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It is shown that, at temperatures higher than that of the roughening phase transition, the free 
energy of a solid film contains an increment that oscillates with the atomic period and has an 
amplitude that decreases with thickness in accordance with a power law having an exponent that 
depends on temperature. As a result, the heat capacity of the film is a decreasing oscillating 
function of its thickness. The spectrum of the crystallization waves was investigated for a solid 
4He film in contact with a superfluid liquid. It has been shown, in particular, that the dispersion 
law for small k takes the form w a k ' I 2 ,  and the temperature dependence of the surface 
temperature at low temperature has been obtained. 

Multilayer films adsorbed on attracting substrates ex- 
hibit a number of remarkable properties. A large number of 
these properties are connected with the joint influence of 
surface and bulk properties of the coexisting phases. Among 
the most interesting sets of phenomena of this class are layer- 
ing phase transitions (see Ref. 1 and the citations therein). 
They constitute a discrete filling of atomic layers of the film, 
which takes place at sufficiently low temperature, as the ex- 
ternal pressure is continuously varied. With rise of tempera- 
ture, the first-order transition lines terminate at critical 
points of the layering transitions, and at higher temperature 
the film thickness has a continuous dependence on the pres- 
sure. 

It was shown in Ref. 1 that the layering-transition criti- 
cal points condense towards the roughening-transition tem- 
perature TR like TR - T,,, K l/ln2n if the number of layers 
n is large. Here T,,, is the critical point of the layering transi- 
tion from an (n  - 1)-layer film to an n-layer film. It might 
seem that at T> T, the film thickness depends monotonical- 
ly on the external pressure. It will be shown below that at 
T> TR the free energy of a solid film contains an increment 
that oscillates with a period of atomic order and its ampli- 
tude has a power-law decrease with thickness, and the expo- 
nent depends on temperature. As a result, a number of tem- 
perature-dependent film properties, such as the heat 
capacity, become slowly decreasing oscillating functions of 
the film thickness, i.e., even in the high-temperature region 
the film "gives preference" to integer (in units of the lattice 
period) values of its thickness. The physical reason for this 
behavior is that the roughening transition takes place on a 
surface that separates bulk phases. The film, on the other 
hand, by virtue of its finite thickness, is always smooth, so 
that its surface "feels" the crystalline relief at temperatures 
above the roughening-transition temperature between the 
bulk phases. The oscillatory dependence of the film proper- 
ties on its thickness becomes, of course, weaker with increase 
of film thickness, and vanishes in the case of a surface that 
separates bulk phases. The character of the weakening of the 
dependence on the thickness is determined by the interaction 
forces between the film and the substrate (in this case-Van 
der Waals forces). Since Van der Waals forces are long 
range, only a power-law weakening of the parameters with 
thickness is possible. 

All these premises are confirmed below by a rigorous 
calculation. In addition, we obtained the dependence of the 
effective rigidity of the film on thickness and temperature. 
The most probable object for which our predictions can be 
verified is a solid 4He film in contact with a superfluid liquid. 
We shall show below how the spectrum of the melting-crys- 
tallization waves2 varies with the surface that separates the 
bulk phases, and obtain the temperature dependence of the 
surface tension of a solid helium film. In contrast to the bulk 
case, the surface tension is proportional to (const-T5) if the 
corresponding TR is low enough. 

1. As in Ref. 1, we begin with the effective Hamiltonian 

Here J i s  the effective rigidity of the film; f is the position of 
the film surface as measured from the substrate; the second 
term describes the long-range interaction between the film 
surface and the substrate (Van der Waals attraction corre- 
sponds to a = 2); p is the excess free energy per unit film 
volume compared with the third phase (liquid or gas); the 
last term takes into account the crystallinity and leads to a 
transport of the roughness between the bulk phases (c char- 
acterizes the Van der Waals forces, y is the amplitude of the 
crystal potential). The non-gradient terms of the Hamilto- 
nian ( 1 ) constitute the free energy of the film per unit area, 
obtained by integration over all the degrees of freedom, ex- 
cept the shifts of the surface position. The renormalization- 
group equations for the Hamiltonian ( 1 ) are given in Ref. 1 
and have the form 

J=4n4y'/Jko4. ( 2 ~ )  

Here k, is a quantity of the order of the reciprocal of the 
atomic distance in the film plane, and g is the curvature of 
the smooth part of the potential in ( 1 ) and is calculated at 
the point of its minimum f = (ac/p)"" + " . For large f 
(i .e. ,asp-0),wehaveg=g,ocl/f2+". 

Equations (2b) and (2c) are the known Kosterlitz 
equations. The properties of Eqs. ( 2 )  for T <  T,  were con- 
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sidered in Ref. 1. We, on the other hand, shall investigate the 
region D T R .  In this temperature region the system has a 
single independent length scale, viz., the film thickness; this 
scale, in turn, makes finite the correlation length of the fluc- 
tuations of the film-surface position in its plane. Thermal 
fluctuations, which cause surface roughness, are significant 
only over scales within the correlation length. At larger 
scales the film surface becomes smooth. This means that 
Eqs. (2b) and (2c) must be integrated up to a large finite 
scale determined by the film thickness. The dependence of 
the scale on the length is formally determined in the follow- 
ing manner: for D T R  the function y(1) decreases as 
I( f ) .+ a, while g(1) increases like g =go exp 21 [see Eq. 
(2)  1 (here I, the usual renormalization parameter, is the 
logarithm of the ratio of the running length scale to the ini- 
tial one). For sufficiently thick films the curvature of the 
renormalized potential is therefore determined by its smooth 
part. 

Thermal fluctuations are insignificant starting with a 
scale exp I * at which the curvature of the renormalized po- 
tential acquires a value of order J and increases monotoni- 
cally at large I. Hence 

go exp 2 1 ' 4 ,  exp l*mf'+alz. (3  

Since J(1) has a finite limit as I-, t4 (see below), we are 
justified in changing from the first to the second relations of 
(3). Arguments similar to those set forth above are used also 
in Ref. 3 for the problem of wetting transitions. 

Since renormalization of the long-range interaction re- 
duces only to a scale transformation (the condition (3) does 
not contain the temperature), the equation given above can 
be obtained from elementary considerations. Indeed, in the 
mean-field approximation, the correlation length 5 is given 
by 

E-'=g,lJ. (4)  
Using the fact that 6 a exp I *, we arrive at Eq. (3).  It is clear 
now that the problem reduces to integration of the Kosterlitz 
equations from zero to I *, given by Eq. (3  ). 

A similar situation was encountered in Ref. 4, where the 
influence of the crystalline relief on the properties of a two- 
dimensional incommensurate phase was investigated. We 
shall therefore follow the procedure of Ref. 4 from now on. 
Our results are reminiscent to some degree of the conclu- 
sions drawn in that reference; the main difference is that the 
measured value of the coefficient y differs from zero in our 
case. Expanding (2b) and (2c) near the point y = 0 and 
J = r T / 2 ,  and using the variables 

we obtain 

g=Kij, R=p.  (6)  

It is convenient to demonstrate the further evolution of 
the solution using the known Kosterlitz diagram, which 
shows the phase trajectories of the system (6)  (Fig. 1 ). The 
solution of the system (6) comprises the hyperbolasj2 - k 
= const. At D TR they cross the abscissa axis y = 0 at the 

renormalized value of the parameter K (Fig. 1 ) (which is 
connected via the first equation of ( 5 )  with the macroscopic 
rigidity J ,  of the surface separating the bulk phases). We 

FIG. 1 .  Phase trajectories of the system ( 6 ) .  The points on the lines at 
D T, mark the stopping places given by the condition ( 3 ) .  

shall be interested in values of K * close to K, , and in values 
ofy* close to zero, when the hyperbola j2 - K = const al- 
most reaches the abscissa axis. For T >  TR the equation for 
the trajectory is 

-2 y  -KZ,=-K,2. (7) 
Substituting it in the first equation of (6)  and recalling that 
we are interested in the asymptotic vanishing of y, we have 

f j = -  (ij2+K,2)'b"- ywKmfj. (8) 

Hence y ( l * )  ay,  exp(K, I*)  (here yo is a quantity of the 
order of the initial value of y )  . We have thus 

Y ( l ' )myo  exp [ (2-nTIJ,)Z'].  (9) 
We obtain K * in similar fashion: 

R=K2-Km2m2 ( K - K , ) K , ,  

K'- K,-exp (2K,1')=-exp [ 2 ( 2 - n T )  J m / l ' l .  (10) 

To find the measurable values ofJand y, we must return 
to the initial units of length, i.e., effect an inverse scale trans- 
formation in the renormalization of the Hamiltonian ( 1 ). 
This does not change the value of J *, and y is given by 

y '=y( l ' )exp  ( -21 ' )  %yo csp(-nTl'/J,). (11) 

Expressing exp I * in terms off  from (3),  and K in terms of 
J ,  we get 

y ' V ; ) y O / f P T ( i + ~ / 2 ) J  (12) 

J*/T=(J,/T) [ I-cons~(J,/T) f - ( 2 f a ' ( n T ' J * - 2 )  1 .  (13) 

All the calculated constants in ( 12) and ( 13 ), and also in the 
equations pertaining to T  = TR (see below), are not univer- 
sal, are of the order of unity, and are independent of the ,film 
thickness. 

For T  = TR the equation of the trajectory is 

8=-K. (14) 

Substituting it in the first equation of (6) ,  we get 

y"=-y"'. 
(15) 

This yields an asymptotic law for the decrease o f j :  

y"(l*)ml/l 'mli[(l+a/2)1n f ] .  (16) 

The measured value of y is given by the equation 

y*=y (18)cxp(-21') [ ( l + a / 2 ) f " + 2  In f]-'. (17) 

Similarly, the measurable quantity J*/TR is described by 
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Summing all the foregoing, we write down now the re- 
sult of the transformation of the nongradient terms of the 
Hamiltonian ( 1 ) at  D TR in the most important case a = 2: 

1 const cos 2nf 
)+pf for T ,  (19) 

I" I l l  f 

1 const cos 2nf 
v(j)=c(-- 

f' 
)+pf for T>T.. (20) 

f r S T I J -  

Strictly speaking, it would be necessary to add in ( 19) and 
(20) nonoscillatory terms of the form l/ f 41n f and 
l,,f2(27rT/J_ - 2 )  

respectively, which appear as contributions 
to the free energy from the excluded degrees of freedom 
(terms of just this kind were the subject of Ref. 4) .  In our 
case they can be neglected compared with the oscillatory 
ones, inasmuch as when the equilibrium film thickness is 
determined the differentiation of the oscillatory term will 
always yield a lower degree of 11'' and consequently in the 
limit of large f the oscillatory term will be decisive. 

Expressions (19) and (20) represent the effective free 
energy of a film of unit area, obtained by integrating over 
fluctuations of surface displacements whose wave vectors lie 
in the range from the wave vector k, to k a (g,/J_ ) ' I 2 .  The 
equilibrium position of the film is determined by differenti- 
ating (19) and (20) with respect to f .  When the oscillatory 
term is differentiated, the contribution of principal order in 
l/f comes from differentiating cos 277-J It is seen from ( 19) 
and (20) that the farther we are from T, the lower the extent 
to which the film "gives preference" to integer values of its 
thickness. It is also obvious that no jumplike changes what- 
ever occur in the thickness at - T,  and at f & 1, i.e., the 
curvature of the effective potential V "  V), calculated at the 
minimum of ( 19) and (20), is positive. Recall that the pres- 
ence of layering transitions at t < T,  is connected with the 
fact that the second derivative V "  (f) of the free energy with 
respect to thickness could reverse sign, and the critical 
points of the layering transitions were obtained from the 
condition V "  V) = 0 (Ref. 1 ) . 

Attention is called to the remarkable fact that the tem- 
perature enters in the exponent of (20). It follows hence that 
all the quantities obtained from the free energy by differenti- 
ating with respect to temperature, such as the heat capacity, 
are also oscillating and slowly decreasing functions of the 
film thickness. 

2. We discuss now the experimental situation, and also 
the possibility of verifying all the effects predicted by us. 
These include the dependence of the effective rigidity of the 
film on thickness and temperature [ ( 13 ) and ( 18 ) ] and all 
possible oscillatory dependences that follow from ( 19) and 
(20). The solution of the first problem is apparently quite 
realistic. The surface rigidity can be measured, for example, 
by determining the correlation function of the surface fluc- 
tuation, a function that determines the intensity of light scat- 
tering by a surface or, in the case of solid 4He, by investigat- 
ing the spectrum of the crystallization waves (see below). In 
addition, it can be assumed that the quantities J, / T  con- 
taind in ( 13) and also in (20) are known from investigations 
of the roughening transition on the surface separating the 
bulk phases of 4He (Ref. 5) .  

The most attractive for a check on the oscillatory de- 
pendences is measurement of the heat capacity of the film as 
a function of thickness and temperature. In Ref. 6 was mea- 
sured the heat capacity of from 2 to 13 argon layers adsorbed 
on graphite, in the temperature range from 60 to 90 K. In 
particular, one of the most interesting results is observation 
of a weak anomaly of the heat capacity near T, .The authors 
of Ref. 6 state that they have observed anumber of properties 
that depend on the film thickness and particularly pro- 
nounced for thinner films, but the dependence on the thick- 
ness can be separated from the alternating-sign variation of 
the measured quantities. I t  is not clear from their statement 
where the thickness dependence is observed-in the entire 
range of temperatures or only below TR,  and whether the 
heat capacity oscillates. Our estimate shows that the obser- 
vation of the heat-capacity oscillations in an atomic period 
under conditions corresponding to Ref. 6 are practically 
within the limits of the experimental error of the heat capac- 
ity. 

For 4He films, on the other hand, observation of heat- 
capacity oscillations is quite feasible. The main reason is that 
the temperatures of the roughening transitions of various 
faces of solid 4He are lower than the superconducting-transi- 
tion temperature: for the (0001 ) face, according to the latest 
experimental data,' we have TR = ( 1.28 + 0.01) K, and for 
other faces T, is even 10wer.~ Under such conditions the 
heat capacity can be measured with much higher accuracy 
than in the experiment of Ref. 6. Thus, the most probable 
object with which our predictions can be verified is a film of 
solid 4He in contact with a superfluid liquid (the relevant 
estimates are given at the end of the article). 

We turn now to experiments on films of solid 4He ad- 
sorbed on g r a ~ h i t e . ~ . ~  Layering phase transitions were first 
observed in Ref. 8, and the theoretical predictions [ 1 ] con- 
cerning the T,,, ( n )  dependence were qualitatively con- 
firmed in Ref. 9. The quantity actually measured in these 
studies was V "  V) taken at  the minimum of V V )  (more ac- 
curately, its inverse). As follows from (20),  

As already stated above, f o r b  1 the only oscillatory factor 
need be differentiated. For T = T, the denominator of the 
second term is equal to f 41nJ It  is clear now that near TR the 
second term of (21) is practically of the same order as the 
first, and oscillatory phenomena should be observed. The 
results of Ref. 8 confirm this prediction qualitatively. In- 
deed, an oscillator V "  V) dependence was observed in the 
temperature range from TR =: 1.28 K to a temperature 1.7 K. 
The oscillations became weaker with increase of tempera- 
ture. We call attention to the following interesting fact: were 
it possible to perform an experiment in which the measured 
quantity were a higher derivative of V V )  (starting with the 
third), there would always exist a temperature range in 
which the Van der Waals terms could be neglected compared 
with the oscillatory ones. 

3. Since we have concluded above that the most prob- 
able object in which our predictions can be verified is a solid 
4He film in contact with a superfluid liquid, it would be of 
considerable interest to determine the spectrum of the melt- 
ing-crystallization waves in the film compared with a surface 
between bulk phases. It will be shown below that the crystal- 
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lization-wave spectrum contains the quantity V "  0, so that 
a study of the surface-oscillations spectrum is likewise capa- 
ble of verifying our predictions. 

The existence of melting-crystallization waves was first 
predicted in Ref. 2. They were observed experimentally in 
Ref. 10. These waves are unique for the interface between the 
solid and superfluid phases of 4He and can propagate at the 
usual acoustic frequenciesI0 in view of the extremely rapid 
onset of equilibrium. 

The dispersion relation of Ref. 2 was derived in fact 
under the assumption that the surface is atomically rough, 
i.e., only the gradient terms of the Hamiltonian ( 1 ) were 
used. The dispersion relation for surface oscillations in a film 
can be obtained, without repeating the calculations, by not- 
ing that the interaction between the film surface and the 
substrate stabilizes the surface (i.e., makes it smooth) and is 
analogous to the presence of a gravitational field. It follows 
hence that J, k in the corresponding equation of Ref. 2 
mustbereplacedby J * (  f ) k 2 +  V". 

The dispersion relation takes thus the form 

w 2  = '"[r (f) k 2 + v " ] .  
( p 1 - p ~ ) ~  

Herep, andp, are the densities of the solid and liquid phases, 
respectively. It is seen from the last equation that an investi- 
gation of the crystallization-wave spectrum provides a check 
on the effects predicted above. The damping coefficient is 
given as before by the equation from Ref. 2 

Here m is the mass of the helium atom and I? is the kinetic 
growth ~oefficient.~ It is seen from (22) that, in contrast to 
the bulk case, long-wave surface oscillations in a film are 
similar to gravitational rather than capillary waves. The 
condition under which J * ( f ) k can be neglected compared 
with the second (smaller) term of Eq. (21) is 

We have neglected here the J *  ( f ) dependence and have 
introduced for clarity the lattice period a. At T = T, the 
exponent in (24) is equal to two, and an additional logarith- 
mic factor l/lnCf/a) is present. 

In the range of wave vectors satisfying the condition 
(24), the dispersion law is 

Far fr.om TR a contribution to V "  is made only by the Van 
der Waals term, and the condition for the applicability of 
(25) is given by (24) with an exponent 2. 

Comparison with Eq. (23) shows that the long-wave 
oscillations (25) are always weakly damped. For melting- 
crystallization waves propagating between bulk phases, the 
situation is reversed. This is seen from the fact that for these 
waves w E k 312 and y cc k. Experiment has confirmed that 
melting-crystallization waves are overdamped at T >  1 K." 

Let us dwell, finally, on the low-temperature depen- 
dence of the surface-tension coefficient. Oscillations with a 
spectrum (25) are elementary excitations of the interface 
between a solid 4He film and a superfluid liquid. They lead to 
a temperature dependence of the surface tension (which, of 

course, is not connected with the proximity to TR ). Proceed- 
ing in analogy with Ref. 2, we find that the contribution to 
the surface tension from the surface oscillations (25) takes 
in the low-temperature limit the form T5/V "'. 

We find now the temperature region in which the T ' I ~  

dependence2 should go over into T5VP2.  TO this end it is 
necessary to compare the temperature with the energies of 
the elementary excitations corresponding to the first and 
second terms of Eq. (22). The temperature T * at which they 
become of the same order is in fact the boundary between the 
T 713 and T5/ V " dependences. This yields 

Here k ,  is the Boltzmann constant. Let us calculate T * for a 
film whose surface coincides with the (0001) phase and 
whose thickness is 20 A (approximately 7 atomic layers). 
Just such films were investigated in Refs. 8 and 9. The value 
of the coefficient c can be expressed in terms of the Van der 
Waals forces constant S using the equation 

The value of S for helium adsorbed on graphite, according to 
the data of Refs. 12 and 1, lies in the range 
S = (2.0 - 4.3) erg.cm3. At S = 3. lo-" erg.cm3, 
p,  = 0.191 g/cm3, p2 = 0.173 g/cm3 (Ref. 14), and 
m = 6.6. g we have c = 5. 10-l6 erg. Substituting the 
characteristic value J, - 0.24 erg.cm2 (Ref. 5)  we get 

Recall that our results are valid at temperatures higher 
than the roughening-transition temperature, but lower than 
the temperature for transition to the normal liquid. For the 
(0001 ) face, the corresponding interval is 1.28-1.77 K. The 
value of T * is to the left of this interval, so that the depen- 
dence predicted by the authors of Ref. 2 should be observed. 
One can hope to observe the T5/V "' dependence on films 
having T, lower than 0.3 K. Note that rough surfaces of 
solid helium were observed when the temperature was 
lowered down to 0.07 K (see the literature cited in Ref. 5),  
so that observation of the T5/Vf12 is in no way a hopeless 
task. 

Since we are dealing with a solid-helium film, we might 
ask whether we can use for it the expressions ( 19) and (20) 
calculated by the classical theory. The role of the quantum 
effects can be estimated by the procedure of Ref. 15. To this 
end we replace the classical expression for the square of the 
fluctuation of the film position about its mean position by its 
quantum variant 

T hw ( k )  A o ( k )  
(6fr2) =-----~th- 

Jk2+VN 2T 2T ' 

The condition under which the quantum contribution be- 
comes of the order of the classical is the one that determines 
the limit of applicability of the classical equations ( 19) and 
(20). It is readily understood that the corresponding tem- 
perature is none other than T *, which we have calculated 
above. Consequently, for a film 20 A thick the quantum ef- 
fects come into play below a temperature 0.4 K. The depen- 
dence calculated in the classical approximation should be 
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valid in the region 1.28-1.7 K of interest to us. Note that if 
the film thickness is increased tenfold, the corresponding 
temperature T * becomes 1000 times lower. 

We consider now the possibility of measuring the heat- 
capacity oscillations on a solid helium film. To this end we 
must compare the background part of the heat capacity with 
the amplitude of its oscillatory part. For a film 20 A thick in 
the temperature range 1.28-1.7 K, as shown by the preced- 
ing estimates, the background part of the heat capacity is 
given by 

which follows from the results of Ref. 1. To find the ampli- 
tude of the oscillating part of the heat capacity we must write 
down the actual expressions for the numerical constants in 
Eqs. ( 19) and (20) .This task can be performed without in- 
voking renormalization-group equations. We express the 
Hamiltonian ( 1 ) in the form 

The smooth part of the potential has been expanded here 
about its minimum, Sf denotes the deviation from the cen- 
tral positionf, and the sine term is omitted, since it averages 
out to zero. Integration over the degrees of freedom corre- 
sponding to Sf reduces to averaging of the cosine term with 
the aid of the first harmonic term of the Hamiltonian (26) 
(we, naturally, regard the oscillating term as a small pertur- 
bation compared with the harmonic part of (26) ). As a re- 
sult, the oscillatory increment to the free energy of the film 
takes the form 

cos (2nf la)  
( f k o )  ZnCIJa' ' 

Note that we have obtained a formula that is correct for 
TR (apart from logarithmic corrections at T = TR and 

replacement of J by J, ). The averaging is classical theory, 
and allowance for the quantum effects leads to an additional 
decrease of the common factor in the last equation. This fact 
will be taken into account below, since the experimental co- 
efficient y will be used. It is seen from the last equation that 
the amplitude of the oscillating part of the heat capacity is 
given by 

To find the experimental value ofy we use the results of Ref. 
7. In the bulk case there are two independent quantities: the 
perturbation-theory parameter t, = 1.262yk ; 2/Ja2 and 
k, . Their experimental values are t,  = 0.65 anc! k , ' = 26 
A, hence y = 0.014 erg/cm2. Comparing C, with Cox at 
T = 1.3 K we find that for a film 20 A thick these contribu- 
tions are comparable (on the order of 1013 cmP2). It is seen 
from the foregoing estimate heat-capacity oscillations can be 
observed on a helium film. Note that measurement of the 
heat capacity of helium monatomic films adsorbed on graph- 
ite is quite feasible. l6 One can hardly expect thick films, for 
which the results of the present paper are valid, to create 
more experimental difficulties than monatomic films. 

In conclusion, the author is deeply grateful to N. I. Le- 
bedev, A. P. Levanyuk, S. A. Minyukov, and A. I. Morozov 
for a discussion of the result, and also to A. I. Parshin and A. 
A. Sorokin for consultations. 
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