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Conformational relaxation of a long polymer chain (N$1  links) without volume interactions and 
with nonintersecting parts is investigated. I t  is shown that the maximum relaxation time of such a 
chain is T,,, ) t(N),  where t ( N )  increases in the presence of hydrodynamic interaction in 
proportion to N2(ln N )  -' (N$  1 ). It is thus proved rigorously that topological constraints lead 
to a substantial (in the sense of the influence of these constraints on the critical exponents) 
slowing down of the conformational relaxation of a macromolecule even in a very highly diluted 
solution. 

1. INTRODUCTION 

Topological constraints, as understood in polymer 
physics, indicate that moving parts of a macromolecule can- 
not intersect. In accord with their meaning, topological con- 
straints influence just dynamic rather than equilibrium 
properties of polymer systems. The very important role of 
these constraints for the dynamics of concentrated polymer 
solutions and melts is well known.'.' At the same time, the 
importance of topological constraints (in other words-of 
the entanglement effect) to the dynamics of an isolated poly- 
mer chain (in a dilute solution) is less obvious. Most investi- 
gators tend to assume that the entanglement effect is inessen- 
tial for an arbitrary long isolated polymer chain in a good 
solvent.' Topological constraints can be expected, however, 
to influence noticeably the dynamics of a polymer chain un- 
der theta-conditions (i.e., in a Gaussian chain, whose spatial 
conformations are more compact ) .'.4 

I t  is known that the maximum time T of conformational 
relaxation for a phantom Gaussian chain (i.e., for a chain 
without topological constraints) with hydrodynamic inter- 
action depends on the number Nof  links in accordance with 
the law3 

For a chain with topological constraints one should expect a 
slower relaxation 4.5 

where z > 3/2. It is proposed in Refs. 3 and 4 to take topolog- 
ical constraints into account by a method based on certain 
physically plausible assumptions. The dynamic exponent z 
was calculated, and a number of important dynamic effects, 
whose onset is based entirely on the fact that z >  3/2, was 
predicted. It is therefore very important to prove the in- 
equality z > 3 rigorously. This is the aim of this paper. 

Our plan is the following: In the next section we de- 
scribe a variational principle that yields a rigorous lower- 
bound for the maximum relaxation time. In Sec. 3 we obtain 
specific estimates using the very simple trial function (2.19). 
We describe and employ in this section a scaling model for 
the calculations, based on the derivation, for the investigated 
quantities, of recurrence equations generated by a procedure 
of enhancing the polymer-chain link. The results of this sec- 
tion (rigorous lower bounds for the maximum relaxation 

time) turn out to be trivial. The causes of this failure are 
considered at the end of the section, where additional crite- 
ria that the trial function must meet are proposed. In Sec. 4 
we determine a new, modified trial function and analyze its 
properties. In the final Sec. 5 we obtain, by synthesis of a 
scaling method and using a modified trial function, a nontri- 
vial lower bound of the dynamic exponent z. The remainder 
of the section is devoted to a brief description of the models 
used in investigations of the dynamics of nonlinear mole- 
cules. 

The macroscopic equilibrium properties of a Gaussian 
polymer chain are described by a model of beads and 
springs6-a sequence r,,,r,, ..., r, of pointlike beads connect- 
ed by weightless links (springs) having an elastic energy 

A' 

where a is the characteristic dimension of the link. The 
Brownian dynamics of such a chain is described by the stan- 
dard equations 

where the superscripts a and B number the Cartesian com- 
ponents of the vectors, D ::f, is the matrix of the generalized 
diffusion coefficients, and lo,,, ( t )  is a 6-correlated random 
force exerted on the mth bead by the solvent. The Rouse 
model, which presupposes complete absence of hydrody- 
namic interaction between the beads, corresponds to a very 
simple diffusion-coefficient matrix 

where D,, is the bead diffusion coefficient. For a chain of 
beads with hydrodynamic interaction (the Zimm model), 
this matrix takes the form 

whc:e r = r,, - r,,, and 7, is the solvent viscosity. 
The maximum time of conformational relaxation for 

the Rouse phantom chain is [3] 
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The analogous quantity for the phantom Zimm chain is [cf. 
Eq. ( l . l ) ] :  

2. VARIATIONAL PRINCIPLE 

In the absence of volume interactions, the topological 
constraints can be specified as follows: we consider a broken 
line rorl ... r, with beads as the vertices (Fig. 1 ) and stipulate 
that the segments of this broken line (which we shall call the 
chain trajectory) cannot intersect one another as they move. 
Most trajectories with self-intersection form a certain hyper- 
surface 2,, in the space fl of all the chain conformations, 
which we shall call the forbidden surface. F~rbid~enness of 
self-intersection can be ensured if each trajectory 

belonging to the forbidden surface is set formally in corre- 
spondence with an infinite potential energy. '' 

The total energyy U ( r )  of the beam interaction con- 
sists thus of two parts: regular U,, ( T ) and singular U, (I' ) : 

The regular part [see ( 1.3) ] describes the connection of the 
beads to form a polymer chain; the singular part 

describes the topological constraints. 
Let f (T) be the density of the distribution over the 

polymer-chain conformations. The evolution of this func- 
tion is described by the diffusion equation 

The general solution of this equation is 

where y ,  are the eigenvalues of the diffusion operator i, 

We stipulate that the distribution function f(r) be in- 
variant to parallel transports of the chain as a whole in space 
(since we shall hereafter be interested just in conformational 
relaxation, and not in diffusion of the chain as a whole). 
efter imposing this condition, the spectrum of the operator 
L becomes discrete. The zeroth eigenvalue of this operator 
correspond to the equilibrium distribution function 

FIG. 1. Model of polymer chain in the form of beads r,, , n = 0,1,2 ,..., N, 
joined by straight-line segments; xis the continuous coordinate along the 
chain, x,, = n/N. 

The operator i becomes Hermitian if the scalar product of 
two functions, f ( T ) and g(  T ), is defined as 

where the integral of D(T)  means the integral over all the 
conformations of the chain. We can therefore formulate the 
following variational principle for the smallest nonzero 
(positive) eigenvalue y, : 

under the condition 

After simple transformations, Eqs. (2.10) and (2.1 1 ) take 
the form 

under the condition 

The angle brackets denote here averaging over the equilibri- 
um distribution: 

The weighting function P ( r )  vanishes identically in the for- 
bidden layer (see footnote I ) ,  so that an arbitrarily fast 
change of the "trial" function p ( T )  within the confines of 
the forbidden layer makes no contribution whatever to the 
numerator of the right-hand side of (2.12). This function 
can therefore (in the limit 0 )  have discontinuities on the 
forbidden surface. 

Equation (2.12) can be rewritten by introducing the 
maximum relaxation time T,,, = l /yl  

T,,, = min t[cpl, 
w 

where 

t [ cpl so ,2 /D~,  (2.16) 

We have thus t [ p ]  GT,,, for any function g, = p( I') that 
satisfies condition (2.13), i.e., the value of the functional 
t [ p ]  is a rigorous lower bound of the maximum relaxation 
time. The remainder of this paper is devoted to an investiga- 
tion of this functional and to obtaining a (nontrivial) esti- 
mate for T,",, . 

The function p ( T )  can be regarded as a coordinate in 
conformation space fl. Obviously, a, [see (2.17) and 
(2.13) ] can be interpreted here as the mean squared change 
of this coordinate (in the course of the relaxation), and D, 
as the average diffusion coefficient along this coordinate. (It 
is easy to show that the mean squared displacement along 
the coordinate p  over a short time St is equal to 

1813 Sov. Phys. JETP 67 (9), September 1988 A. V. Lomakin and A. N. Semenov 181 3 



(Sg, ') = 20, St. ) In the upshot, Eq. (2.16) acquires a clear 
physical meaning: the diffusion-relaxation time (along the 
coordinate p) is the squared change of the coordinate, divid- 
ed by the effective diffusion coefficient. 

A polymer chain, having a large number of degrees of 
freedom, is characterized by both fast and slow variables. 
Obviously, to obtain a good estimate of the relaxation time it 
is necessary to choose g, to be as slow a variable as possib- 
le. (We emphasize that even a small addition of a fast vari- 
able to the function g, can immediately spoil the estimate, 
i.e., decrease substantially the value of t [ p ]  .) The function p 
must essentially have then discontinuities on the forbidden 
surface 2,, , for in the absence of such discontinuities the 
estimate (2.16) becomes directly related also to the problem 
of phantom-chain relaxation, and can therefore not discern 
the "topological slowing down" of the relaxation process. 

The simplest function with discontinuities on the for- 
bidden surface can be obtained as a generalization of the 
known Gauss topological invariant7 

where r ( x ) ,  O<x< 1, is a vector function that specifies the 
polymer-chain trajectory; x (or  y )  is a coordinate along the 
trajectory, such that the nth bead corresponds to x ,  = n/N 
(see Fig. 1 ), i.e., 

It is convenient to choose the function Q(x,y) in factorized 
form: 

where q,  ( x )  and q2 ( x )  differ from zero only inside the re- 
spective intervals (0, 1/2) and ( 1/2, 1 ) .  The specific form of 
these functions is immaterial in what follows; we put for the 
sake of argument 

So defined, the function p ( T )  is approximately equal to the 
number of turns of one half of the chain around the other. 

The functional t [ p ]  with the "trial" function (2.19) 
can be calculated directly, without any approximations. The 
results of the corresponding (most laborious) calculations 
for both models (Rouse and Zimm) yields little: the value of 
t [ q ]  turns out to be smaller than the longest relaxation time 
in the absence of topological constraints. A new, modified 
trial function q", defined in Sec. 4, is such that direct calcu- 
lation of the functional t[@" ] is already impossible. In Sec. 
5 t[q" ] is calculated by the more effective scaling method. 
The gist of this method, which makes it possible to find t [ p ]  
apart from a numerical coefficient (in the limit as N- oo ) is 
described in the next section. By way of illustration, the scal- 
ing method is used in this section to calculate t [ p ]  with the 
trial function (2.19). 

3. THE SCALING METHOD 

The scaling approach is based on an investigation of the 
laws that govern the conversion of the quantities of interest 
to us by renormalization transformations. For the system 
considered, these transformations correspond to the proce- 
dure of thickening the links of a polymer chain, such that g 
links of the initial chain are joined to form one renormalized 
link (the initial-chain section corresponding to the renor- 
malized link will hereafter be called a blob). Thus, the initial 
trajectory of the polymer chain T { r ( x ) ,  0 < x < l )  goes 
over into a renormalized trajectory r 3 {r' ( x ) ,  O<X( 1 ), 
which is a broken line with vertices at the points 

rn'=rr (nlN') =r (nglN) , n=O, 1, . . . , N', (3.1) 

where N '  is the number of links in the renormalized chain 
(Fig. 2 ) .  The link dimension a is increased by renormaliza- 
tion3: 

Obviously, the macroscopic equilibrium properties of the in- 
itial and renormalized chains coincide: at the same time, the 
topological properties of these chains are, of course, differ- 
ent. I t  is natural nevertheless to expect a sufficiently simple 
common connection between their topological characteris- 
tics. As shown below, one can obtain definite recurrence re- 
lations (i.e., in fact renormalization-group equations) for 
the dimensionless functions in terms of which t [ p ]  is ex- 
pressed. Analysis of these equations will reveal the asympto- 
tic behavior of these functions (and hence of t [ p ] )  as 
N-.  03.  

Let us explain these basic principles using as an example 
the calculation of the function 

where p = p ( T )  is defined by Eq. (2.19). It is easy to verify 
that the function s ( N )  is in itself dimensionless in the sense 
that it does not depend on the dimensional properties of the 
polymer chain (such as a or D,,, i.e., it depends only on the 
number N of the links. 

Let g, ' = g,(T1) be the value of the trial function for the 
renormalized (smoothened) trajectory. We express the con- 
nection between g, and g, ' in the form 

where 6 is defined by (3.4). Obviously, the main contribu- 
tion to is made by the integration [see (2.19) ] over those 
pairs of blobs that approached each other to a distance of the 
order of their size a' = g"2a; integration over trajectory seg- 

FIG. 2. Trajectories of a chain of N = 24 links (solid line) and of a renor- 
rnalized chain of N '  = N / g  = 6 links (dashed line). 
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ments that are far from one another is not very sensitive to 
the renormalization procedure (smoothening of the trajec- 
tory) and makes no noticeable contribution to @. (This and 
the similar statements that follow can, of course be rigorous- 
ly proven.) Thus, apart from inessential corrections, 

where the subscript v numbers the "contacting" (i.e., ap- 
proaching in space) pair of blobs. By virtue of (2.22), the 
blobs in each pair should belong to different halves of the 
chain. (Note that @ can be roughly regarded as the number 
of turns of each half of the chain around the other, a number 
lost upon renormalization. It is quite obvious that these ad- 
ditional turns can appear only at contacts between chain 
sections belonging to different halves. Consequently 4, is 
thenumber of turns of one of the contacting blobs around the 
other. ) 

The quantities G, are determined by the (local) confor- 
mations of the contacting sections of the chain, and are 
therefore independent. Consequently, 

where the angle brackets with zero and unity subscripts de- 
note averaging over the trajectories of the initial and renor- 
malized chains, respectively, while the subscript 4 denotes 
averaging over (unrenormalized) links that were crossed 
out in the renormalization (the averaging is carried out for a 
fixed renormalized trajectory). Obviously (for g %  1 ) , 

It is also easy to show that (G,, )4 is of the order of unity and 
is independent ofg(for g% 1 ). Consequently, the second and 
third terms in the right-hand side of (3.6) depend (forg> 1 ) 
only on the number N/g of links in the renormalized chain: 

Substituting (3.7) and (3.8) in (3.6) we get 

where M is the number of terms in the sum over v, i.e., the 
number of contacts between the halves of the renormalized 
chain. Since the chain is Gaussian, we have 

Thus, 

The recurrence equation (3.10) contains an additional un- 
known functionf, which can be eliminated by differentiating 
(3.10) with respect g for a fixed N/g. As a result we obtain 

We proceed now to calculate the effective diffusion coeffi- 
cient D, for the Rouse model. Substituting ( 1.5) in (2.18), 
we write2' 

where 

is a dimensionless function: w R  = w R  ( N )  .The problem con- 
sists thus of investigating the dependence of w, on N. 

Differentiating the function p [see (219)l with respect 
to the coordinates of the nth bead, we get 

where 

x=x,=n/N, ar,/an=(rn+,-r,-,)/2, 

Hn=IJ(')(r,), E,=rot H(") (r,) . 

The field H'"' ( r )  induced by one half of the chain at the 
other (by the second at the first for a = 1 and by the first at 
the second for a = 2) is defined by the equation 

1 

Substituting (3.15) in (3.14), we obtain (we omit the sub- 
script R in the intermediate expressions) 

where 

u (lv) = a2N2 (z , q: (x,) [k En] 

The cross terms produced when the right-hand side of 
(3.15) is squared vanish after averaging, since the direction 
of the random vector dr, /an is independent of the direction 
of the vector H(r ,  ) or V X H(r,, ); for the same reason, the 
relation 

used in (3.19) is valid. 
We consider now the functions u(N) and u ( N )  in turn. 

Consequently We introduce the quantity u' for the renormalized chain 
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where H,. ' r H 1 ( r , .  ' ) is given by Eq. (3.16) in which the 
trajectory r (y)  should be replaced by rl(y).  If all the links of 
one half of the renormalized chain are far enough from all 
the links of the other half (i.e., at a distance than a ' ) ,  replace- 
ment of r (y) by r ' ( ~ )  hardly affects the value of the integral 
in (3.16), i.e., in this case we have 

In addition, under this condition the vector H,.' changes 
little on going from n' to n' + 1, so that the sum over n' can 
be replaced by an integral. Substituting (3.21) in (3.20) and 
changing to integration over x = n'/N ', we get 

I 

Similarly, transforming (3.18 ) under the same conditions, 
we write 

I 

Comparing (3.22) with (3.23) and taking (3.2) into ac- 
count, we verify that u z u '  in the absence of contacts 
between the chain halves. In the general case 

where u is the contribution due to the contacts between blobs 
belonging to different halves of the chain, we have 

The contribution from one contact is equal to 

= a z  ( (  nlv 
) + , 

where the summation is over all (nonrenormalized) links n 
belonging to the vth contacting blob. Comparing (3.26) and 
(3.18) and recognizing that ( a q / 6 ' ~ ) ~  - 1, we arrive at the 
relation 

Substituting (3.25 )-(3.27) in (3.24) and averaging 
over the trajectories of the renormalized chain, we get 

[ (M ) , is the average number of terms in the sum over Y,  see 
( 3.9) 1 .  Recognizing that 

we obtain the following recurrence equation: 

The asymptotic solution of (3.29) is [cf. (3.10)-(3.12) 1 

The value of v(N) can be calculated in exactly the same 

manner. First, assuming the absence of contacts, we obtain 
the renormalization law for the "regular" part. The result is: 

Adding the "irregular" term due to contacts between the 
blobs, we write 

Calculating the value of (v) by analogy with (u)  ,, we obtain 
the relation 

The asymptotic solution of Eq. (3.52) is 

Substituting (3.33), (3.30), (3.17), and (3.12) in (2.16), 
we get ultimately 

The lower bound of the maximum relaxation time for 
the Zimm model can be calculated in exactly the same way as 
for the Rouse model. The result of the scaling calculations 
for the Zimm model is the following: the main contribution 
to D, is made as before by the term due to the curl of the field 
H [see (3.1 ) 1 ; in the limit N>> 1 the difference from the 
Rouse model reduces only to an insignificant renormaliza- 
tion of the unrenormalizd diffusion coefficient: 

The value of t [ p ]  for the Zimm model is thus determined by 
Eq. (3.34) with Do replaced by D,*. 

We emphasize once more that the estimate (3.34) does 
not reveal a slowing down of the conformational relaxation 
due to topological constraints. The lower value of t [ p ]  is 
obviously due to the fact that the contribution of the second 
term, v, to the value of w turned out to be too large. The high 
value of v, in turn, is obviously to the "incorrect" law (3.3 1 ) 
of renormalization of this quantity, in contrast to the "cor- 
rect" law (3.24) for the quantity u (or the law (34) for p). 
The posited incorrect behavior is supported by the following 
consideration. Consider the right-hand sides of the recur- 
rence equations (3.10), (3.29)' and (3.32). In all cases the 
first terms correspond to the contribution from the spatially 
remote sections of the chain, whereas the second terms are 
due to the contacts (between the two halves of the chain). 
Comparison of these terms shows that the main contribu- 
tions to s and u are indeed made by the contacts; at the same 
time, the quantity v is due mainly to the contribution from 
the spatially remote sections of the chain. It is natural to 
assume that this contribution (and hence the value of v) can 
bedecreased by appropriately modifying (smoothening) the 
trial function. 

4. MODIFIED TRIAL FUNCTION 

Thus, the trial function must be altered so as to ensure a 
correct renormalization of the regular cmtribution to v (i.e., 
the contribution from the remote sections of the chain). The 
simplest way is to replace the true trajectory r (x )  of the 
chain by the smoothened one R ( x )  (the smoothing method 
will be considered below) : 
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The smoothing procedure must meet the following two con- 
ditions: 1) the fact that self-intersection of the true trajector- 
ies is forbidden should automatically apply also to the 
smoothened trajectories; 2)  the smoothening radius should 
not be changed (noticeably) by the renormalization (far 
from the contacts). It follows directly from these conditions 
that the smoothening radius should be variable, i.e., depen- 
dent on x. 

That the first condition is necessary is obvious. Let us 
show that the second condition ensures a correct renormal- 
ization of the regular part of D, . The radius vector R(x, ) of 
the smoothened trajectory is determined by averaging over 
the section r (x )  of the unrenormalized trajectory of the 
chain, in the vicinity of x,: Ix - x,l Sp ,  where p is the 
smoothening radius. Following the renormalization 
(N- N ' = N /g), the number of links that determine the vec- 
tor R(x, ) should decrease by g times: An -pN- An' -pN ', 
since the smoothening radius p remains unchanged. Conse- 
quently, the derivative a R (x,)/ar, should increase by a fac- 
tor g. The derivative d p  /ar, should increase by the same 
factor: 

In addition, obviously, 

Substituting (4.2) and (4.3) in (3.14) and taking (3.2) into 
account, we obtain (for the regular part) 

i.e., the regular part of w, is not altered by the renormaliza- 
tion. Taking footnote 2 into account, we conclude that the 
regular part of the effective diffusion coefficient for the 
Rouse model is invariant to renormalization transforma- 
tions. 

The effective diffusion coefficient for the Zimm model 
is given by [see (1.6) and (2.18)] 

where 

(w, is a dimensionless function that depends only on N). We 
emphasize that both coefficients (preceding w, and w, ) are 
quadratic in the renormalization transformations. Substitut- 
ing (4.2) in (4.5) and recognizing that 

we obtain w, - wk = w,, whence follows an equally cor- 
rect law for the renormalization of the effective diffusion 

coefficient D, for the Zimm model. 
We describe now the smoothening procedure. Let 

R(x, p) = j g P ( x ' - x ) r  (xr) dxr ,  

g,, ( 2 )  =n-"'p-' exp (-z'/~'). (4.7) 

The smoothening radiusp depends on x:p = p (x); we define 
the function p (x )  implicitly as the (only) solution of the 
equation 

P 1 

where E is a fixed number assumed below to be small. Final- 
ly, we determine the smoothened trajectory: 

It is easy to show that the formulated procedure meets the 
conditions ( 1 ) and (2)  above, and furthermore ensures, in a 
certain sense, the maximum possible smoothening of the 
polymer-chain trajectory. 

5. FINAL RESULTS 

We proceed now to a calculation of t  [pM 1. It is easy to 
show that the value of s = s ( N )  hardly changes when p is 
replaced by pM; in particular, all the renormalization rela- 
tions obtained in Sec. 3 remain in force for this quantity. 
Thus, 

We consider now the function w, (N) that character- 
izes the effective diffusion coefficient for the Rouse model. 
By analogy with Eqs. (3.17)-(3.19) we write (we omit the 
subscript R for brevity) 

where 

and the field H'"' ( R )  is given by [cf. (3.16) 1 

Relations (5.3) and (5.4), in contrast to (3.18) and (3.19), 
are approximate: they are valid provided that the fields H(r) 
and VXH(r )  change little within the limits of the trajec- 
tory-smoothening radius. It is easy to verify that the de- 
scribed smoothening procedure certainly ensures satisfac- 
tion of this condition if the parameter E [see (4.8) ] is small 
enough. In addition, it is easy to show that smoothening does 
not lead to any noticeably change of the values of H, (in 
other words, calculations using (3.16) and (5.5 ) yield prac- 
tically the same results). It follows hence directly that u(N) 
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is not sensitive to smoothening, since the right-hand sides of 
(3.18) and (5.3) practically coincide. Thus, the previous 
result (3.30) remains in force: 

u ( N )  =const N'", N B 1 .  (5.6) 

The quantity u = u(N),  on the contrary, is most sensitive to 
smoothening, since ( d  R/dx) (for the smoothened trajec- 
tory) is almost everywhere considerably smaller than (dr/ 

(for the initial trajectory). The law governing the re- 
normalization of u can be obtained with the aid of the reason- 
ing of Sec. 3. As expected, this law turns out to be valid: 

where u = u(N),  u' = v(N/g),  and the term (fi), is due to 
the contacts. If it is assumed that the field V X H in the region 
of the contact is the same as if it were created only by a 
contacting blob, i.e., neglecting the contribution to V X H  
from the remote sections of the chain, the contribution from 
each contact should be approximately the same as that made 
by a chain consisting of g links (i.e., equal to u(g) )a. Multi- 
plying by the average number of contacts, we get 

Equation (3.32) was derived in fact assuming a relation of 
the form (5.8) to be valid. Actually, however, (5.8) is not 
exact,3' since the contribution to V X H [more accurately, to 
(V x H ) 2 ]  from the remote sections of the chain is not small. 
To verify this, we write down the explicit expression for the 
field E ( r ) = V x H ( r ) .  Using (5.5), weget 

Simple analysis of Eq. (5.9) shows that the contribution 
from one blob (of g links) is of the order of 

and the contribution from the remote sections of the chain is 

i.e., is of the same order. 
Exact calculation using (5.9) shows that the remote 

sections actually make a logarithmic contribution: 

where the subscript "ex" means that the field E,, is pro- 
duced only by those sections of the chain which do not be- 
long to the selected (contacting) blob. It is thus necessary to 
write in place of (5.8) 

(B)i=const(Nlg)"'{v(g)+v,,). 

Here 

where the primed sum denotes summation over all the links 
n belonging to one of the contacting blobs. Recognizing that 
the field E,, and the blob conformation should be practically 
independent, we can rewrite (5.12) in the form 

= const ln ( N l q )  Q, (g) , (5.13) 

where 

(it is taken into account in (5.13) that q, ( x )  - 1 ). 
To calculate the function @(g)  we use again the scaling 

method. As a result we arrive at the following recurrence 
relation for this function: 

The solution of (5.15) is of the form 

@ ( N )  =const N'", N > 1 .  (5.16) 

Substituting (5.16) in (5.13), (5.13) in (5.11), and (5.11) 
in (5.7) we obtain a recurrence relation for v: 

whose solution is 

Using (5.18), (5.6), (5.2), (5.1), (3.13), and (2.16) 
we obtain ultimately the value o f t  [ q ~ ~  ] for the Rouse mod- 
el: 

Thus [cf. (5.19) and (3.34) 1, the use of a modified trial 
function has led to a substantial improvement of the estimate 
ofthe maximum relaxation time. For the Rouse model, how- 
ever, the estimate (5.19) lacks substance. 

We obtain now t [pM] for the Zimm model. This calls 
for calculation of w, [see (4.5) 1. By analogy with (5.5), we 
write (omitting the subscript h )  

where, as before, u (N)  oc H Z  while u(N) cc (V x H ) 2 .  (For 
brevity, we leave out the explicit expressions for u and u.) 
Using the scaling method, we obtain the following recur- 
rence equation for the function u(N):  

the solution of which (with logarithmic accuracy) is: 

Using the same method as in the analysis of the Rouse 
method, we can obtain for the v(N) the equation 

where vex has the same meaning as before (i.e., v,, is due to 
the field E,, produced by chain sections that are far from the 
contact r e g i ~ n ) . ~ '  After certain transformations we obtain 
[cf. (5.13)] 
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(5.24) 

Using (5. lo),  we transform (5.24) into 

where 

The function d?(g) satisfies the following recurrence equa- 
tion: 

whose solution is 

$ ( N )  =const ln N ,  N B 1 .  

Substituting (5.28) and (5.25) in (5.23) weobtain theequa- 
tion 

v(N)=v(N/g)+constu(g)+constln(N/g)lng, gBl. 

(5.29) 

Solving this equation with logarithmic accuracy, we get 

v ( N )  =const(ln N )  '. (5.30) 

Using (5.30), (5.22), (5.20), (5.1), and (4.4), we obtain 
ultimately the value of t [ p M  ] for the Zimm model: 

Comparing (5.3 1 ) with ( 1.8) we conclude that intro- 
duction of topological constraints increases significantly the 
relaxation time of a Zimm chain (at N 9  1 ), by at least a 
factor N 'I2(ln N) -2. 

6. CONCLUSION 

Thus, it is shown in this paper that the forbiddenness of 
self-intersection, for a Gaussian chain with hydrodynamic 
interaction, increases noticeably the dynamic exponent [see 
( 1.2) 1 from z = 3/2 to a certain z>2. It is natural to ask: 
should the true dynamic exponent (for a chain with topolog- 
ical constraints) be close to the obtained lower bound 

(Z = 2)  or not? The answer should be apparently in the neg- 
ative for the following reason. In the analysis, the chain was 
arbitrarily divided into two equal halves, and only intersec- 
tion of one half with the other was forbidden. In other words, 
the result (5.31) remains in force even of each half of the 
chain is allowed to be self-intersecting. The result for the 
maximum relaxation time likewise remains unchanged if 
one considers not two halves of one chain but two indepen- 
dent chains, initially entangled with one another (in which 
case the relaxation time is the disentanglement time). It is 
known that the topological state of two (closed) chains, 
each of which can intersect itself but not another chain, is 
completely determined by the value of the Gauss invariant. 
On the other hand, the number of topological states of two 
(closed) chains, which can neither intersect one another nor 
be individually nonintersecting, is immeasurably larger5': 
the Gauss invariant is very weak in this case.' It is therefore 
reasonable to assume that the disentanglement time of two 
(open) chains should be much larger in the second case 
(when self-intersections are forbidden) than in the first 
(when self-intersections are possible). It is thus natural to 
expect the dynamic exponent z to be substantially larger 
than 2. This accords with the result z = 3 obtained in Ref. 5 
on the basis of a~semiphenomenologica1 model. 

"More accurately, it is first necessary to regard Z,, as a forbidden layer of 
thickness 6 near the forbidden surface, and take the limit 6+0 only at 
the very end. 

"Note that the coefficient preceding w R  in (3.13) is invariant to renor- 
malization transformations (if the natural transformation law 
Do-D = D,, /g)  is assumed for the diffusion coefficient of the link). 

"The corresponding inaccuracy in Eq. (3.32) pertains to the second non- 
principal term, and therefore does not affect the final result (3.33). 

4'An additional factor (g/N) appears in (5.23) because the coefficients 
of w R  and w, in (3.14) and (4.4) contain different powers of N. 

5'The problem of the effective classification of these states remains un- 
solved to this day. 
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