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We have carried out measurements of the half-width of excitonic optical absorption bands in the 
quasi-one-dimensional antiferromagnetic ( AFM) compound CsMnC1,. 2H,O and the three- 
dimensional antiferromagnet MnF, in magnetic fields oriented along the axis of easy 
magnetization of these crystals. In the AFM phase the exciton band in the quasi-one-dimensional 
AFM crystal CsMnC13.2H,0 undergoes abroadening by more than a factor of three for magnetic 
fields near the critical field H, of the orientational (spin-flop) phase transition; at the same time, 
in the three-dimensional MnF2 the broadening of this band is no more than 10%. The increase in 
the half-width of the exciton band in the neighborhood of the field Hc is related to scattering of the 
excitons by the low-frequency branch magnons, whose number increases exponentially as the 
energy of this branch decreases in the field. The magnitude of the effect depends on the density of 
statesp(&) of the long-wavelength magnons; it is a maximum in one-dimensional crystals, where 
p ( ~ )  has a singularity near the bottom of the spin-wave band. Using Green's-function methods, 
we have estimated the broadening of the excitonic optical absorption band in these AFM crystals 
that differ in the dimensionalities of their magnetic structures. We show that in a one-dimensional 
AFM insulator the exciton-magnon interaction leads to significant broadening of the exciton 
band in the neighborhood of the critical field H ,  . 

CsMnC1,.2H20 crystals are antiferromagnetically or- 
dered at T,,, = 4.89 K. The peculiarity of the magnetic struc- 
ture of these crystals lies in the fact that the magnetic Mn2+ 
ions form chains oriented along the direction normally re- 
ferred to as the a-axis of the orthorhombic unit cell. The 
exchange integral J within the chains exceeds by two orders 
of magnitude the exchange integral J * between chains. ' This 
quasi-one-dimensional antiferromagnetic structure gives 
rise to a singularity in the energy dispersion of spin waves; 
when the wave vector k is oriented along the a-axis, the ener- 
gy varies from E,, (i.e., the energy of a spin wave at the center 
of the Brillouin zone, which equals the gap in the spectrum) 
to E,,, (the maximum value of the magnon energy, which 
occurs at the edge of the Brillouin zone, where ka = n-/2), 
while for directions transverse to the a-axis the energy dis- 
persion is very small. This leads to additional singularities in 
the energy distribution of the magnon density of statesf(&) 
of a one-dimensional antiferromagnet: besides a peak near 
the top of the zone, i.e., p(~, , ,  ), there appears a peak near 
its bottom, i.e. P ( ~ o ) , '  Recently3 it was shown that a high 
magnon density of states near the bottom of a band gives rise 
to singularities in the exciton-magnon optical absorption in 
the quasi-one-dimensional AFM CsMnC13.2H,0. 

In this paper we investigate both theoretically and ex- 
perimentally the width of the excitonic optical absorption 
band in CsMnC1,.2H,O, and show that singularities in its 
behavior near the orientational phase transition induced by 
an external magnetic field-i.e., the overturning of the mag- 
netic sublattices [the "spin-flop" (SF) transition which oc- 
curs at Hc -- 1.8 T a t  a temperature of 1.96 K]-is caused by 
scattering of excitons by spin waves. A decisive role is played 
here by the high magnon density of states near the bottom of 
the band in a quasi-one-dimensional crystal. 

EXPERIMENT 

In studying the broadening mechanism for optical ab- 
sorption bands we usually investigate experimentally the 

temperature dependence of the band half-widths S T . ,  How- 
ever, in devising such experiments it is difficult to isolate the 
contributions to  the band width caused by interaction of the 
excitons with magnons from those due to interactions of the 
excitons with acoustic phonons. In order to separate out the 
magnon contribution, we kept the temperature constant 
while varying the number of thermally-excited magnons by 
changing the gap E, in the spin-wave spectrum. This is most 
easily accomplished by using an external field H: if this field 
is oriented along the easy-magnetization axis, i.e., along the 
direction of spontaneous magnetic ordering, then the gap E, 

in the lower branch of the spin-wave spectrum decreases 
practically to zero at a field H, (see, e.g., Ref. 5) .  This meth- 
od of thermally activating magnons-by "softening" the 
low-frequency spin-wave mode with an external field-pos- 
sesses more energy selectivity in generating magnon popula- 
tions than the usual method of raising the temperature. For 
one and the same value of the magnon occupation number 
near the top of the band it ensures a very much higher level of 
population in the neighborhood of the bottom of the band. 
This feature turns out to be important in calculating the role 
of the dimensionality of the magnetic structure in AFM 
crystals, because it is very near the bottom of the magnon 
band where the energy distributions of the density of mag- 
non states in Id and 3d AFMs differ the most. In order to 
decrease the energy of the spin-wave mode, the magnetic 
field is applied to CsMnC1;2H2O along the b-axis of the 
orthorhombic structure; in MnF, it is applied along the te- 
tragonal C, axis. 

In order to weaken the effect of phonons on the width of 
the absorption band, the temperature at which the measure- 
ments were made was chosen as far as possible to be on the 
low side; in CsMnC1;2H,O this was 1.96 K. For comparing 
the behavior of the excitonic-band half-widths of 
CsMnC13.2H,0 and MnF,, it is convenient to make the ra- 
tios of the gaps E, in the magnon spectra of the two crystals to 
the temperatures at which their optical spectra are recorded 
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close to one another. For this choice of temperatures the 
occupation numbers n, of magnons near the bottom of the 
band are roughly equal in both cases, which makes it easier 
to compare the experimental results; the common scale used 
for comparison is the ratio of the external field intensities to 
the critical value of the field for the spin-flop (SF) transi- 
tion, i.e., the quantity H /Hc . The temperature T = 1.96 K of 
the CsMnC1,.2H20 sample corresponds in the above sense 
to a temperature T z  10 K for MnF,. In practice our mea- 
surements on MnF, were made at the somewhat higher tem- 
perature T = 14 K. 

Thus, the experiment reduces to measurement of the 
half-width of the exciton optical absorption band as a func- 
tion of the intensity of the external magnetic field for Hllb 
(CsMnCl, . 2H,O) and HI1 C, ( MnF,) . 

The spectrometer we chose for our measurements was a 
DFS-13 diffraction spectrograph with a linear dispersion 2 
A/mm. The spectra were recorded both by the usual photo- 
graphic method with a subsequent photometric analysis and 
by using an optical multichannel analyzer (a  1450A system 
from the Princeton Applied Research company). 

Magnetic field intensities of up to 8 T were generated 
using a superconducting solenoid; higher-intensity fields 
were created using a pulse technique implemented with a 
capacitor bank. In the latter case only the photographic 
method was used to record the ~pectra .~, '  

The superconducting solenoid was immersed along 
with the sample in liquid He4, whose vapor pressure was 
varied by pumping. The sample temperature was monitored 
by the saturation pressure of the He4 vapor to an accuracy of 
5 mK. To increase the accuracy of our field calibration we 
used as a reference mark the value of the critical field Hc for 
the SF transition in CsMnC1, .2H,O, borrowed from the li- 
terature data.x Our error in determining field intensities was 
no worse than 0.196, which is on the order of the calculated 
inhomogeneity of the magnetic field at the ends of the sam- 
ple. The error in determining the magnetic field intensity in 
the pulsed solenoid came to 1 %. We determined the frequen- 
cies at which the in-band absorptions were maximal with an 
accuracy of about 10% of the band half-widths, i.e., 0.1 to 
0.3 cm-' for CsMnCl3.2H,O. The error in determining the 
half-width of the exciton band was 0.03 to 0.1 cm- ' for the 

FIG. 1. Broadening of the exciton band for 
the 26736.7 cm-'  transition 
hA Ig (hS) +4T2g (4D) in antiferromagnetic 
CsMnC1,.2H20 in the vicinity of the SF 
transition: Hll b, T = 1.96 K. 

FIG. 2. ( a )  Measurement of the doublet pseudo-splitting of the exciton 
band. ( b )  Dependence of the half-width of the low-frequency component 
of the doublet on the external magnetic field intensity (light points) in 
CsMnC1,.2H20 (the dark points denote the results of measurements of 
the half-width of the unresolved spectral components of the doublet) at 
T =  1.96 K. 

band in CsMnC1,.2H20 and 0.2 to 0.3 cm-' for the band in 
MnF,. 

EXPERIMENTAL RESULTS 

We studied the following bands: in CsMnC13.2H,0 
crystals, theexciton bandofthe6A ',, (6S) --r4T2,, (4D) transi- 
tion at a temperature 1.96 K in a field Hllb; in the crystal 
MnF, the exciton band of the ' A  ,g ('S) +4T2g(4P)  transi- 
tion at a temperature of 14 K in a field HIIC,. The optical 
electronic transitions are labeled to accord with the irreduci- 
ble representations of the 0, group, since in both crystals the 
basic component of the crystal field has cubic symmetry. We 
denote in parentheses the terms of the free Mn2' ion. In both 
crystals the sharpest bands in the absorption spectrum were 
chosen in order to determine the half-widths of these bands 
more accurately. 

FIG. 3. Dependence of the relative broadening of the exciton bands in 
CsMnC1,.2HZ0 (0) and MnFz (0 )  caused by scattering of excitons by 
spin waves on the magnetic field intensity Hllb for T =  1.96 K for 
CsMnC1,.2H20 and HIIC, for T =  14 K for MnF,. The solid curves are 
calculations: ( a )  for a one-dimensional AFM, and (b)  for a two-dimen- 
sional AFM. 
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In Fig. 1 we show for the exciton-band profiles for the 
Id AFM crystal CsMnC1,.2H20; the initial one (H = 0 )  
and in magnetic fields somewhat smaller and somewhat 
larger than the critical field value H,. 

In Fig. 2b we show the dependence of the half-width of 
the exciton band in CsMnC1,.2H20 on the magnetic field 
intensity when the field is oriented along the easy magnetiza- 
tion axis b of the crystal. In the case of manganese fluoride 
the half-width of the exciton band increases in fields H  5 H,  
by approximately 10% compared to its original value, while 
in the case of CsMnC13.2H20 the band widens near the field 
H, by roughly a factor of 3.5 (Fig. 3).  In the SF phase 
( H k H , )  the half-width of the exciton band in 
CsMnC1,- 2H20 returns to its original value in the absence of 
an external magnetic field; for MnF, in fields H k  Hc no 
significant changes are observed in the half-width of the 
band compared to its value for H  5; Hc . 

THEORY 

We are interested in exciton-band broadening due to 
scattering of excitons by spin waves. Therefore it is necessary 
to include in the energy operator for excitons the exciton- 
magnon interaction responsible for this scattering. In the 
lattice representation the interaction between electrons and 
spin excitations is described by the expression 

Here n  is a site vector of the crystal lattice, and a 
numbers the magnetic sublattices. For simplicity we will as- 
sume that the magnetic system CsMnC1,.2H20 is a two- 
sublattice system, and designate each sublattice by the direc- 
tion of its equilibrium magnetization, a = 1 and 2, J '  and S ' 
are respectively the exchange integral and spin under pho- 
toexcitation, while J and S correspond to the ground state, 
A, is a radius vector connecting a magnetic ion with one of 
its nearest neighbors a belonging to the other sublattice, and 
B &  and B,, are creation and annihilation operators for 
electron excitations at the site n a .  

We will limit our investigation to the low-frequency 
spin-wave branch only, because the majority of thermally- 
excited magnons belong to this branch; therefore these mag- 
nons essentially determine the scattering of the excitons. In 
addition, in our later estimates we will neglect the biaxiality 
of the AFM crystal CsMnC1;2H2O. This is a completely 
valid assumption if we are interested only in the behavior of 
the energy gap E,, in the spin-wave spectrum for fields near 
the critical value of the field H, oriented exactly along the b- 
axis. 

Introducing the parameters 

J'S' 
1, e=- -  1 

J 

and carrying out the Holstein-Primakoff transformation 
along with a u-v and Fourier transformation, we obtain an 
expression for the exciton-magnon interaction operator: 

+@2,(k2, k3) B,+ (k,+kz-k3) B,(k,) b (k,) b+ (k,) 1, (2)  

where B> ( k )  and B, ( k )  are operators for creation and 
annihilation of excitons in the p th  band, while b + ( k )  and 
b ( k )  are the same for the low-frequency magnon branch; N 
is the number of sites in the crystal lattice; z is the number of 
nearest magnetic neighbors from the opposite sublattice, so 
that in this case z = 2. The subscript p indicates the exciton 
band; for definiteness p = 1 will refer to the low-frequency 
and p = 2 to  the high-frequency bands. 

The interaction amplitudes @ ,  have the form 

Here u, and v, are the coefficients of the Bogolyubov-Tyab- 
likov u-v transformation. Their specific forms for a uniaxial 
AFM with easy-axis anisotropy are given, e.g., in Refs. 9 and 
10: 

where the summation extends over nearest neighbors from 
the opposite sublattice. 

The terms in Eq. (2 )  can be associated with the follow- 
ing diagrams: 

Here the letters e and m denote respectively exciton and 
magnon lines; their interactions of amplitudes @,,, are 
shown as wavy lines. The diagrams in (4)  correspond to 
scattering processes which preserve the number of particles. 

The operator for the exciton-magnon interaction (2 )  in 
a collinear AFM, in contrast to a noncollinear AFM, does 
not contain any odd powers of the creation and annihilation 
operators for magnons and is a bilinear function of them. 
This follows directly from the Heisenberg form of the opera- 
tor ( 1 ) in terms of the spin operators S and s', a form that 
reflects the conservation law for spin projections in the exci- 
ton-magnon scattering processes. 

The form we have obtained for the exciton-magnon in- 
teraction operator ( 2 )  is structurally equivalent to that of 
the exciton-phonon interaction operator, when the latter is 
quadratic in the creation and annihilation operators for 
phonons." The individual characteristics of the interaction 
between excitons and magnons depend on the specific form 
of the interaction amplitudes Qi,, ( 3 ) .  Therefore, in order to 
solve the problem of scattering of excitons by spin waves we 
can use (with some insignificant changes) a method used in 
investigations of scattering of excitons by phonons." 
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The form of a pure exciton absorption band is described 
using the single-particle exciton Green's function." Let us 
introduce the retarded Green's function 

where 8 ( t )  is a step function in the time t; B,+ (k,t)  and 
B, (k,t) are operators for creation and annihilation of exci- 
tons in the Heisenberg representation, ( (  ...)) denotes a 
Gibbs average. The Fourier transformation to the energy 
representation gives: 

G,,, (k, o) = 1 9 eiUtG,,. ( k ,  t) dt. 
2n -- 

The exciton Green's function in the absence of interactions 
with magnons (He - , = 0 )  has the form (6  - 0)  : 

where E,,, ( k )  is the exciton energy dispersion. 
When we take into account the exciton-magnon inter- 

action, the Green's function (6 )  is represented as an infinite 
series in terms of the "zero-order" functions ( 7 ) .  Let us rep- 
resent this expansion in the form of Feynman diagrams: 

Here the solid lines correspond to Green's functions for exci- 
tons [the thick lines are the sought Green's function ( 6 ) ,  
and the thin ones are the zero-order functions ( 7 ) ] ,  while 
the dashed lines denote magnon lines. These latter should be 
furnished with arrows; in these diagrams it is necessary to 
carry out an additional summation (left-hand arrow, right- 
hand arrow). A factor n, + 1 is associated with each mag- 
non line carrying an arrow from left to right, while a factor 
n, goes with lines whose arrows go from right to left. Here 

[ ( & k - ~ " ) - ~ ] - ~  
n k =  exp 

k B 2  

is the occupation number for magnons, 

~ L = & m o s ( ~ + 2 P ~ - y k ~ ) " '  

is their energy dispersion in the absence of the field, 
E,,, = JSZ is the maximum energy of a spin wave at the 
Brillouin zone boundary at the point k,  = a/2a (xlla), 
P = E~/E, , ,  , E" is the energy gap in the magnon spectrum, 
p, is the Bohr magneton, g is the spectroscopic splitting 
factor (here g = 2) ,  and k ,  is Boltzmann's constant. At 
each vertex, which is denoted by a point, two exciton and 
two magnon lines come together; the interaction events (4 )  
occur at these vertices. The vertices marked with crosses are 
associated with the quantity 2n-A,, , where 

Only exciton lines enter and exit these crossed vertices; the 
interaction is with virtual magnons. 

In general it is impossible to sum the series (8) .  An 
approximate value for the Green's function can be obtained 
by terminating the series after calculating the exciton mass 
operator M(k ,o )  to a given order of perturbation theory.I2 
However, this method is hardly applicable in the present 
case, since we are obliged then to limit ourselves to a small 
number of interaction events (3) .  In the vicinity of the field 
H, (i.e., near the SF transition), however, when the number 
of thermally-excited magnons begins to increase significant- 
ly, the necessity arises for including multistep exciton-mag- 
non scattering events. Therefore, in order to calculate ap- 
proximately the exciton Green's function (8 ) ,  we will make 
use of the fact that in the neighborhood of H, the energy of 
the low-frequency spin-wave branch becomes significantly 
smaller than the half-width of the exciton band. It is found 
that if we neglect magnon frequencies compared to the fre- 
quency detuning in the denominators of the zero-order 
Green's functions of the expansion ( 8),  then we can sum the 
full series (8 )  just as for the case of exciton-phonon interac- 
tions. ' 

Introducing 

and assuming, as was done in Ref. 11, that A, - L :/2 
<I&-E,I,wehave 

m 

We assume that the exciton state is nondispersive. In a one- 
dimensional structure with interchain antiferromagnetic or- 
dering the exchange interaction between ions with parallel- 
oriented spins is usually small, while the dispersion of an 
exciton in a collinear AFM is determined in the Heitler- 
London approximation by precisely this interaction with the 
ferromagnetic neighbors. l o  

The series (9)  can be summed; the quantity A,, deter- 
mines the half width of the exciton band. 

Using the equations in (3 ) ,  we obtain the following 
expression for A ,  : 

where a is the spacing between neighboring magnetic neigh- 
bors from the opposite sublattice. The quasimomentum k 
loses its vector character in the one-dimensional case. 

The expressions for A and A , ( H )  are obtained from 
( 10) by making the replacement p s e .  

In the immediate vicinity of H,  the basic contribution 
to A,, (H) comes from magnons with k  -0. In this case 
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Equation ( 1 1 ) reveals a strong divergence in the depen- 
dence of the exciton band half-width in a one-dimensional 
AFM crystal on the magnetic field intensity in the vicinity of 
the critical field H, . 

An analogous estimate made for two-dimensional 
AFMs gives a weaker divergence: 

In a three-dimensional AFM crystal the quantity 
A, ( H )  has a finite limit near the field H,. 

Let us note that if we include subtler interactions in the 
discussion, for example magnetoelastic interactions, the in- 
crease in the half-width of the exciton band described by 
Eqs. ( 1 1 ) and ( 12) near the SF transition is no longer un- 
bounded. In addition, in the immediate vicinity of the field 
H, , when the number of occupied magnons n, 2 1, the spin- 
wave approximation we have used becomes incorrect. In this 
sense, the estimates (1  1 ) and ( 12) must be viewed as deter- 
mining a trend leading to broadening of the optical absorp- 
tion bands in AFM crystals whose magnetic structures have 
various dimensionalities. 

DISCUSSION 

In order to compare the experimental and calculated 
results it is necessary to extract from the experimental de- 
pendence of the exciton band half-width that part which can 
be related to exciton-magnon scattering. The broadening of 
the band (Fig. 2b) in the magnetic field interval 0 < H < 0.77 
H,, i.e., H < 1.4 T, is related to a Zeeman pseudosplitting of 
the AFM sublattices which is unresolved in such weak fields. 
In this field interval, where the components of the doublet 
are not yet resolved, we measured the total half-width of the 
band profile (Fig. 2b-the dark points). In magnetic fields 
above 1.4 T the band clearly splits into a doublet. Therefore 
in these fields we show on the graph the half width of the 
(more intense) low-frequency component of the doublet 
(the light points). 

Thus, in the case of CsMnC1,.2H20, in order to com- 
pare with calculations it is necessary to exclude the exciton- 
band broadening caused by this sublattice splitting. Figure 3 
illustrates the ratio Sv;/Svo of the half-width of the exciton 
band in a magnetic field to the half-width of this band in the 
absence of the field. Here, SvO is the initial half-width of the 
band; for small broadening, the half-width SY*, differs from 
SY,, by a correction associated with the sublattice splitting. 
This broadening can be approximated by a linear depen- 
dence Sv(H)  = SY,) + aH,  and all the values of the half- 
width SYX in the region 0-1.4 K are decreased by the quanti- 
ty aH compared to Sv,. By plotting the function SvX/SvO, 
we exclude the contribution from the exciton-phonon scat- 
tering mechanism assuming additivity of the magnon and 
phonon contributions to the bandwidth. On this figure the 
analogous ratios of halfwidths are shown also for the exciton 
band in the spectrum of manganese fluoride (the dark 
points). In addition, the experimental Sv~/Sv ,  dependence 
for absorption band of CsMnC1,.2H20 are compared with 
the theoretical estimates ( 11 ) and ( 12), which are obtained 
for one-dimensional and three-dimensional AFM crystals, 
respectively. The experimental points are close enough to 
the calculated curve ( l l ) ,  though some deviation is ob- 

served in the immediate vicinity of H , .  Apparently the ex- 
perimental data are concentrated between curves ( 11) and 
( 12); however, for the most part they are biased toward the 
function ( 11 ) which corresponds to the one-dimensional 
AFM crystal. 

CONCLUSION 

1. We have experimentally investigated the dependence 
of the half width of the exciton bands of the quasi-one-di- 
mensional AFM insulator CsMnC1,.2H20 and the three- 
dimensional AFM MnF, on the magnetic field intensity at a 
fixed temperature considerably lower than the Debye tem- 
perature ( T g O ,  ) and rather low compared to the Ntel 
temperature ( T=: 1/3 T ,  ) . 

2. It was observed that as the field intensity increases in 
the antiferromagnetic phase of the crystal CsMnC1,.2H20 a 
strong broadening of the exciton band occurs near the criti- 
cal value H,  of the field for the SF  transition (in the interval 
0.8Hc < H < H , ) .  

3. The half-width of the exciton band for a three-dimen- 
sional AFM crystal is practically independent of magnetic 
field intensity either for the antiferromagnetic or the SF  
phase. 

4. We have presented an estimate of the width of the 
exciton optical absorption band within the context of a theo- 
ry of scattering of excitons by spin waves based on the use of 
Green's functions. We have shown that in a one-dimensional 
AFM insulator the exciton-magnon interaction leads to a 
significant broadening of the exciton band with increasing 
field intensity near the critical field H,. This effect is con- 
nected with the presence of a peak in the density of magnon 
states P ( E )  near the bottom of the magnon band. The de- 
crease in the energy ofthe bottom of this band in the vicinity 
of the SF transition leads to an increase in the number of 
thermally excited magnons, and correspondingly to a broad- 
ening of the optical absorption band. In the SF  phase the 
energy of the bottom of the magnon band increases discon- 
tinuously, as a result of which the broadening of the exciton 
band decreases. 

In the three-dimensional AFM crystal MnF, there is no 
peak in the density of states near the bottom of the magnon 
band. For this reason, there is a complete absence of broad- 
ening of the exciton band for this crystal in a magnetic field. 
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