediate quasimo- 
menta are the same and equal to k. Then for the dispersion 
law and the imaginary parts of the wave numbers we obtain 

These expressions, as calculations have shown, approximate 
the dispersion law rather well, and are therefore useful for 
various applications. To  obtain the continuum approxima- 
tion that we need, in the formula (33b) we must expand the 
square roclt, assuming cosk to be larger than the second term 
under the root: 

E,=Nl io , -NQ cos k - N ( N Z - 1 ) G 2 / 2 4 Q  cos k. (34) 

For large N the expression obtained for the energy 
differs insignificantly from the quasiclassical formula (32b). 

The multiphonon complexes, like the solitons, have a 
characteristic size, which is determined by the rate with 
which the wave function falls off with increase of the coordi- 
nates of the quasiparticles. It is obvious that this rate is deter- 
mined by the imaginary part k ;' of the wave number multi- 
plying the largest of the coordinates in the expression ( 11 ) 
for the bound-state wavefunction. For this quantity we ob- 
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tain from (33a) for s = 1 an expression close to (32a) for 
small k :' (only for small k :' is the continuum approximation 
that we used above valid). 

The above-demonstrated coincidence of the parameters 
of the solitons and the multiphonon complexes, which 
proves that they have the same origins, has a deep math- 
ematical nature. By means of the ISP method one can show 
that the soliton variables diagonalize the Hamiltonian and 
are therefore normal coordinates of the action-angle type for 
the corresponding nonlinear wave equations. In view of this 
the result that is obtained upon quantization of the original 
variables (as has been done in the present paper) should not 
differ substantially from the result of quasiclassical quanti- 
zation of the soliton variables. In Ref. 9 this conclusion was 
confirmed, but the spatial widths of the soliton and complex 
were not compared. The classical equations (26) of the dy- 
namics of the chain have not yet been integrated by the ISP 
method. In the present paper it is shown that the wave func- 
tion of the corresponding quantum problem differs from the 
general (for exactly integrable problems) form of the Bethe 
ansatz. This tells us that the anharmonic chain is not a com- 
pletely integrable system, but, as shown above, soliton be- 
havior of the waves in this system is possible for weak anhar- 
monicity. 

5. THE CORRESPONDENCE PRINCIPLE IN THE THEORY OF 
SOLITONS 

The question of the correspondence of the classical and 
quantum-mechanical descriptions in the theory of solitons is 
far from exhausted by the coincidence of the parameters of 
the solitons and the complexes. In this approach the dynami- 
cal properties of the solitons, which alone make the soliton a 
soliton, remain outside the framework of the discussion. In 
fact, according to the generally accepted definition, "'a soli- 
ton is a nonlinear wave that does not change its shape with 
time or during propagation, and, after collision with other 
solitons, experiences only phase shifts. According to this de- 
finition, a soliton is a purely dynamical phenomenon, and, 
therefore, a complete resolution of the correspondence prin- 
ciple must be sought in an analysis of the classical and quan- 
tum dynamics of the propagation of vibrational excitations 
along the chain. Without claiming an exhaustive investiga- 
tion of this question, we shall give an account of the general 
conclusions that follow from the theory developed above. 

We begin the study of the dynamical properties of the 
chain with an analysis of the linear systems. Complete and 
exhaustive information on the dynamics of the linear (with 
G = 0) equation (26) is contained in its Green function, in 
terms of which the solution is expiessed as 

I t  is obvious that the Green function is the solution of the 
linear equation with an initial condition of the type 
A,, (0 )  = 6 ,,,,, ( # ,  i.e., describes the spreading of a localized ex- 
citation. 

The general expression for the Green function in terms 
of the set of normalized eigenfunctions of the equation is 
known to have the form 

G ( n ,  t 1 no, 0) = 3 X , , ~ X , , O ~  esp  (-iQ,t) dk, (36)  
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where fl, is the frequency (energy) eigenvalue and k is the 
set of eigenvalues characterizing the eigenfunction X i .  For 
Eq. (26) with G = 0 the set of eigenfunctions has the form 

xmk= (2n)-'" exp ( i k n ) ,  ilk-1-q cos k ,  -nCkCn.  (37 )  

Taking these expressions into account we obtain for the 
Green function an integral expressed in terms of Bessel func- 
tions": 

n 

G(n ,  .In" 0 ) -  (2n)-' !erp[ik(n-n" - i r ( l -q  cos k )  Jdk 
-n 

= exp (-iz) in-n"Jfl-n~(qt) .  ( 3 8 )  

Analysis of this expression shows that the width of the re- 
gion encompassed by the excitation increases smoothly in 
accordance with the law 1 = ~q (lattice sites). Then the am- 
plitude of the excitation as a whole decreases in proportion 
to - 1/2 . In the linear theory of waves this phenomenon is 
called dispersion. 

A remarkable property of linear systems is the fact that 
the quantum dynamics does not differ from the classical dy- 
namics. For example, the time-dependent Schrodinger equa- 
tion ( 10) for one-phonon excitations takes the form 

It describes the spatial spreading of a quantum-mechanical 
packet for one quasiparticle and coincides in form with the 
classical equation. From this we can conclude that the dis- 
persion of a classical wave containing an enormous number 
of particles is equivalent in nature to the quantum-mechani- 
cal dispersion of the wave packet for one particle. An in- 
crease of the number of particles in the linear system does 
not lead to substantial changes of the dynamics. 

Because the Schrodinger equation is linear in the wave 
function it is possible to describe the quantum dynamics of 
vibrational excitations in terms of the Green functions even 
when anharmonicity is taken into account. The dynamics is 
described by Eq. ( lo) ,  in which it is necessary to replace the 
energy eigenvalue EN by the operator iM /dt of different- 
iation with respect to time. The wave functions and energy 
eigenvalues of this equation were found in Sec. 2. In the gen- 
eral case there is an entire spectrum of states, differing in the 
numbers of bound and free particles, the total number of 
which is equal to N. Each such state is characterized by its 
set of eigenvalues and makes its contribution to the total 
Green function, the calculation of which is difficult. There- 
fore, we shall concentrate on the contribution from the states 
in which all N particles are bound and are characterized by 
the same wave number. It is possible to obtain an analytical 
result only in the continuum limit, when the real parts of the 
wave numbers appearing in the expression ( 1 1 ) for the wave 
function are equal to k, while the imaginary parts do not 
depend on k [see (23) 1. For the energy we make use of the 
formula (24) and obtain for the Green function, to within an 
oscillatory factor, the following result: 

where X = ( n ,  + n, + ... + n N  ) / N  is the coordinate of the 
center of mass of the complex and qN-  ' is the rate of disper- 
sion of the wave packet of such excitations. The phenome- 
non of the N-fold slowing of the rate of dispersion, while 
appearing to be not very important for small numbers of 
particles, becomes decisive for classical nonlinear waves, in 
which an enormous number of particles are excited. I t  is this 
which leads to the appearance, in the solutions of classical 
nonlinear wave equations, of the nondispersive wave packets 
that have been given the name "solitons." 

I t  is well known that the dispersion is induced by the 
existence of an effective mass of the quasiparticle and occurs 
more slowly the larger the mass of the particle. The effective 
mass is inversely proportional to the second derivative of the 
energy with respect to the quasimomentum, which, in the 
case of a complex of N particles with equal momenta k, is 
equal to K = Nk.  Then for the effective mass we obtain from 
( 33b) the expression 

N 

I t  is obvious that the effective mass of a complex of N parti- 
cles is N times greater than the mass rn, of one particle. 
Thus, allowance for the anharmonicity leads in the quantum 
picture to the appearance of an entire spectrum of elemen- 
tary excitations, having ever increasing effective masses. A 
wave packet describing the propagation of N bound quasi- 
particles disperses N times more slowly than for free parti- 
cles. 

In  view of this the question of the applicability of the 
classical equation (26) for the description of anharmonic 
solitons arises. I t  follows from what has been said above that 
the classical soliton solution will correctly reflect the quan- 
tum dynamics of the vibrational excitations until quantum- 
mechanical dispersion begins to have an effect. If N quanta 
of the vibrations of the chain are bound in the soliton, this 
will occur after a time 

Within such time intervals the classical theory of acbar- 
monic solitons is valid for quantum systems as well. For 
classical chains of oscillators the constant q amounts to 0.1- 
0.001, while N -  10''). The classicality time (42) is enor- 
mous, and certainly exceeds the response time of the dissipa- 
tive processes that are always present in real systems. 

CONCLUSION 

The use in the present paper of the Bethe-ansatz ap- 
proximation for the wave function has turned out to be effec- 
tive and can be useful for other many-particle problems with 
interaction. However, in selecting such a formulation it is 
possible to omit certain states from the analysis. Thus, in our 
model, states of the "excited triphonon" type do not ap- 
pear. l 2  
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At present the question of how bound multiphonon 
states can be reliably detected is not completely clear. The 
presence of such states can be ascertained from analysis of 
the infrared spectra of crystals or in the spectra of inelastical- 
ly scattered neutrons. The existence of three- or four-phonon 
complexes can evidently be confirmed with the aid of spectra 
of the Raman scattering of light by polaritons, such spectra 
having proved of excellent value in the analysis of biphon- 
ons. In any case, all these methods deserve attention and can 
be the subject of a separate investigation. 

The influence of the anharmonicity on the phonons re- 
duces to the formation of phonon complexes. These can be 
crystal phonons that, for whatever reasons, can be regarded 
as one-dimensional, vibrational excitations of long linear 
molecules, or phonons in polymers. In the latter case an ob- 
ject of great interest is the DNA molecule. In this molecule 
are vibrational excitations with energy 0.24 eV (the so- 
called amide-l vibration). In the opinion of most investiga- 
tors, it is these vibrations which play the principal role in the 
transfer of the characteristic energy portion equal to 0.5 eV 
along the DNA chain. The multiphonon complexes studied 

mentary excitations of such systems have the general struc- 
ture described in the present paper. 

The authors express their gratitude to V. M. Agrano- 
vich, V. Rupasov, and E. OgievetskiT for their interest in the 
work and for important comments. 
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