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A classification is given of the possible types of motion of an electron at the internal boundary in a 
bicrystal subjected to a magnetic field. The discrete spectrum of electron states obtained for this 
boundary is specific to each type of bicrystal and it gives rise to oscillatory and resonant effects 
characteristic of the bicrystal type. The experimental pattern of these effects can be deduced from 
the nature of the transition layer in a bicrystal. 

1. INTRODUCTION 

Bicrystals, perfect junctions of two single crystals are 
attracting much interest. Bicrystals exhibit anomalies of var- 
ious physical properties at the internal boundary and these 
anomalies do not occur in the case of the individual single 
crystals.'-3 The effects observed experimentally are of inte- 
gral nature and therefore a clear microscopic treatment of 
these effects is lacking. One of the possible reasons for the 
anomalies at the internal boundary is the change in the lat- 
tice properties and in the phonon spectra at this boundary. 
An alternative microscopic cause of these anomalies is a 
modification of the electron spectrum that occurs near the 
internal boundary in a bicrystal. High-resolution electron 
microscopy4 has demonstrated that the internal boundary in 
a bicrystal is coherent at the atomic level. In particular5 the 
layer system YBa, CuO, , with the orthorhombic phase, in 
which the cubic lattice of the perovskite is distorted, readily 
forms twins. The twinning law can easily be explained on the 
basis of the point symmetry of a crystal assuming that twin- 
ning of this system represents a transition from the tetra- 
gonal phase in the course of cooling. The twin boundaries are 
coherent in the ( 110) plane. Twinning at the boundary re- 
sults in transposition of the periods along the crystallo- 
graphic axes a and b in the basal plane and a transition of this 
kind occurs without the formation of a kink of Cu atoms 
across a twinning plane. 

The characteristic features of the behavior of electrons 
at a grain boundary was considered by Kaganov and Fiks6 
for an anisotropic dispersion law in the case of specularly 
and diffusely reflecting boundaries. Passage of an electron 
wave across a specularly reflecting boundary is accompanied 
by refraction and reflection that obey the laws of conserva- 
tion of energy and of conservation of the tangential compo- 
nent of the quasimomentum. In the case of an anisotropic 
Fermi surface there are electrons which undergo total inter- 
nal reflection similar to the corresponding effect in optics 
and associated with the fact that both laws of conservation 
cannot be satisfied simultaneously. Such a feature of the pas- 
sage of electrons across a boundary gives rise to various 
anomalies such as the appearance of electromechanical 
forces created by an electric current and concentrated near 
the boundary,6 a specific dependence of the resistance of a 
bicrystal on the angle of misorientation of the single crys- 
tals,' and a special behavior of the whole system in a magnet- 

The boundary conditions that ensure conservation of 
energy and of the tangential component of the quasimomen- 
turn give rise to an effective potential in which an electron is 
moving. In Sec. 2 we shall classify possible types of motion in 
such an effective potential. 

In Sec. 3 we shall consider the characteristic features of 
the behavior of a bicrystal of general type in a magnetic field 
parallel to the internal boundary. The total internal reflec- 
tion effect and the corresponding effective potential cause 
some of the electrons moving near the boundary not to fol- 
low a circular path as in the bulk of a bicrystal but jump-like 
paths involving a reflection from the boundary (Fig. l a )  or 
along paths in the form of an asymmetric lens when the 
boundary is crossed (Fig. lb) .  The jump-like paths induce 
magnetic surface levels, exactly as in the familiar case of a 
specularly reflecting surface of a metal.9 However, there is 
an important difference between a specularly reflecting sur- 
face of a metal and the internal boundary in a bicrystal, be- 
cause such surface levels have a specific geometric orbit 
along which the frequency of classical motion of an electron 
changes abruptly. The abrupt change in the frequency is due 
to the fact that the motion of an electron in a magnetic field 
near a twinning boundary occurs in a two-well potential 
(Fig. 2). We shall show in Sec. 4 that this gives rise to a new 
period of quantum oscillations different from the period of 
oscillations in the bulk of a metal. 

In Secs. 5 and 6 we shall consider two types oflevels on a 
twinning plane. The first represents discrete states which 
appear in a symmetric potential well in the absence of a mag- 
netic field. The second appears due to the splitting of levels in 
a symmetric two-well potential that occurs when a magnetic 
field is parallel to the boundary and the effective kinematic 
potential acts as a barrier. 

We shall conclude this introductory section by noting 
that all the various effects described above are associated 

ic field as well as existence of discrete electron states at the a b 

twinning boundary. FIG. 1. Electron paths in a magnetic field. 
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FIG. 2. Effective potential U, for a bicrystal in a magnetic field shown for 
the quasimomenta k,  < 0 (a )  and k, :, 0 ( b ) .  

primarily with the fact that the internal coherent boundary 
in a bicrystal differs from a specularly reflecting surface of a 
metal. This difference consists in the fact that a new type of 
symmetry appears in the case of the internal boundary in a 
bicrystal and this symmetry is associated with rotation of the 
Fermi surface in space as we go over from one single crystal 
to another, which does not occur in the case of a specularly 
reflecting metal surface. 

2. CLASSIFICATION OF THE NATURE OF ELECTRON 
MOTION ATTHE INTERNAL BOUNDARY IN A BICRYSTAL 

The internal boundary in a bicrystal separates two phy- 
sically identical phases differing only in respect of the orien- 
tations of the crystallographic axes in space. In the case of an 
isotropic electron spectrum ( E  = p2/2m) there are no spe- 
cial features due to the passage of electrons across such a 
boundary. The situation changes radically if the electron 
spectrum is anisotropic. As pointed out in the Introduction, 
in this case some of the electrons are reflected at the bound- 
ary because the laws of conservation of energy and of the 
tangential component of the quasimomentum cannot be sat- 
isfied in the other parts of the bicrystal. Consequently, an 
effective kinematic potential appears at the boundary and an 
electron moves in this potential. 

The dependence of the electron energy E on the quasi- 
momentum p will be selected, for the sake of simplicity, as 
simple as possible but yet representing the anisotropy of a 
metal. This requirement is satisfied by a quadratic anisotrop- 
ic dispersion law with the masses m ,  , m,, and m ,  along the 
principal crystallographic axes. We shall assume that x is the 
coordinate along the normal to the surface of a bicrystal and 
that the principal crystallographic axes 1 and 2 are rotated 
by an angle p = p ( x )  relative to the spatial axesx and y. The 
Hamiltonian then becomes 

Elements of the mass tensor m,i can then be expressed as 
follows in terms of m , , m, , and m, : 

m12-1 ) ( m,ci  m2, 
mi-' cos2 cpf m2-' sin2 cp, (ml-l-mz-l)sin cp cos cp =( (ml-i-m2-1) sin rp cos rp, mt-l sin2 rp+rn2-l cos2 cp 1 

The angle p ( x )  varies smoothly at the boundary of a bicrys- 
tal from the value p -  in the left-hand half-space top, in the 
right-hand space [ p - < g , ( x )  <p+] over a distance L repre- 
senting modification of the crystallographic axes near the 
internal boundary of a bicrystal due to a change from one 
single crystal to another. 

The adopted form of Eq. ( 1 )  ensures that the Hamilto- 
nian is Hermitian for an arbitrary dependence of the angle of 
rotation g, on the coordinate x.  If L s a , ,  where a,, is the 
interatomic distance, then in the transition layer between the 
two single crystals as well as in the rest of the bicrystal we 
can use the effective mass approximation in the Hamiltonian 
of Eq. ( 1 ). The condition L )a,, and the requirement that the 
Hamiltonian should be Hermitian determine uniquely the 
form of Eq. ( 1 )  as the Hamiltonian with a constant mass 
m, ( p )  of Eq. ( 2 )  for a fixed angle of rotation p .  It  is shown 
in Ref. 10 ( j i  8 )  that, in general, the requirements of the 
Hermitian behavior used in the semiclassical approach de- 
fines uniquely the Hamiltonian on the basis of its classical 
analog. If L -a,, the Hamiltonian in form ( 1 )  is already 
model-like: interband transitions are deliberately ignored 
and, what is more important, so are the Bloch modulations 
of the electron wave. Therefore, the analysis is in fact carried 
out not for Bloch electrons but for their envelopes and this 
corresponds exactly to an approximation with the effective 
mass in one band. However, the approximation represented 
by Eq. ( 1) is quite satisfactory in the case of a wide range of 
problems. This applies particularly to the behavior of a sys- 
tem in a magnetic field when the size r ,  = cp,/eV of an 
electron orbit in a field is much greater than the interatomic 
distance, so that the thickness of the transition layer between 
the two single crystals becomes unimportant. Another char- 
acteristic example is the class of semimetals in which the 
electron wavelength /Z is much greater than a,, and L is again 
unimportant. In the case of real bicrystals4.hhe value of L is 
usually (3-4)a,. The dependence of the electron spectrum 
on the distance from a metal-vacuum interface has been in- 
vestigated already." Calculations demonstrate that in this 
case the characteristic scale or distance in which the spec- 
trum changes amounts to several interatomic spacings. For a 
bicrystal internal boundary the transition layer is also at 
least several interatomic spacings thick. 

In the investigation of the energy spectrum of the Ham- 
iltonian ( 1 ) we shall use the Fourier components along the 
coordinates y and z parallel to the internal surface in a bi- 
crystal and we shall then perform a scaling transformation of 
the wave-function phase $ ( x ) :  

X 

Then, the Hamiltonian of Eq. ( 1 ) becomes 

k, and k, are the conserved components of the quasimomen- 
tum along the bicrystal boundary. The components of the 
mass tensor along the x,  y, and z axes are m,, my ,  and m,, 
respectively, and their values are given by 

( 2 )  The term with a kinetic energy K ( x )  = k:/2my ( x )  and a 
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FIG. 3. Possible types of the potential Uat  the boundary and the corre- 
sponding orientations of the equal-energy surfaces in different parts of a 
bicrystal. 

variable mass my (x) represents the effective potential ener- 
gy U(x) in the field of which an electron is moving. 

Figure 3 shows typical U(x) dependences applying to a 
general bicrystal plotted as functions of the relative orienta- 
tions of the crystallographic axes in the two single crystals. 
The simplest situation is shown in Fig. 3a. In this case if the 
electron momentum in the left-hand half-space exceeds ky , 
( (k, ( > k,, ), then such an electron cannot penetrate into the 
right-hand half-space because in this space there is no state 
with a momentum ensuring conservation of the electron en- 
ergy and of the components of the momentum k, and k, 
along the internal bicrystal boundary. Therefore, a potential 
barrier appears at the boundary and this barrier is associated 
with the kinematics of the motion of an electron at the bi- 
crystal boundary and it is analogous to the centrifugal ener- 
gy in a centrally symmetric field. Figure 3b illustrates the 
case when the mass ellipsoid rotates all the time in the posi- 
tive direction of the angle p (i.e., it rotates anticlockwise). 
Then, at the boundary we shall in turn have twice the situa- 
tion corresponding to Fig. 3a, first when the electron crosses 
from the right to left and then from the left to right. Conse- 
quently, a potential well with generally asymmetric edges 
appears in the transition region at the boundary. In Fig. 3c 
the effective mass ellipsoid rotates in the opposite direction, 
i.e., clockwise. Then, we again have two repetitions of the 
situation in Fig. 3a, but in the opposite sequence and this 
gives rise to a potential barrier. 

It therefore follows that, for a given position of the mass 
ellipsoid both at + and - co characterized by p- and 
p,, we can have internal boundaries in a bicrystal which are 
completely different from the point of view of the electron 
spectrum (Fig. 3). The variety of possible situations is not 
limited to the cases just discussed. There is an additional 

discrete parameter I which labels all possible types of the 
bicrystal boundary. This parameter I characterizes the total 
change in the angle p on passage from one single crystal to 
the other in a bicrystal described by 

The number I represents the number of extrema of the effec- 
tive potential energy U(x). The change in I by unity gives 
rise or suppresses an additional well-barrier pair in the relief 
of the effective potential U(x). The sign of l determines the 
sequence of the potential barrier and the well. Bicrystals 
usually studied experimentally are clearly characterized by 
the minimum number of extrema of the function U(x). 
However, specially grown bicrystals can in principle have 
any value of I. 

A special symmetry is exhibited by a twin crystal char- 
acterized by 

Then, for a given value of p, we have two possibilities: a 
symmetric barrier or a symmetric potential well (Figs. 4b 
and 4a). In the latter cases there is at least one bound level. 

This situation may occur not only in crystals with a 
complex anisotropic lattice, but also in cubic crystals. It is 
essential however that the Fermi surfaces should not become 
superimposed exactly on one another as a result of a homo- 
geneous spatial displacement from one single crystal to the 
other. Since in the case of cubic crystals the quadratic disper- 
sion law is always isotropic, the effects under consideration 
can occur only in crystals with a nonquadratic dispersion 
law. The most suitable crystals are metals with the Fermi 
surface either intersecting the boundaries of the Brillouin 
zone or approaching closely these boundaries, in the case of 
Nb (Ref. 2) .  Complex dispersion laws can be discussed in a 
similar manner. We shall simply point out here that in the 
case of complex Fermi surfaces there may be effects associat- 
ed with the birefringence of an electron wave'' crossing the 
boundary of a bicrystal. 

We have considered above a tilt boundary in a bicrysta17 
when the rotation of the axes of the Fermi surface occurs in 
one plane. In the case of a twist boundary, when the crystal- 
lographic axes are rotated in three dimensions, we may have 
a potential well or a barrier depending on the direction in 
(k, ,k, ) quasimomentum plane. 

We shall consider the simplest situations corresponding 
to Figs. 3a, 4a, and 4b. 

FIG. 4. Possible types of the potential Uat  a twinning boundary and the 
corresponding changes of the equal-energy surfaces in space. 
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3. SYSTEMATICS OF MAGNETIC DISCRETE LEVELS AT THE 
BOUNDARY IN A BICRYSTAL 

An effective potential in the form of a step (Fig. 3a) 
appears at the boundary of a general type in a bicrystal. This 
potential has a strong influence on the behavior of electrons 
in a magnetic field parallel to the boundary. This is due to the 
fact that some of the conduction electrons move in a magnet- 
ic field along jump-like orbits (Fig. 1 ), which is an effect well 
known for a specularly reflecting surface of a metal and re- 
sults in the appearance of magnetic surface levels. As a con- 
sequence, a system of this kind exhibits KhaYkin oscillations 
of the surface impedance in a weak magnetic field, when the 
impedance is plotted as a function of the field or frequency,9 
and this applies to a large number of metals (Sn, In, Cd, Al, 
W, Bi, Ga)  which have a nonquadratic spectrum. However, 
at the boundary in a bicrystal there are some special features 
not observed for a specularly reflecting metal surface. This is 
due to the fact that among the electrons colliding with a 
specularly reflecting surface there are none with orbits spe- 
cial in the geometric sense and, therefore, electrons incident 
on a specularly reflecting surface do not contribute to oscil- 
lations of the magnetic s~sceptibility. '~ However, at the in- 
ternal boundary in a bicrystal there are electrons crossing 
this boundary and forming a geometrically special orbit, giv- 
ing rise to a new period of quantum oscillations of the mag- 
netic susceptibility. 

The description of the motion of electrons in a homoge- 
neous magnetic field parallel to the internal boundary in a 
bicrystal is analogous to that given by Eqs. ( 1)-(3): 

The vector potential A can be expressed as follows in terms 
of the magnetic induction vector B(x)  = [0, B,(x), 
B,(x) l :  

Ifwe now go over to the Fourier components along they 
and z axes, we obtain the following one-dimensional poten- 
tial U ,  (x )  for the motion of an electron and this potential 
depends on the components of the momentum along the 
boundary: 

The situation simplifies greatly if the magnetic field is paral- 
lel to the t axis. We then have A, (x)  = O  and the energy of 
motion can be divided into two terms each of which depends 
only on one component of the momentum: 

k,Z 
E (k,, k,) =& (k,) + - . 

2m, 
(9)  

When the motion of an electron in a magnetic field is 

considered, it is possible to ignore the distance L represent- 
ing the change in the orientation of the crystallographic axes 
from one single crystal to another near the internal bound- 
ary in a bicrystal, because the radius of the electron orbit r, 
is large compared with the thickness L of the transition lay- 
er. In this case we can assume that m, ,  ( x )  = m,6( - x )  
+ m26(x) (m, > m,) ,  which corresponds to a distribution 

q ( x )  = (.rr/2)6(x). In the case of a homogeneous distribu- 
tion A, (x)  = Bx the effective potential is 

which depends strongly on the sign of k, (Fig. 2) .  If k, > 0, 
we have a two-well potential with two different frequencies 
of the classical motion. It is convenient to split the descrip- 
tion of the energy spectrum into three regions in accordance 
with the energy E of Eq. (9) :  

In the region of Eq. ( 1 la )  the classical motion occurs along a 
circle located at x > 0. In the range of energies defined by Eq. 
( 1 lb )  there are two types of path: a circle at x > 0 and jump- 
like paths when x <O (Fig. l a ) .  In the range defined by Eq. 
( 1 lc)  a more complex path has the shape of an asymmetric 
lens representing two arcs of a circle joined together (Fig. 
lb) .  The values of the energy E are, respectively, 0, k:/2m2, 
and k:/2m,, which represent singularities of the spectrum 
where the classical motion frequency undergoes a jump and 
the density of states has an anomaly. If k, <O (Fig. 2a), 
there are also singularities of the spectrum at these points. 

A description of the energy spectrum throughout the 
full range of parameters can be semiclassical. We shall adopt 
such a description for the most interesting part of the spec- 
trum defined by Eq. ( 1 lb)  and representing jump-like paths 
( k ,  > 0) .  The wave function in the classically attainable re- 
gion - a < x < O i s  

Here, the quantity 6 determines the spectrum as follows: 

In the part of the spectrum under consideration the value of 
6 lies within an interval corresponding to Eq. ( 1 lb ) :  

where p represents the anisotropy of the spectrum: 
p = (m, - m,)/m, .  I f x >  0, the wave function decays with 
depth in the metal: 
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The function q ( x )  and its first derivative Y ( x )  are contin- 
uous at the point x = 0: 

-a 

~ p '  (o)rin( J p ax-n/d) = ~ q %  (01.  
-a 

This leads to the following quantization rule: 

1 eB 'It 

~ ~ { 2 m i [ e n - G ( k v - T x ) 2 ] }  =n(n+ln)? 
-a 

Hence, we obtain the following expression for the spectrum: 

where (, is deduced from the relationship 

In the limit of weak anisotropy (p  -4 1 ) , we have 

The spectrum described by Eq. ( 15) is derived using the 
wave function such that only the decaying component is al- 
lowed for in the classically forbidden region of Eq. ( 14) and 
the growing component is disregarded. This corresponds to 
neglect of the influence of the second potential well in the 
range x > 0 (Fig. 2) on the spectrum of the first well. An 
allowance for this influence gives rise to exponentially small 
corrections relating to the overlap of the wells, which will be 
ignored. 

An analysis of the spectrum in the remaining ranges 
defined by Eq. ( 11 ) can also be carried out semiclassically 
fork, > 0 and k, < 0. In the range defined by Eq. ( 1 la )  when 
ky < O  the motion occurs in the oscillator potential U, (x)  
(Fig. 2) and the momentum is 

Therefore, the motion is quantized in the usual way and we 
have 

The corrections to this spectrum due to the jump of the po- 
tential at x = 0 are exponentially small, exactly as in the case 
corresponding to Eq. ( 15). Precisely the same spectrum 
( 16) is obtained also for an oscillator well when k, > 0 and 
x > 0 in the energy range defined by 0 < E < k:/2m, corre- 
sponding to Eqs. ( 1 la )  and ( 1 lb) .  We can similarly consid- 
er the spectrum for the other regions defined by Eq. ( 11) 
which correspond to paths in the form of an asymmetric lens 
(Fig. lb) .  

In the case of a more general potential U, (x)  of Eq. 
( 8  ), when a magnetic field is directed in the yz plane in an 
arbitrary manner, we can again use the semiclassical de- 
scription: 

1 2 'la 

- - (k* - 2- Az ( x )  ) I} =n(n+ln) 
2ms C 

Integration in the above equation is carried out in the classi- 
cally attainable region. The potential U, (x)  at the point 
x = 0 undergoes a jump of magnitude pk:/2m, and this 
generally creates a two-well potential when k, > 0 and a po- 
tential with a jump when ky < 0, similarly to the case illus- 
trated in Fig. 2 and representing the special type of the po- 
tential discussed above. 

4. OSCILLATIONS OF THE STATIC SUSCEPTIBILITY AT THE 
BOUNDARY IN A BICRYSTAL 

We shall analyze oscillations of the static susceptibility 
by considering the expression for the microscopic density of 
the current jy (x)  employing the Matsubara technique" 
which, after summation over the frequencies, gives 

For simplicity, we shall confine our attention to the case of a 
weak anisotropy described by p < 1. The square of the wave 
function of Eq. (12) can be represented by a sum of two 
terms: one which varies continuously, 4 [a (a  + x )  ] "' and 
the other which oscillates rapidly as the coordinate x is var- 
ied. We shall be interested only in the smooth part of j, (x) .  
At x = 0 this part can be represented in the form 

J I E )  =- I dkz I k ,  dkv X$I (B-& (kvk.)). 
(2d2 -_ n 

The summation over n can be carried out using the Pois- 
son rule: 
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nmm+T + m  - 
I A ( E )  = J dn J dk, J kg  dkve2zikn 

- 1 -  - m  0 

We shall be interested in the oscillatory part of the cur- 
rent density which is associated with the geometrically dis- 
tinguished electron orbit corresponding to { = p  
( n  = n,,, ). Therefore, we shall expand y near the point 
y = $. According to Eq. ( 15a), this means a change from the 
integration variable n to 5. Then, in the (k,,k,) plane it is 
convenient to adopt the polar coordinates: 

k,= [ 2 m 2 / ( l + g ) ]  '"p cos cp, k,= (2m3)"psinrp.  

Integration with respect t o p  removes the S function. Inte- 
gration with respect to the angle q, is carried out by the steep- 
est-descent method collecting the main contribution near 
q, = 0 .  Integration with respect to 6 near 6 = p gives rise to 
an oscillatory dependence J ,  ( E )  : 

Integration with respect to the energy E in Eq. ( 18) yields 

In this case we have (a , / r ,  )"' < p  4 1. The quantity p/w, 
represents the number of magnetic quantum levels above the 
Fermi surface. The coordinate dependence of the smooth 
part of the current density is 

The value ofj, (x) rapidly vanishes outside a surface layer of 
thickness 1,. We shall use the fact that the current density j is 
related to the magnetic moment M by j = c curl M and we 
shall find the magnetic moment in the surface layer from Eq. 
(19): 

The susceptibility x = dMZ/dBZ can be found simply 
by differentiating the expression in the oscillatory vector of 
Eq. ( 19). We then find that at T = 0 the susceptibility is 
given by 

Here x,- (U, /C)~ is the Pauli susceptibility of the electron 
gas and f is a periodic function of the period 2~ and an ampli- 
tude of the order of unity. Sincep/w, $1, the susceptibility 
X ( X )  can be considerably greater than the Pauli value, but 
this is true only in a thin layer of thickness 1,. We can readily 
demonstrate that not only in the case of the special orbit 
under discussion, but also for all the other orbits identified in 
Figs. 1 and 2 and characterized by energies E which lie at the 
boundaries of the ranges defined by inequalities of Eq. ( 1 1 ), 
there is an oscillatory contribution to the susceptibility and 
its amplitude is 

Here, R is the cyclotron frequency of motion of an electron 
in a magnetic field. The above reasoning does not apply to a 
singularity near the bottom of a well [ E  = k : /2m, ,  see Eq. 
(13) in the limit 6 - 0 1  for the potential U ,  ( x )  in the case 
when k,  > 0 (Fig. 2b), which does not give rise to oscilla- 
tions and-as shown below-does not contribute to the anom- 
aly o fx .  Sincep $ 0 ,  it follows that the susceptibility of Eq. 
( 19b) exceeds, like that given by Eq. ( 19a), very greatly the 
Pauli value, but it is still much less than the susceptibility in 
the case of the bulk de Haas-van Alphen effect": x , - ,  
a x , ( p / R  I3l2. 

The above expressions are valid in the case of a coherent 
boundary in the absence of scattering. If scattering takes 
place near the boundary in a bicrystal, then the temperature 
T i n  Eq. ( 19) should be replaced with the Dingle tempera- 
ture T, = T-  ' (Ref. l o ) ,  where T is the mean free time char- 
acterizing the degree of deviation of an electron from the 
jump-like path. An experimental investigation of the oscilla- 
tions of the static quantities described by Eq. (19) can be 
made conveniently using a modulation method in an alter- 
nating field, when the first or second derivative of the surface 
impedance is found experimentally, which enhances the ef- 
fect by a factor of (p/w, )", where a is the number of the 
derivative. The only restriction on the frequency of the alter- 
nating field is related to the fact that the size of the investi- 
gated bicrystal should not exceed the depth of the skin layer 
6 = c / ( 2 ~ w u )  'I2. It should be pointed out that in this case 
the quantity cr differs greatly from the usual static conduc- 
tivity in a magnetic field and allows for the motion along 
jump-like paths in a magnetic field.14 We must bear in mind 
that the experimental methods give the bulk properties, i.e., 
that they yield x,,, V  = V ( x o  + xl,,/D, ), where D, is the 
corresponding size of a bicrystal. The oscillatory effects oc- 
curring in such a system with peribds characterizing the spe- 
cial paths of Figs. 1 and 2 and obeying the inequalities of Eq. 
( 11 ) differ in respect of the period from the usual bulk de 
Haas-van Alphen effect. The temperature interval in which 
these oscillations are observed can differ from the conditions 
for observation of the de Haas-van Alphen effect because, 
for example, w ,  3 R. 

An analysis of the static susceptibility of Eq. (19) is 
based on the semiclassical approach. In weak fields (p $ R )  
when thenumber of the quantum levels is large and quantum 
oscillations take place, this approach is quite satisfactory. 
The wave function of the Schrodinger equation ( 7 ) ,  ex- 
pressed in terms of the parabolic cylinder functions, can be 
described using asymptotes of such functions, which corre- 
spond exactly to the semiclassical description. The situation 
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changes drastically if orbits and quantum numbers of the 
order of unity become important. This occurs near the bot- 
tom of the well (Fig. 2b, k, > 0, near the point E = k :/2m2). 
The quantum oscillations are then absent and we cannot use 
the semiclassical asymptotes of the parabolic cylinder func- 
tions. In the geometry considered here the analysis corre- 
sponds to the case of a situation near a specularly reflecting 
surface of a metal considered by Nedorezov (see Ref. 12 and 
the literature cited there), who demonstrated that a power- 
law anomaly of the magnetic susceptibility is not obtained if 
a consistent quantum-mechanical approach is adopted. We 
shall conclude by noting that an analogy can be drawn 
between the oscillations of the static quantities of Eq. ( 19) 
considered here and the de Haas-van Alphen effect under 
magnetic breakthrough  condition^.'^.'^ Magnetic break- 
through is accompanied by transitions from one band to an- 
other and this corresponds to transitions from one well to 
another. These transitions give rise to an additional period of 
the quantum oscillations of the magnetic susceptibility. 

In addition to the oscillations of the static quantities of 
Eq. ( 19), transitions in an alternating field between quan- 
tum levels give rise to a resonance of the system similar to the 
Khaykin oscillations9 of the surface impedance of a specular- 
ly reflecting metal surface considered as a function of the 
intensity of a static magnetic field and of the frequency of an 
alternating field. A detailed discussion of a resonance of this 
type will be given later (Sec. 6). At this stage we shall simply 
mention that we can distinguish it experimentally from the 
Khaikin oscillations for the specularly reflecting surface by 
etching this surface, which suppresses the Khaikin oscilla- 
tions but not the resonance in question. 

5. LOCALIZED STATES AT A TWINNING BOUNDARY 

In the previous two sections we considered the effect 
occurring at the internal boundary in a bicrystal when mag- 
netic surface levels appear in a magnetic field parallel to this 
boundary. A characteristic feature of these levels is that their 
behavior is in fact independent of the thickness L of the tran- 
sition region between the two single crystals forming a bi- 
crystal. In the present section we shall consider levels with 
properties governed specifically by the nature of the transi- 
tion layer between these single crystals. We shall consider 
the case when the effective kinematic potential represents a 
well, as is true at a twinning boundary (Fig. 4a). 

The electron energy ( 3 )  can be represented by a sum of 
two terms, each of which depends on just one component of 
the momentum: 

k.2 
E (k,, k,) --e (k,) + -. 

2m3 (20) 

Since we are interested in the case of a twinning plane that 
corresponds to a symmetric potential well (Fig. 4a), we 
must remember that when k, f 0 there is always at least one 
level in such a potential well. The number of levels increases 
on increase in / k, 1, because the potential is of kinematic ori- 
gin and is proportional to k:. If I k, I is sufficiently large, we 
can find discrete levels using semiclassical approximation: 

where integration is carried out in the classically allowed 
region. Conversion of E,  (k, ) to the dimensionless form, 

shows that the position of the discrete energy spectrum is 
governed by the condition 

The quantity {, satisfies the equation 

It follows directly from this equation that the dependence of 
{, on k, is not analytic at k, = 0. It is convenient to discuss 
this in the characteristic case when the variable mass m,, (x) 
differs from m, in a region of thickness L and is described by 
the expression 

In this case the equation for {, becomes 

In the limit of weak anisotropy (p ( 1 ) the spectrum is equi- 
distant: 

It is clear from Eq. (21) that at low values of k, the 
main term in ~ ( k ,  ) is proportional to I k, 1 .  The separation 
between the levels is also proportional to / k, 1 .  In the oppo- 
site limiting case, typical of semimetals and semiconductors, 
the spectrum is nonequidistant: 

In this case E (  ky ) also has a singularity at (ky I 40: &(kY ) 
a (k, (4'3. The levels of Eq. (22) are similar to a discrete 
spectrum of an inversion layer at the contact with the semi- 
conductor.I6 As in the case of levels in an inversion-type 
contact, the levels considered here behave in a special man- 
ner in the range of small momenta and this leads to singulari- 
ties of the magnetic susceptibility." The density of states 
Y, (E) in this discrete spectrum is 

ar +a, 

Summation of the states is carried out in the interval of {, 
defined by Eq. (21a) and 6, is described by Eq. (22). We 
shall now change from summation over n to integration: 

dk,  dk,6 (E-En (kykz) ). 

The range of integration is limited to the values of within 
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the interval O,<g<p. The replacement of the variables n with 
4 and the subsequent integration with respect to the mo- 
menta yields the following expression for the density of 
states: 

Here, A ( g )  represents the left-hand side of Eq. (22) and 
a ( p )  is a smooth function of p: a ( p  -0) = and 
a (  m ) = 4 / ~ .  

An analysis of the magnetic susceptibility of the system 
can be made by calculating the microscopic current of Eq. 
(17). In the limit of weak fields, when the thickness of the 
transition layer L is much less than the electron orbit radius 
( L  4 r ,  ), the spectrum can be described by Eqs. (20)-(22). 
Retaining-as in Eq. ( 18)-only the smooth part of the cur- 
rent that does not oscillate with the coordinate, we find that 

m 

dk, dk, e 

-m 

The expression for J ( E )  is calculated by analogy with the 
density of states v, (E) of Eq. (23) and, in the limit of low 
values ofp, the current density can be represented by 

e2 8 
Q ( x )  = - -- (2mlm2m,p3p)'" {I-11- ( x / L ) ~ ] " ~ ) .  

m, 3n3 

The relationship j = c curl M yields the following expression 
for the susceptibility: 

It follows from Eq. (24a) that the characteristic distance of 
a change in the magnetic induction B is L.  Therefore, dB / 
dx-B /L and A ,  ( x )  - BL. Hence, the susceptibility asso- 
ciated with the discrete spectrum is 

Here, ,yo- (u,./c)~ is the Pauli susceptibility of the electron 
gas and L /a,>) 1 is the number of discrete levels below the 
Fermi surface. 

The quantity X, is the susceptibility of the discrete elec- 
tron levels localized at the twinning boundary and it can 
exceed greatly the Pauli susceptibility and the Landau dia- 
magnetism of the order of (u,/c)' (Ref. 18). This enhanced 
valuex, occurs in the region L. If the separation between the 
two twins is R, (R, > L, where L >aO),  the total contribu- 
tion made to the magnetization by the twins is x,$L '/a(,', 
whereas the contribution of the rest of the crystal is x,,SR, 

where S is the surface area. All the quantities are given here 
per one twinning boundary. These contributions can be quite 
comparable. For example, if a,, = 4 A and R, = 200 A, 
which is true of superconducting  ceramic^,^ it follows that 
for L = 15 A we have xJL 3/ao2 -x,SR,. Like the Pauli 
susceptibility and the Landau diamagnetism, the suscepti- 
bility X, is in fact independent of temperature. 

The opposite limiting case of a strong magnetic field 
corresponds to the limit when the radius of the electron orbit 
is less that the size of the transition layer between single 
crystals (r, 91;). In this case the separation between the 
discrete levels in the transition layer is not determined by the 
thickness of this layer L, but by the electron orbit radius. 
Therefore, inside the transition layer the susceptibility is due 
to the de Haas-van Alphen effect in an inhomogeneous mag- 
netic field" with the distribution found in the transition lay- 
er. The extremal section of the Fermi surface governing the 
period of quantum oscillations is determined by the posi- 
tions of the crystallograph axes in the transition layer and 
differs from the corresponding section in the bulk of the met- 
al. The susceptibility not only oscillates with the magnetic 
field, but [in contrast to Eq. (25)]  it depends strongly on 
temperature and at T = 0 its value is ( ~ , / c ) ~ ( , u / C l ) ~ / ~ .  

6. LOW-FREQUENCY RESONANCE AT A TWINNING 
BOUNDARY 

In this section we shall consider the other alternative for 
a twinning boundary when a potential barrier forms at the 
boundary between single crystals (Fig. 4b). Then, a two- 
well symmetric potential appears in a magnetic field parallel 
to the twinning boundary (Fig. 5) .  The result is that the 
discrete levels in each of the wells becomes split and the mag- 
nitude of the splitting is an exponential function of the char- 
acteristics of the potential barrier: A a Cl exp( - D), where 
D represents the penetrability of the barrier. A resonance 
can occur between these closely spaced levels when an alter- 
nating electromagnetic field is applied and the resonance fre- 
quency is much less than the cyclotron frequency Cl in a 
magnetic field. 

We shall consider our system in the case when the mag- 
netic induction vector B is directed along they axis: 

If k ,  = 0, the potential U ,  ( x )  represents a symmetric two- 
well profile. In this case the levels in each of the wells are 
governed by the semiclassical condition: 

FIG. 5. Effective potential U ,  in a magnetic field directed along a twin- 
ning boundary with a barrier and at right-angles to a tilt axis for electrons 
with the quasimomentum k ,  = 0. 
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Integration was carried out in the classically attainable re- 
gion for one of the wells. In the limiting case when the elec- 
tron orbit radius is much greater than the transition layer 
thickness ( r ,  & L ) ,  the positions of the levels are readily ob- 
tained in the explicit form, because they no longer depend on 
L : 

The quantity E, ( k ,  ) satisfies the inequality 

where 6 = 2R and R = (eB/c) (m,m,)-112 is the cyclo- 
tron frequency. Doubling of the frequency 6 compared with 
R is due to the fact that an electron in a single well moves not 
along a whole circle, but only along half a circle. When the 
condition opposite to Eq. (27a) is satisfied, the classical mo- 
tion occurs above the barrier between the two wells and its 
frequency decreases twofold: 

When the condition of Eq. (27a) is satisfied so that the 
motion occurs in one of the wells of the two-well potential, 
the spectrum splits because of the presence of the second 
well: 

Integration in the expression for D ( E n  ) is carried out in the 
classically forbidden region under the barrier. In the limit of 
a weak field we can ignore the term with the magnetic induc- 
tion B in the integral and then D ( E )  is determined only by 
the parameters of the transition layer L. We shall consider 
the following model description of m , , ( x )  : 

In this case we have 

D(E) =(mlk,2)'"nLp-'"(0-po)/[lf (p-p,)"'], 

po=2m1~n(JCu)/kyZ<~. (28a) 

Here, E,  ( k ,  ) is given by Eq. (27). 
These discrete levels give rise to a resonance in an alter- 

nating electromagnetic field. The expression for the current 
density can be deduced in the usual manner'': 

ja (PX) =J  dxfQap (P, xxr) AB (PX'), (29) 

where AD (px) is the vector potential of the alternating mag- 
netic field. The kernel Q, consists of a regular part and a 
resonance correction: 

Here, k ,  = k + p/2, w, is the frequency of the external al- 
ternating field, and f(E) is the Fermi distribution function. 
Since at low temperatures the distribution f ( E )  is a step-like 
function near the Fermi surface, a contribution to the reso- 
nance is made only when one of the levels En (k, ) + w0/2 or 
En, (k-) - w,/2 is occupied and the other is empty. The 
main contribution to the resonance appears for an extremal 
value of the frequency w,, ( p )  = En (k,) - En. (k-),  
which in the integrand of Eq. (29a) corresponds to the point 
characterized by k,, = 0 and k ~ o  
= [2m, (p  - h((n + j))]"': 

ores (k) = o r e s  (kuo, 0) +auu (ku-kuo)2+uzzkz2, 

where w, and w,, are the second derivatives of the extremal 
frequency with respect to the momenta k, and k ,  in the twin- 
ning plane. The resonance frequency and its derivatives have 
the following characteristic values: 

If in Eq. (29a), we used the expression for the square of 
the wave function 

which corresponds-as everywhere in the foregoing treat- 
ment-to inclusion of only the smooth part of the wave func- 
tion that does not oscillate with the coordinate, we find that 
the part of the kernel corresponding to the resonance is 

The above expression gives the component of the kernel Q 
along t h e y  axis and this component is readily seen to be 
much greater than the components Q along the other coordi- 
nate axes. The logarithmic law of Eq. (30) for the resonance 
in the case of a general Fermi surface is enhanced to a value 
/w, - w,,, / - ' I 2  if the Fermi surface is cylindrical when T, of 
Eq. (30) is replaced with 

This result agrees with the size of the kernel in the case of the 
KhaTkin oscillations for a cylindrical Fermi surface, when 
again there is a singularity of the Iw, - w,,, I l l 2  type (see 
Ref. 19). 
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The ratio of the amplitude of the part of Q of Eq. (30) 
corresponding to the resonance of the regular part amounts 
to (a,/L) ' I2  (R/A, ) 'I2, and this ratio may be of the order of 
unity. However, the correction to the surface impedance due 
to the resonance is in fact always small because the twinning 
plane is located inside the metal where the electromagnetic 
field has a low amplitude due to the skin effect. Therefore, an 
analysis of the resonance can be made using perturbation 
theory. In calculations it is convenient to use the following 
formal procedure.19 We shall consider a quantity 

I -.[+I o2 (2)' d x f j  d x j  dx'E, ( x )  
-d  -d  -d  

The point ( - d )  corresponds to the position of the metal 
surface and the twinning plane lies at x = 0. Differentiating 
the first integral in this expression by parts and applying the 
Maxwell equations, we find that the quantity I is inversely 
proportional to surface impedance. Therefore, the correc- 
tion due to the resonance given by Eq. (30) alters the surface 
impedance by 

C' 
= - - j  ..z dxj  ~ Z ' E , ,  ( x )  EV(x1)Q~:'  (xx')lE.'(-d). 

Here, c0 = ( 1 + i) (w/Snu) ' I 2  is the value of the surface im- 
pedance in the absence of the resonance. Substituting in Eq. 
( 3  1 ) the field distribution E, = E, ( - d )  e - '" + where 

= - 4niwo/c2, corresponding to the surface imped- 
ance in the absence of the resonance, we obtain 

For cylindrical Fermi surface (a = 2) the resonance 
correction A< "9s  proportional to (w, - or,, 1 -  ' I 2  and for 
an arbitrary Fermi surface (a = 3) we have Acre" 
a lnJwo - w,,, 1 .  In Eq. (32) the quantity I,,(r/S) denotes a 
Bessel function with an imaginary argument: I,,(x) = 1, 
X (  1; I0(x)  = ecX/(2nx)  'I2, X$ 1. Therefore, A< ""on- 
tains a factor exp( - ( d  - r)/S) representing the distance 
of the twinning plane from the surface of the investigated 
crystal. Consequently, an experimental study of the reso- 
nance should be made either when the twinning plane is not 
too far from the surface ( d  - r S S ) ,  or when the twin is 
inclined to the surface of the crystal at a small angle 6 so that 
a large part of the twinning plane where ( d  - r )  5 6/B par- 
ticipates effectively in the resonance. 

Equation (32) is derived on the assumption that nor- 
mal skin effect conditions are satisfied: S $ I and I> r, . In the 
case of the anomalous skin effect, when I $  6, we again have 
Eq. (32), but now S is replaced with a,, = (c2/4riwo,, ) ' I 2  

where o,, = uS/I (compare Refs. 10 and 18). 
This resonance is fully analogous with the Khaikin os- 

c i l l a t i o n ~ . ~ . ~ ~  An important specific feature of the resonance 
is that it is located in the lower part of the spectrum which is 
controlled by the permeability of the potential barrier [Eq. 

(28) 1. In this respect it is similar to the resonance predicted 
in Ref. 20 for a thin film in a magnetic field when splitting of 
the surface levels occurs at both boundaries of the film. Ex- 
perimental separation of this resonance from the KhaYkin 
oscillations is possible if the surface is etched, as suggested 
above. 

The levels and the resonant transition between them 
discussed in the present section depend very strongly on the 
geometry, because rotation of the magnetic induction vector 
in the plane of the bicrystal boundary makes the two-well 
potential asymmetric and the resonance pattern changes 
greatly. 

It is shown here that electron surface levels appear at 
the twinning boundary in a bicrystal and these levels are a 
specific to a given type of a bicrystal. These local electron 
states divide naturally into two classes. The first consists of 
the states which are governed by the transition from one 
single crystal to another and depend strongly on the size of 
the transition layer L. These states are similar to the Tamm 
surface states.*' An important property of these states is that 
they are of kinematic origin and are associated with the in- 
homogeneity of the kinetic energy in space. The second class 
comprises the electron states induced by a magnetic field and 
practically independent of the size of the transition layer L 
between single crystals. These states are similar to the mag- 
netic surface states observed for a specularly reflecting metal 
~ u r f a c e . ~  The main difference is that application of a magnet- 
ic field to the boundary in a bicrystal creates a geometrically 
distinct electron orbit which gives rise to a new period of the 
quantum oscillations and this period depends on the field 
intensity, but is different from the period of the de Haas-van 
Alphen effect in the bulk of a metal. The temperature inter- 
val of possible experimental observation of such surface os- 
cillations is different from the interval applicable to the bulk 
of a bicrystal. 

In addition to oscillations of the static quantities, tran- 
sitions between the levels in question in an alternating mag- 
netic field give rise to the KhaTkin oscillations of the surface 
impedance considered as a function of the magnetic field 
intensity and of the frequency of the alternating magnetic 
field. Experimental observation of these levels is possible not 
only in semimetals, as is true of a specularly reflecting crys- 
tal surface when the number of such levels is small (5-6), 
but also in the case of a coherent bicrystal boundary in good 
metals. Here the number of levels may be large. The damp- 
ing of quantum oscillations and ofthe resonance can provide 
information on the degree of deviation of the bicrystal 
boundary from the ideal shape and on the nature of the tran- 
sition layer. 

The second class of surface electron states such that the 
separations between the levels are governed by the thickness 
of the transition layer L between the single crystals are the 
states on a twinning boundary characterized by a potential 
well shown in Fig. 4a. The situation of a twinning boundary 
with a potential barrier is intermediate between these two 
classes of electron states. On the one hand, the separation 
between the levels is governed only by the magnetic field and 
is practically independent of L [see Eq. (27) 1 .  On the other 
hand, there is a fine structure of the levels due to their split- 
ting by the potential barrier and the splitting is determined 
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by the size of the transition layer and is related to the pene- 
trability of the barrier [see Eq. (28)]. The experimentally 
observed oscillatory and resonant effects can be used to iden- 
tify the nature of the transition layer in a bicrystal. 

Observation of these effects will provide direct informa- 
tion on the degree of coherence of electron motion across the 
internal boundary in a bicrystal. Simultaneous observation 
of the anomalies in the same samples'-3 also gives a clear 
answer whether they are related to the coherence of the elec- 
tron motion. 
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