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The quantum Hall effect is discussed for charged and neutral superfluid Fermi liquids with an 
order parameter like the one of 3He-A. Owing to the nontrivial structure of this order parameter a 
quantum Hall effect occurs in the absence of a magnetic field. Under the influence of an electric 
field, or its analog for the case of a neutral fluid (a  gradient of the chemical potential) there 
appears, in addition to the longitudinal superfluid current, a transverse current with Hall 
conductivity uxy , which in the weak-coupling approximation takes on half-integer values ( I/ 
2)  (Ne2/h ) in terms of fundamental units. The quantization of the parameter ox,, is the 
consequence of an integer-valued topological invariant of the Bogolyubov matrices in momentum 
space, invariant which in 3He-A takes on the values + 1 or - 1 ,  depending on the orientation of 
the orbital angular momentum vector 1 relative to the normal to the film. As the thickness of the 
film is varied the quantity Nchanges discontinuously at certain values of the thickness. At the 
transition point from one plateau to the next in the graph of the dependence of uxy on an external 
parameter, the gap in the Fermi quasiparticle spectrum vanishes. The relation of this effect to the 
topological Chern-Simons mass term in 2 + I-dimensional quantum electrodynamics is 
discussed. 

1. INTRODUCTION 

In a sufficiently thin film of 3He-A there must occur a 
phenomenon which resembles the quantization of Hall con- 
ductivity in a two-dimensional electron system in a magnetic 
field (Ref. 1). As the analog of an electric field (the role of 
which is played by a gradient of the chemical potential V p )  
acts on the film, in addition to a longitudinal flow of particles 
along Vp,  there must appear a transverse flow (here x and y 
are the coordinates in the plane of the film) 

eters. Thus, for instance, in both systems a plateau in the 
dependence of uxy on any external parameter appears only in 
the case when dissipation is absent. For this to occur in the 
electron system it is necessary that there be no longitudinal 
current whatsoever, i.e., that the Fermi level be situated in 
the region of localized states (see, e.g., Ref. 3 ); therefore for 
the quantization of u,, in this system impurities are neces- 
sary. In 3He-A the absenceof dissipation is guaranteed by the 
coherence of the superfluid motion and the existence of an 
energy gap (in distinction from the three-dimensional case, 
in a 3He-A film the gap in the spectrum does not vanish any- 
where, owing to size quantization); as a result of this the 

where in the weak-cou~ling a~~rox imat ion?  when the mag- 
longitudinal superfluid current is just as dissipation-free as 

nitude of the gap in the fermion spectrum is small compared 
the transverse one, 

to the Fermi energy, the parameter ow, takes on the quan- 
The quantization of the parameter uxy in the usual in- 

tized values (Ref. 2 )  : 
teger-valued quantum Hall effect is guaranteed by the exis- 

o,,=hT/2 h, ( 1.2) tence of an integer-valued topological invariant, related to . . - - 
the first Chern characteristic class (see Refs. 4, 5, as well as 

(here   is an integer, h is Planck's constant), whereas in the 6 ) .  1, 3He-A the parameter ux, is also expressed, at least in 
usual quantum Hall effect with integer quantization the Hall the weak-coupling approximation, in terms of an integer- 
conductivity equals valued topological invariant N, which is discussed in Section 

(here e is the electron charge). 
This half-integer analog of the quantum Hall effect has 

its specific traits. In 3He-A the effect exists without a mag- 
netic field and even without its analog (an angular velocity 
of rotation of the vessel ). Moreover, for the existence of the 
effect the presence of impurities is not necessary. As a result 
the quantum Hall effect in 3He-A turns out to be much more 
amenable to theoretical investigation: the problem can be 
solved completely within the framework of the standard self- 
consistent field method in the theory of superfluidity and 
superconductivity of Fermi systems. 

Nevertheless, many aspects of the quantum Hall effect 
are similar for 3He-A in the weak-coupling approximation 
and for an electron system in a magnetic field, and reflect the 
general principles of quantization of certain physical param- 

- - 

2. This invariant belongs to the second homotopy group rr,, 
which describes the homotopy classes of mappings of the 
two-dimensional momentum space (k,, k,, ) into the space 
of Bogolyubov matrices. Since the Bogolyubov matrix Ham- 
iltonian resembles the Dirac Hamiltonian of two-dimension- 
al electrons, a similar topological invariant exists also in 
2 + 1-dimensional quantum electrodynamics (QED). In 
QED the appropriate Hall conductivity a,, has an exact, 
rather than approximate, expression in terms of N. In order 
to clarify the distinctions between the systems of the type of 
3He-A and those of the type of 2 + 1-dimensional QED, to 
which, for example multiband dielectrics may belong, we 
consider in Section 3 the quantization of u,, in generalized 
QED. 

In QED the Hall conductivity is the coefficient in front 
of the Chern-Simons term in the effective action for the elec- 
tromagnetic field A,  ( a  = 0, 1 ,2)  (see Refs. 7 and 8): 
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Variation of this term with respect to A, leads to an analog 
of the Hall current in the electron-positron vacuum: 

where,!?, = &Ai - diAO is the electric field and the topolog- 
ical invariant N takes on the values + f or - 1, depending 
on the sign of the mass m of the electron: 

In order to demonstrate that in quantum field systems the 
quantity uxy does not depend on the detailed structure of the 
Hamiltonian but is determined by its global characteristic N, 
we consider in Section 3 a maximally possible generalization 
of QED in which all symmetries are omitted with the excep- 
tion of gauge symmetry, which is necessary for the existence 
of the quantum Hall effect in these systems. In Section 4 the 
parameter ox, is computed in a purely two-dimensional BCS 
model for a,, . It is shown that in this model, even in the case 
of a strongly deformed state and even if the size of the gap is 
not negligible compared to the Fermi energy, the parameter 
a,, is expressed exactly by the formula ( 1.2) in terms of the 
topological invariant N. In the two-dimensional case N takes 
on the values + 1 and - 1, depending on the orientation of 
the orbital angular momentum vector 1 relative to the nor- 
mal to the film. It turns out, however, that there is an impor- 
tant distinction between the quantization of the parameter 
ax, in two-dimensional 3He-A and in 2 + 1-dimensional 
QED. In QED the paremeter a,, must not depend on the 
coordinates and time (and must consequently be expressible 
in term of the fundamental constants e and h ) ,  since a de- 
pendence of a,, on x and t would violate gauge invariance: a 
gauge transformation A,++A, + d,p does not change the 
action S ,  in Eq. (1.3) if and only if a,, = const. In 3He-A, 
even if one introduces a fictitious electric charge, the action 
differs from ( 1.3) and is constructed in such a manner that 
gauge invariance does not require that the parameter a,, be 
a fundamental constant. Therefore the equation ( 1.2) seems 
to be a consequence of an additional symmetry of the BCS 
model and should be violated, for example, if a Fermi-liquid 
interaction is switched on. 

In Section 5 the finite width of the superfluid 3He-A film 
is taken into account. It is shown that as the thickness a of 
the film increases the topological charge N varies discontin- 
uously at certain values of a. The switchover from one value 
of N to the next occurs at the intersection with the so-called 
diabolic point (Refs. 6 and 9).  The diabolic point in 3He-A is 
a topologically stable point ( k  ,k :,a0) in the three-dimen- 
sional parameter space (in this case, the space of the param- 
eters k, ,ky ,a), where the energy of the fermionic quasiparti- 
cles vanishes (Ref. 10): E(k,,aO) = 0. As this point, which 
carries a charge of the homotopy group n-,, is crossed, the 
topological charge N changes by the value of the charge of 
the diabolic point. Since at the moment when a takes on the 
value aO, the gap in the spectrum vanishes for some momen- 
tum kO, and the intermediate state becomes dissipative. 
Thus, there are different classes of two-dimensional systems: 
within each class which is characterized by a value of N the 
systems can continuously go over into each other, not pass- 
ing through dissipative states. This is equivalent to the dif- 

ferent &vacua in quantum field theory (see, e.g., Ref. 1 1 ) . In 
systems of the type of QED and in the quantum Hall effect 
the parameter a,, is constant for a given class, thus leading 
to a plateau in its dependence on an external parameter. In 
3He-A this occurs only in the weak-coupling approximation. 
In the general case ox,, depends on the external parameter, 
and as the diabolic point is crossed it will experience either a 
jump or a discontinuity in its derivative. As a rule, among the 
systems of a given class there exists one which is simplest, 
which is easy to compute, and still exhibits all the properties 
of the class. This is analogous to the fact that both the Fermi 
liquid and the Fermi gas belong to the same class of quantum 
fluids. In the case of 3He-A we choose as the simplest system 
the so-called weak-coupling model, in which the atoms with 
spin up are paired independently of the atoms with spin 
down. For each of these projections the Hamiltonian has the 
form 

For low temperatures this system has a complex vectorial 
order parameter, namely the quasi-average 

y (r)  = - i g ( g V * ) = A l ( r ) + i A z ( r )  (1.6) 

(here A,,  A, are real vectors) which describes the pairing in 
a state with the Cooper pair angular momentum L = 1 along 
the vector 

In conclusion we discuss the generalization of the results 
obtained here to the case of systems with other values of L, 
which leads to the possibility of observing the fractional 
quantum Hall effect in superfluid films, too). 

2. THE TOPOLOGY OF3He-A IN MOMENTUM SPACE 

We start from purely two-dimensional 3He-A postpon- 
ing the discussion of the influence of the film thickness on 
the quantization of the parameter a,, to Section 5,  and con- 
sider the simplest model for 3He-A with the Hamiltonian 
(1.5) for each of the two spin orientations. After a standard 
decoupling of the fourth-order term in ( 1.5) and transfor- 
mation to the spinor ($+ ) in the particle-hole space we ob- 
tain for this spinor the following Bogolyubov matrix Hamil- 
tonian (see, e.g., Ref. 12): 

where ,u is the chemical potential. In the spatially homoge- 
neous case when the order parameter A, + iA, does not de- 
pend on the coordinates, the Hamiltonian (2.1 ) reduces to 
the following matrix for the fermionic quasiparticles of mo- 
mentum k, the same for each of the spin projections 

where r are the Pauli matrices acting in the particle-hole 
space, E = k ,/2rn,,u is the quasiparticleenergy in the normal 
state, i.e., in the Fermi gas. 

In the equilibrium state of 'He-A the vectors A, and A, 
are orthogonal to each other and have the same magnitude, 
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and their vector product ( 1.7) determines the orientation of 
the angular momentum vector 1 of the Cooper pair. In the 
3He-A film the vector 1 is normal to the film (for a discussion 
of the order parameters in films of superfluid 3He, see Refs. 
13 and 141, thus the vectors A, and A, lie in the plane of the 
film, and therefore, as required, the matrix HA depends only 
on the 2-momentum k = (kx,ky ). The energy of the fer- 
mionic quasiparticles, obtained by squaring the matrix 
(2.2): 

does not vanish anywhere, since the vector k is in the plane of 
the film. This constitutes the important difference from the 
three-dimensional case, where the energy vanishes for two 
values of the momentum k = + (2mp) ' I 2  1, perpendicular 
to A ,  and A,. 

The Hamiltonian HA reminds one of the Hamiltonian 
of Dirac electrons in 2 + I-dimensional spacetime 

where c is the speed of light. Indeed, Eq. (2.2) becomes Eq. 
(2.4) if one sets A, = cf ,  A, = - c f , ~  = mc2. In the case of 
Eq. (2.4) the fermion energy E Z  = m2c4 + k 2 ~ 2  does not 
vanish anywhere if m #O. Therefore it is natural to expect a 
similarity between the properties of these systems, including 
the quantization of the parameter ax, . However, the matri- 
ces (2.2) and (2.4) differ in the magnitude of the topological 
invariant N, which, as will be shown in the following sec- 
tions, determines the quantization of the parameter a,, . 

In order to determine this invariant we write a two- 
dimensional nonsingular traceless matrix in the following 
generic form, introducing the three-dimensional vector 
m = (m, ,  m,, m,), which depends on k: 

H=tm (k) , (2.5) 

where the vector m does not vanish for any value of k. One 
can then define an invariant which describes the mapping of 
the two-dimensional plane (k,, k, ) into the space over 
which the vector m varies: 

1 
~ = - ~ d ~ k ~ m ~ - ~ m [ ~ * ] .  4n 

d k ,  d k ,  

This invariant does not change under continuous deforma- 
tions of the field m(k)  which do not change the direction of 
the vector m at infinity. 

For the Hamiltonian (2.2) this invariant takes on the 
values + 1 or - 1, depending on the orientation of the vec- 
tor 1 relative to the normal 2 to the film, for arbitrary noncol- 
linear vectors A, and AT For Dirac fermions NQ,,  takes the 
half-integer values + t or - 4 depending on the sign of the 
mass m: 

The difference between the two cases is related to the follow- 
ing circumstance. In 'He-A for k -  cu the direction 
v ( k )  = m(k)/ lm(k) j  of the vector m ( k )  converges to a 
unique value v (  co ) = (0, 0, I ) ,  independently of the direc- 
tion of the vector k. Therefore NA is the degree of the map- 
ping S2 -S ' of a sphere onto a sphere, namely the two-di- 
mensional k-space which is equivalent to a sphere since 
infinity has been compactified to a single point, is mapped 

onto the unit sphere on which the vector v is situated. The 
degree of such a mapping can only take on integer values. 
For Dirac fermions v (k -  cu ) -+ k/(k( ,  therefore the k-space 
is mapped onto a hemisphere, and consequently the invar- 
iant NQ,, takes on half-integer values. 

The difference between 3He-A and QED resides not 
only in the fact that the fermions in these two field theories 
may have different values of the invariant N, but also in the 
symmetry of the interaction of the fermions with bosonic 
fields (the electromagnetic field in QED, and in 3He-A the 
field of the order parameter + the electromagnetic field, if a 
phase of the type of 3He-A is realized in a superconductor). 
Therefore the quantization of the parameter ax,, exhibits dif- 
ferent traits in 3He-A and in QED. We first consider the 
quantization of a,, in QED. 

3. QUANTIZATION OF THE HALL CONDUCTIVITY AND THE 
TOPOLOGICAL INVARIANT IN QUANTUM 
ELECTRODYNAMICS 

In order to clarify the topological character of the Hall 
conductivity ax, in the action ( 1.3) we consider the general 
case of the Hamiltonian (2.51, i.e., give up the restrictions 
imposed by Lorentz invariance and of necessity leading to 
the Hamiltonian (2.41, but we retain gauge invariance. Then 
the Hamiltonian of charged fermions in an electromagnetic 
field has the form (2.5) in which the momentum k is to be 
replaced by the operator fi = - iV - eA: 

In order to find the vacuum Hall current we shall calcu- 
late the action S for the gauge field A, obtained after taking 
the expectation value over the vacuum of fermions situated 
in the classical field A,. This action has the standard form 

where Tr  denotes the trace over all states and 9 is the 
Green's function: 

The extra variable u has been introduced here in order to get 
rid of the logarithm, with the assumption that the depend- 
ence of the external field A, (x,,u) on u is such that 

Considering the classical field A,, = (A,, A,) to be 
slowly varying in space and time, so that in the zeroth ap- 
proximation with respect to the gradients of the field, the 
Green's function has a classical dependence on both the co- 
ordinates and the momenta: 

96; (k,  r, o, t ,  u)=o-eil,(r, t ,  u)-tm(k-eA(r, t ,  u ) ) ,  

we carry out a gradient expansion of the action (3.2), ex- 
pressing it in terms of the Green's function 9 ,,, and its 
derivatives (see, e.g., Refs. 15 and 8) .  In order to obtain an 
action of the form (1.3) it suffices to retain terms which are 
linear in the gradients of the field A,, and consequently in 
the gradients of the function 9 (,, . In this linear approxima- 
tion we have 
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where tr denotes the trace over the Pauli matrices and the 
matrices A denote various derivatives of 3 ,,, 

Substituting (3.5) into (3.7), taking into account that 

we obtain for the action (3.6) 
1 

eZ s = - j d u I  d 2 x  d t  eallaUAaa#li 
0 

After taking the trace with respect to the spin variables and 
integrating with respect to the frequency, which is done 
along the imaginary axis, one gets the topological invariant 
(2.6): 

Since this invariant does not depend on the gauge fields A,, 
the action (3.9) turns out to be quadratic in A, : 

I 

e2 
S = - N J d u J  d ' ~  dt  ean,8.Aa8aA7. (3.11) 

h o  

Integrating over u taking (3.4) into account, we obtain the 
resulting Chern-Simons action ( 1.3 ) 

This action leads to the vacuum current 

Thus, for fermionic systems with a Hamiltonian of the 
form (3.1) which exhibits gauge invariance, the Hall con- 
ductivity 

does not depend on the details of the fermionic spectrum, but 
is determined by its global characteristic-the topological 
invariant N. Therefore, for deformations of the system 
which are not too large, i.e., deformations which don't 
change its global characteristics, the parameter a,, remains 
a constant quantity expressed in terms of fundamental con- 
stants (e and h ) .  To this class of systems belong, e.g., two- 
zone dielectrics (cf. Ref. 16) with the Hamiltonian 

where P is the interband matrix element. This Hamiltonian 
may have a nonvanishing topological invariant if PXP* #0. 
The latter means that there exists orbital ferromagnetism. 
Thus, multiband insulators with spontaneous orbital mag- 
netic moment may exhibit an integer-valued quantum Hall 
effect in the bsence of an external magnetic field. 

4. THE TOPOLOGICAL INVARIANT AND HALL 
CONDUCTIVITY IN 3He-A 

The Hall conductivity ( 1.2) in 3He-A was calculated in 
Ref. 2. However, in Ref. 2 it was not made clear to what 
degree of accuracy the relation (1.2) is valid, i.e., to what 
degree it is sensitive to external perturbations, e.g., to defor- 
mations of the order parameter, which take the film out of 
theA-phase. Here we shall show that in the two-dimensional 
model ( 1.5) for 3He-A, just as in QED, the parameter a,. is 
determined by a global characteristic of the fermionic spec- 
trum and therefore does not depend on deformations of the 
order parameter. 

In order to determine the parameter a,, we introduce 
for the atom of 3He-A a fictitious electric charge e. On the 
one hand this makes the computations easier, since one can 
use gauge invariance. In the final result one may set e = 0. 
On the other hand, this allows one to extend the result to 
superconductors with heavy fermions, where a Cooper pair- 
ing with nontrivial symmetry is also possible (see the re- 
views 17 and 18). In charged 3He-A an electromagnetic field 
A, acts on the fermions and the order parameter field is a 
complex vector field I = A ,  + iA,; the fermionic Hamilto- 
nian has the following expression in terms of these fields 
[compare with Eq. (2.1 ) ] : 

The distinction from the form (3.1 ) for QED is related to the der the transformations 
fact that the matrices T for 3He-A act in the particle hole A,+iA2-+exp(2icp) ( A i + i A 2 ) ,  eA,+eA,+d,cp, 
space, and the particles and holes carry opposite charges. (4.2) 
The gauge symmetry group for 3He-A is the following: the 8 - ' - - o x p ( - - i ~ , c p ) 8 - '  exp(it ,cp) . 

Green's function 3 ( 3 - ' = id, - HA ) does not change un- We must determine the effective bosonic action S of the 
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type of (1.3), which, however, in addition to the gauge field 
A, may contain the order parameter Y. We first find the 
action that depends on the gauge field A, and then, making 
use of the gauge group (4.2) we complement it including the 
dependence on the order parameter. In the approximation 
linear in the gradients of A, we have Eqs. (3.6) and (3.7), 
with the classical approximation to the Green's function, 
Eq. (3.5), has the following form: 

3-'=a-ekA (r, u, t )  -ez3Ao (r, u, t) S~tkAi-~zkA2 

In the sequel, in order to verify that the parameter a,, is 
invariant to different perturbations, we carry out a maximal 
generalization of the Hamiltonian (4.1 ), retaining the gauge 
and Galilean invariances. The latter requirements are quite 
stringent for a Hamiltonian of the form (4.1 ) , since they 
allow only deformations of the order parameter Y, but do 
not allow for an arbitrary momentum dependence, as was 
the case for Eq. (2.5). Just as in (4.3) the vectors A, and A, 
are arbitrary and the vector 1 is defined by Eq. ( 1.7). The 
only restrictions which we impose on A, and A, is that they 
should not be collinear, otherwise the fermion spectrum 
(2.3) vanishes for some momentum and the vector 1 stops 
being determined. 

Substituting (4.3) into (3.7): 

and introducing the notations 

we obtain for the action (3.6) 
t 

S, -xJ d. J ~ ~ d t ( a . ~ , a , a ~ - a ~ a ~ a . a , )  
0 

here the square brackets denote the commutator of the ma- 
trices. 

The trace of the matrices A will be rewritten in the fol- 
lowing form: 

One can show that the momentum integral in the second 
term in Eq. (4.7) vanishes owing to the particle-hole sym- 
metry. Indeed, 

and the last integral vanishes since it is antisymmetric with 
respect to the transformation k - k k i / k 2  which corre- 
sponds to a transition from particles to holes, and under 
these transformations 

as a result of which the integral changes sign. 
The contribution to the action from the first term in Eq. 

(4.7), just as was the case for QED, [see Eq. (3.10)], is 
expressed in terms of the topological invariant N. Finally, 
integrating (4.6) with respect to u, we obtain a term of the 
type of ( 1.3) in the action: 

Thus, the Hall conductivity in the two-dimensional 
charged superfluid system (4.1), is determined in the ab- 
sence of an external magnetic field by the topological invar- 
iant of this system: 

For charged 3He-A in a purely two-dimensional situation we 
have, according to Eq. (2.7), 

-a half-integer quantum Hall effect. For a two-dimensional 
electronic system in a magnetic field half-integer quantiza- 
tion has been discussed in the recent paper, Ref. 19. For two- 
dimensional 3He-A, in which only atoms with one spin pro- 
jection are paired, the effect should be half as large: 

In connection with this we note one technical detail. To 
the action (3.2) in the case of superfluid Fermi fluids one 
must add a factor 4 since in passing from particles to the 
Bogolyubov representation in terms of particles and holes 
the number of states is artificially doubled. We have not tak- 
en this factor into account in 3He-A since it was compensated 
by the summation over the two spin projections. In 3He-A,, 
where superfluidity appears only for one spin component, 
there is no such compensation, and this leads to the factor 4 
in the Hall effect. 

We now discuss the differences between the Hall effect 
in 3He-A and in QED. First, the formulas (3.14) in QED and 
(4.11 ) in 3He-A have different dependences on the topologi- 
cal invariant N. Second, in distinction from the action (3.12) 
for QED, the action (4.10) is not gauge invariant, since it 
does not contain the term ei,A,dJi. This is not surprising, 
since the gauge group (4.2) in the Bogolyubov Hamiltonian 
for 3He-A also contains a transformation of the order param- 
eter. Therefore, in order to reestablish the gauge invariance, 
we must supplement the action (4.10) by adding to it a de- 
pendence on the order parameter. Neglecting spin rotations 
which are not essential for the Hall effect, in 3He-A in a film 
the only degree of freedom of the order parameter is related 
to the phase @ of the Bose condensate: 

Y (r, t )  =const ( j + i y )  esp  [i@ (r, t ) ]  . (4.14) 

However, such a dependence of the order parameter on coor- 
dinate and time in Eq. (4.1 ) can be removed by means of a 
transformation (4.2), as a result of which the term 
- (4e)d,@ is added to the gauge field A,. Therefore Eq. 
(4.10) is transformed into the following gauge-invariant 
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expression 

where 

is the superfluid velocity. 
We call attention to the fact that the action (4.15) is 

even "more" gauge invariant than the action ( 1.3) in QED. 
In charged 3He-A the integrand is gauge invariant, whereas 
in QED only the integral as a whole is gauge invariant, and 
the noninvariance of the integrand in QED dictates the 
quantization of the parameter a,,: this parameter must be 
expressible in terms of the fundamental constants and must 
be independent of external perturbations; otherwise, if the 
external perturbation were inhomogeneous in space or time, 
the coordinate-time dependence of the parameter uxy would 
lead to the action not being gauge invariant. In 'He-A the 
gauge invariance is valid locally, therefore there are no sym- 
metry reasons for the quantization of a,,. In the transition 
to a coordinate system which moves with a constant velocity 
u the superfluid velocity transforms according to the law 
V~HV, + U, therefore one must add to the action (4.15) the 
term 

which vanishes only if the parameter uxy is independent of 
the coordinates. However, for the general case, other than 
the model ( 1.5) this reasoning does not apply. Considera- 
tion of subsequent terms in the gradient expansion leads to 
the result that the integrand in (4.17a) is reproduced up to a 
total derivative of the particle density p: 

even in the case when ax, depends on the coordinates. 
Therefore the quantization rule (4.11 ) is a property of the 
model rather than of 'He-A. 

We now analyze the effect of the action (4.15) on the 
dynamics of neutral 3He-A. In a neutral Fermi liquid one can 
set the charge e = 0 in the action (4.15); the gauge fields 
then vanish, but there remains a response of the particle den- 
sity and current density to changes in the order parameter: 

6s N 1 
p(F, = - = - ei jd ius j  = - 1 rotv., 

2h 
(4.18a) 

6(eA,)  2h 

[in Eq. (4.18a) we have retained the expression curl v, , in 
spite of the fact that in 3He-A it vanishes on account of Eq. 
(4.16) : in 3He-A, the superfluid flow may be nonpotential] . 
Such terms in the density do not influence the equation of 
motion, since, on the one hand, such anomalous contribu- 
tions satisfy the conservation law 

and, on the other hand, the current j,,, is an exact spatial 

derivative and therefore does not change the equations for 
the momentum. 

The hydrodynamical action functional for a 3He-A film 
at T = 0, in the quadratic approximation in @ has the form: 

where c is the speed of sound. The variation of the second 
term with respect to @ yields zero. Therefore the Hall term 
has no influence whatsoever on the dynamical equation for 
@, and the equation has the same wave-equation form as in 
the usual superfluid liquid: 

Nevertheless, if one excites oscillations of the superfluid ve- 
locity v, along a direction, then in a transverse direction 
there must appear a particle flow, which according to Eq. 
(4.18b) has the current density 

5. DIMENSIONAL QUANTIZATION OFTHE HALL 
CONDUCTIVITY IN A3He-A FILM AND THE DIABOLIC POINTS 

The results of the preceding section refer to purely two- 
dimensional 'He-A. On the other hand, for three-dimension- 
al 'He-A a current similar to ( 1.1 ) , or what amounts to the 
same, (4.22) was derived by Mermin and Muzikar (Ref. 
20) : 

For a thick film of thickness a much larger than the interato- 
mic distances, this current, integrated over the thickness of 
the film corresponds to the Hall current ( 1.1 ) with param- 
eter 

which substantially exceeds the parameter a, for purely 
two-dimensional 3He-A. Therefore, as the thickness a of the 
film increases, a, must increase, i.e., the topological invar- 
iant N in Eq. (1.2) varies. But N cannot vary continuously. 
Consequently discontinuities must appear. 

We consider such a discontinuous variation of the phys- 
ical parameter on the simplest model, since the details of the 
model will only influence the values of the thickness of the 
film at which jumps occur in N, but not the topological char- 
acter of the process, nor magnitude of the jump. As a model 
we consider a three-dimensional Bogolyubov Hamiltonian 
(2.1 ) with transverse (i.e., along the z axis) dimensional 
quantization. Then for each level n and transverse motion 
with energy a,  there exists a distinct Bogolyubov matrix 

R,,=rm, (k)  =en ( k )  t :+A, ,k~~-A~nk . t~ ,  (5.3) 

where the spectrum of the two-dimensional Fermi gas at the 
level n has the form 

en ( k )  =k2/2m+an-p. (5.4) 

In the simplest case of a mirror reflection, when the normal 
derivative of a Bogolyubov spinor vanishes at both surfaces 
of the film, a, = ; (an/a) ' .  The orbital angular momentum 
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vector G,~ 

will be chosen to be the same for all levels, which must be 
true owing to the combined rotation and gauge symmetry of 
the A-phase. However, in magnitude the order parameters f / h  
A,, + iA,, must not be the same for all the levels; in particu- I 

I I lar, they may vanish for those levels for which the energy is 
above the Fermi surface, and which therefore do not contain I 

any particles. 
Since in such a model fermions on different levels do not o a 

interact with each other' One can for each level FIG. I .  The dependence of the Hall conductivity ow in a film of super- 
separately. The contribution to a,, from each level consists fluid 'He-A on the thickness a of the film for T = 0. calculated in the BCS 
of two parts: the contribution of the topological invariant N, model in the limit when the order parameter is negligible compared to the 

of the level, which upon summation over the levels yields Fermi energy. The lower curve shows the character of the dependence of 
the gap in the spectrum of fermionic quasiparticles on the thickness of the 
film. A discontinuity in ox, occurs fo; those values of a for which the gap 
in the spectrum vanishes: for those values of a one of the levels of the 

( 5.6) transverse dimensional quantization in the film crosses the Fermi surface. 

and the contribution from Eq. (4.8). The topological invar- 
iant N, has the form 1 am, dm, N =  - 1 d ~ ' e ' ~ ' l m . ( ~ )  I-3mn [__I. (5.9) 

~,=iP(~-a,) (5.7) d q  d q  

(here 0 is the Heavisidt! step function), i.e., contributions to 
(5.6) come only from levels for which the energy a, of 
transverse motion is below the Fermi surface. The contribu- 
tion from Eq. (4.8), on the other hand, differs from zero 
only for a, >p ,  since for a, < p  it vanishes according to the 
symmetry of (4.9), wherep should be replaced by p - a , .  
This contribution is, however, proportional to the order pa- 
rameter on levels on which there are no particles, conse- 
quently it vanishes if the levels do not interact. Therefore, in 
the limit of noninteracting levels the quantization (1.2) 
holds, where Ncoincides with the number of levels below the 
Fermi surface. In the limit of large thickness of the film the 
number of such levels converges to k,a/2~,  yielding the val- 
ue of the volume effect (5.1) and (5.2). 

The discontinuity in N occurs when one of the levels 
passes through the Fermi surface. At this instant the fermion 
energy on this level 

vanishes for k = 0 (see the figure, which shows the depend- 
ence of the minimal energy of the fermionic quasiparticles on 
the film thickness; the energy can vanish only at the discon- 
tinuity), thus the transition between two values of N is real- 
ized via a dissipative state. 

We consider this transition in the three-dimensional 
space of the parameters q = (k, , ky , a, ). The energy (5.8) 
vanishes at the point q, = (0,0, p)  in this three-dimensional 
space. The zero in the energy is topologically nonremovable: 
small movements can only change the position qo of this 
point where the energy vanishes, but cannot destroy this 
zero. This is a diabolic point (Refs. 6, 9 and 10) where two 
branches of the spectrum of the Bogolyubov Hamiltonian 
touch each other: the positive spectrum of the particles and 
the negative spectrum of the holes. The diabolic point has a 
topological invariant which guarantees its topological stabil- 
ity. This invariant is the degree of the mapping of a sphere a 
centered at the point qo in three-dimensional q-space onto 
the sphere of the unit vector v,  (q): 

For the Hamiltonian (5.3) N = 1. Now it is understandable 
why a discontinuity of Noccurs as a level passes through the 
Fermi surface: the integral ( 2 . 6 )  over the two-dimensional 
plane (k, ,k, ) forp < a ,  differs from that forp > a, exactly 
by the topological charge of the diabolic point, and a transi- 
tion through the diabolic point automatically means a com- 
pulsory transition through a dissipative state. A similar 
switchover of the topological charge in the spectrum of mag- 
netic Bloch wave-functions was described by Novikov in 
Ref. 6. 

The same situation occurs for a deformation which 
changes the direction ofthe vector 1. According to Eq. ( 1.7), 
when the sign of 1 changes, the order parameter passes 
through a state with collinear A,  and A,. According to Eq. 
(2.3) in this state the energy also vanishes for some momen- 
tum. In this case the momentum is not zero, but is perpendic- 
ular to the unique real order-parameter vector in this inter- 
mediate state, which corresponds to the polar phase. Such a 
zero of the energy is also a diabolic point. As a result of 
passing through this point the parameter a,, Eq. (4.12) 
changes its sign discontinuously. 

Let us analyze how the results of this section would 
change were one to include an interaction between the levels 
of transverse motion, as a result of which there appears an 
off-diagonal order parameter Y,, , corresponding to pairing 
of particles from different zones. In this case in place of the 
diagonal matrix H,, in Eq. (5.3) there appears the nondia- 
gonal matrix 

The topological invariant which for the case of independent 
levels was equal to N = Z,N, [see Eq. (5.6)] can be ex- 
pressed in the general case in terms of the matrix H,, in the 
following manner: 

where 
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A change of N occurs when one passes through the diabolic 
point, where the determinant det H vanishes (see Refs. 9 and 
10). 

The parameter a, again consists of two contributions, 
one of which can be expressed in terms of Naccording to Eq. 
(1.2), and the other leads to the generalized expression 
(4.8) which no longer vanishes. The latter contribution is, 
however, small of order A/,u and is effectively nonzero only 
in a narrow region near the discontinuity of N, where it 
smoothes the discontinuity in oxy . 

6. CONCLUSION 

The quantization of the Hall conductivity uxy in a 
3He-A film is, according to Eq. (5.6), the result of the pres- 
ence of the topological invariant N, Eq. (2.6) for each of the 
zones which appear as a result of the dimensional quantiza- 
tion. Each of the quantities N, takes the values 1 or 0 de- 
pending on whether the level n of the transverse quantiza- 
tion lies below or above the Fermi surface. In principle 
systems with other values of the topological charge are possi- 
ble for each of the zones. As we have seen, in QED N = 1/2. 
In superfluid Fermi systems the topological invariant N, 
can also have values which differ from one or zero. For ex- 
ample, if a Cooper pair has a projection of the orbital mo- 
mentum m on the z axis (for 3He-A m = + 1 or m = - 1 
depending on the orientation of the vector l ) ,  then the Bogo- 
lyubov Hamiltonian has the form 

3He-A, when one of the levels a, of the transverse motion 
has just barely passed below the Fermi surface and the order 
parameter A,, + iA,, corresponding to the formation of 
Cooper pairs at that level has not yet been finally formed. In 
principle, near a half-integer jump, analogues of the Laugh- 
lin states (Ref. 21) of the fractional quantum Hall effect 
could also be formed. 

For an experimental observation of the quantum Hall 
effect in a 3He-A film, the film must be sufficiently thin; oth- 
erwise the singularities in the parameter uxy would be 
washed out by thermal effects, since the gap in the fermionic 
spectrum decreases as the thickness of the film increases (see 
the figure). In thin films of size smaller than the coherence 
length, the superfluid triplet state of 3He-A is suppressed by 
diffuse scattering on the surface roughness of the substrate. 
Therefore a high degree of smoothness of the substrate is 
required. In this direction a hope-inspiring fact is the obser- 
vation (Ref. 22) that covering the substrate with mono- 
layers of adsorbed 4He increases the specularity of surface 
reflection. leading to an increase in the superfluid density of 
a 3He-A film. 
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