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The region of stable magnetic superfluid transport in theA and B phases of He3 is determined. The 
stability criterion is chosen to be the condition that the energy of small static fluctuations be 
positive-definite near states with magnetic-moment component flows. This criterion is a 
generalization of the Landau criterion in superfluidity theory. The critical gradients are 
determined for cases when the transport is determined by the gradient of the order-parameter 
rotation angle in spin space (spin transport) or by the gradient of the phase of the magnetic- 
moment precession (precession transport), as well as for the general case of gradients of both 
angle variables. Spin-dynamic equations are derived, averaged over the fast changes of two angle 
variables: the rotation angle of the order parameter and the precession phase. The solution 
obtained for these equations corresponds to the regime of dynamic suppression of the magnetic 
moment, in which spin pumping by a rotating magnetic field maintains the magnetic moment far 
below the equilibrium. When such a regime is produced in a chamber with He3, a magnetic 
superflow should be produced in a channel leading out of this chamber. 

1. INTRODUCTION 

"Magnetic superfluidity" is defined in the present pa- 
per as nondissipative macroscopic spin transport resulting in 
a deformed state of a magnetically ordered medium with 
spatial rotation (twisting) of the order parameter in spin 
space. The spin flow is similar in this case to mass superflow 
(nondecaying flow) in a superfluid, and also to elastic flow 
of the torque in a twisted solid. ' Similar phenomena are pos- 
sible in an ordered medium with a definite topology of the 
order-parameter space. The justification for its existence is 
the presence of a soft (i.e., almost-Goldstone) mode de- 
scribed by a pair of canonically conjugate variables of the 
particle-number-phase (or moment-angle) type. The ener- 
gy can include in this case small terms invariant to the phase 
shift (rotation) and violating the particle-number (mo- 
ment) conservation law. Although these terms alter sub- 
stantially the character of the nondissipative transport (they 
make states with flows inhomogeneous and reduce them in 
the limit to chains of isolated solitons or domain walls), they 
admit of the existence and observation of the phenomenon if 
they are small enough. ' 

As applied to superfluid He3, magnetic superfludity 
was discussed by us starting with Refs. 2 and 3, and with 
allowance for spin nonconserving processes starting with 
Ref. 4. The role of these processes was analyzed earlier for 
magnetically ordered states of a ~olid.~.%agnetic superflu- 
idity in superfluid He3 was initially discussed mainly for the 
A-phase in connection with experiments on longitudinal 
magnetic r e l a~a t ion ,~  which were interpreted with the aid of 
this phenomenon. Recently, however experimental7.' and 
theoretical9 studies were made of superfluid transport of the 
magnetic moment in the B phase. This phenomenon was first 
observed directly in experiment in a continuous regime, and 
not only the flux and phase, but also the phase slip were 
observed. The magnetic superfluidity observed in the B 
phase has a number of properties that distinguish it from the 
phenomenon investigated earlier in the A phase. What was 
considered in the A phase was a longitudinal mode connect- 
ed with longitudinal NMR, but in the B phase was investi- 

gated a transverse mode (connected with transverse NMR) ,  
the angular variable for which is not the order-parameter 
rotation angle, but the precession phase, i.e., the rotation 
angle of the transverse component of the magnetic moment. 
Spatial twisting of this phase gives rise to a flux of a canoni- 
cally conjugate quantity (different from the longitudinal 
component of the spin), called in Ref. 10 the precession an- 
gular momentum. An investigation of the critical gradients 
for nondissipative transport of the precession angular mo- 
mentum has shown that, in contrast to transport of the longi- 
tudinal component of the spin moment, it is possible only for 
large enough deviations from equilibrium (the angle 
between the precessing angular momentum and the magnet- 
ic-field vector must exceed 104"). ''. 

The present paper is devoted to further study of mag- 
netic superfluidity within the framework of the Leggett-Ta- 
kagi macroscopic spin dynamics eveloped for the superfluid 
phase of He3 (see Refs. 12-14 and the bibliography therein). 
The principal assumption of this theory, valid so long as the 
significant scales are large compared with the microscopic 
scales (of exchange origin) over which the order-parameter 
structure is established, is that the entire motion reduces to 
rotations in three-dimensionai spin space while the order 
parameter itself retains a rigid structure. Since this theory is 
universal for magnetically ordered media,'"he present in- 
vestigation of magnetic superfluidity in He3 carried out 
within its framework can be easily extended to include other 
magnetically ordered media. 

The structure of states with magnetic supercurrents is 
analyzed by investigating the corresponding trajectories in 
the space in which the order parameter varies-the space of 
three-dimensional rotations. Besides the previously investi- 
gated states with twisting of only the order-parameter rota- 
tion angle or only the precession phase, we consider also the 
more general case of twisting of both angle variables. The 
stability of the magnetic supercurrents is investigated on the 
basis of a generalized Landau criterion, by checking the posi- 
tiveness of the quadratic form that determines the energy of 
small static fluctuations. The critical precession flux gradi- 
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ents previously determined in this manner for a homoge- 
neous long channel'' increase jumpwise, at a spin-moment 
inclination angle 104, from zero to value of the order of the 
reciprocal dipole length. In experiment,'.', however, after 
the angle 104" was reached, a rather smooth rise of the criti- 
cal gradient was observed. A possible cause of this discrep- 
ancy was assumed in Ref. 10 to be the difference between the 
value of the experimentally determined deflection angles in 
the chamber where the spin is pumped and in the channel 
where the magnetic supercurrent is observed. This explana- 
tion is qualitatively confirmed by the more detailed theory 
developed in the present paper. 

The method of producing magnetic supercurrents of 
various types is assumed in this paper to be continuous spin 
pumping by a rotating R F  field in a homogeneous liquid 
contained in a chamber from which the spin moment is ex- 
tracted through some channel (such a geometry was used in 
the experiments of Refs. 7 and 8, but the liquid was not ho- 
mogeneous because the applied constant magnetic field was 
not uniform). To  this end, we derive in the Appendix dy- 
namics equations that take into account dissipation and 
averaging over fast oscillations of the angle variables. They 
differ from Fomin's analogous  equation^'^.'^ in that account 
is taken of the contribution of the precession-phase fast oscil- 
lations, and also of the nutation oscillations (tipping of the 
chosen physical axis away from the precessing spin mo- 
ment). On the basis of the derived equations we demonstrate 
the possibility of dynamically suppressing the moment in 
both the B and A phase: by applying an R F  field of required 
intensity it is possible to maintain a state in which the mag- 
netic moment is significantly lower than the equilibrium val- 
ue. 

2. EQUATIONS OF MACROSCOPIC SPIN DYNAMICS 

All the phenomena considered in the present paper 
evolve over scales considerably exceeding the exchange 
scales over which is established the tensor structure of the 
order parameter (the coherence length). This permits the 
use of a dynamic theory in which the entire evolution of the 
order parameter reduces to rotations in three-dimensional 
spin space. A discussion of a theory of this type, which is well 
known in magnetism and is based in the idea of spontaneous 
symmetry breaking, can be found in the review by Andreev 
and MarchenkoI5 and in the literature cited there. The dy- 
namic behavior of the system is described by three pairs of 
canonically conjugate moment and angle variables 
( M i  - p , ,  i = 1,2,3): 

where y is the gyromagnetic ratio, F the free energy, and f a 
dissipative function which is a quadratric form of the func- 
tional derivatives SF/SM, and SF/Gpi .  As the angle vari- 
ables, followi~g Fomin,I2-l4 we introduce the angles a, 
@ = a + y and fl ( a ,  fl and y are the Euler angles). The 
moments canonically conjugate to them are respectively: 
P = M, - M, , M ,  and Mg , where M, is the projection of 
the moment M on the z axis of the immobile coordinate 
frame, M,- is the projection of M on the 6 axis of the moving 

coordinate frame, and Mp is the projection of M on the axis 
perpendicular to the axes z and 6. We shall consider the case 
of a strong magnetic field H along the z axis, when the com- 
ponents of the total free energy F = F, + F, + G, viz., the 
energy of interaction with the alternating magnetic field H, 
(having projections H,  cos p and H, sin p along thex and y 
axes), 

F L = - M H , = - [ M , ( I  - cos P)  - P cos P~ 
sin 

sin p 

and the ordering energy G = F, = V, which includes the 
gradient energy F,, (Ref. 16) : 

Here x is the magnetic susceptibility (in the case of the A 
phase-the susceptibility in a direction perpendicular to the 
spin vector d ) .  If only the energy Fo is retained in the free 
energy and the dissipation is neglected, the motion of the 
order-parameter spin space reduces to superposition of two 
rotations: rotation around the moment vector M with angu- 
lar velocity w, = yM /X in a moving coordinate frame that 
rotates (precesses) in turn around the z axis at the Larmor 
frequency w, = yH (Ref. 17). Since the energy Fo is inde- 
pendent of the angles a and @, the moments conjugate to 
them P and M, are integrals of the motion. On the other 
hand, the angle fl and the moment MB can execute oscilla- 
tory motion corresponding to nutation. Only two angles, a 
and @, can be "fast" variables,'%.e., can vary rapidly and 
monotonically in space and in time (become twisted), ex- 
ecuting a large number of complete 277 rotations. Of particu- 
lar importance to us is motion without nutation, when the 
directions of the axis 6 and of the moment M coincide, in 
which case f l =  const, MB = 0, M = M, 
P = M ( C O S ~ ~ -  I ) ,  aa/at= - a , ,  d w a t = ~ ,  -w,. 
The angle @which characterizes the resultant rotation of the 
order-parameter spin space in the labortory frame, and in 
the limit 8 - 0  it becomes the angle of rotation about the z 
axis. If the corrections due to the ordering energy G are tak- 
en into account in nutation-free motion, the moments P and 
M, cease to be integrals of the motion, and oscillations of the 
angles a and @ as well as nutation of the angle fl appear 
against the background of the constant fast twisting of a and 
@. Both the oscillations of a and @ and the nutation offl are 
small in terms of the parameter R / w ,  (0 is the longitudinal- 
NMR frequency). A special case is the homogeneous B 
phase, for which the dipole energy is independent of the an- 
gle a (of the precession phase), so that the moment Pconju- 
gate to a (called the precession moment in Ref. 10) remains 
an exact integral of the motion for any ratio fZ/w, .IJ An 
entire class of exact solutions in an arbitrary magnetic field 
was therefore obtained for the homogeneous B phase.'"-". 
We shall consider hereafter states with spatial gradients of 
the two fast variables a and @, in both the A and B phases." 
For these states, motions with twisting of a and @, obtained 
without allowance for the ordering energy and for dissipa- 
tion, can serve as the starting point for the construction of a 
perturbation theory in W w , ,  which uses them as a zeroth 
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approximation. Averaging here over the oscillation periods 
of the fast variables, we obtain equations for the averaged 
values of a and @, and also of the moments P and M. These 
equations are derived in the Appendix. Taking into account 
the spin-pumping interaction with the rotating transverse 
magnetic field, the equations take the form 

d a 
-=- 

y dF 
OL + - - + yHl ctg P sin (a-cp) , a t M au (4 )  

d P  
-= - V jp+yMH, sin cos (a-cp) -Dp,  

at 
( 5 )  

twisting. Since the entire motion of the order parameter in 
the considered dynamic model reduces to rotations, it is rep- 
resented fully enough in the space of three-dimensional rota- 
tions introduced by the well-known method.25 To  each rota- 
tion through an angle 8 about the axis specified by the unit 
vector n there corresponds a point on a sphere of radius n-, 
with a radius vector directed along n and with a length equal 
to the angle 8. Diametrically opposite points on this sphere 
correspond to one state. The angle 8 and the components of 
the vector n are connected with the Euler angles by the rela- 
tions 

where u = cosp,  D p ,  and DM are the dissipative terms, 
while H, and p are the amplitude and angle of the rotating 
transverse magnetic field (H, = H, cos p ,  H, = H, sin p )  . 
The fluxes of the moment P and of the precession moment P 

are determined by the expression for the averaged gradient 
energy, in which only the fast-variable gradients have been 
retained: 

where the rigidity coefficients A, B, and C depend on the 
precession angle fl and on the orientation of the gradients 
relative to thez  axis (i.e., are generally speaking tensors, see 
Eqs. (A.  14) and (A. 15), as well as Ref. 14). In this set of 
equations, the dissipative terms determined by Eqs. (A.  12) 
and (A. 13) are retained only in the equations for the mo- 
ments. In the equations for the angles, these terms appear in 
first order in the energy G and vanish after averaging. The 
main difference between Eqs. (4)-(7) and the previously 
derived average equations is that the later were derived with 
averaging over the oscillation periods of the two fast angle 
variables (cf. Refs. 12 and 22). 

The procedure for averaging the spin-dynamics equa- 
tions can be carried out also if the angle oscillations are not 
small against the background of their monotonic variation. 
In this case the almost linear change of the angles in time and 
space goes over into a sequence of abrupt steplike changes of 
the angle (solitons or  domain walls), which separate con- 
stant-angle regions. The averaged equations describing the 
motion of such a soliton chain in terms of its density and 
velocity (the hydrodynamic theory of a soliton chain) were 
derived and investigated in Refs. 23 and 24 for the longitudi- 
nal mode of 3He-A. 

3. STRUCTURE OF STATES WITH MAGNETIC 
NONDlSSlPATlVE FLUXES, AND THEIR STABILITY 

In the absence of dissipation and spin pumping, Eqs. 
(4)-(7) have stationary solutions with linear variation 
(twisting) of the angles a and @ in time and space at con- 
stant velocity. We introduce the order-parameter space and 
trace the trajectories in this space under conditions of this 

cos 0=='/2(cos 0 cos p icos  m+cos $-I) ,  (10) 

sin (P/2) cos (a-@/2) 
n, = 

(I-cos2 (0 /2 )  cos2 (P/2) ) '" 

sin @/2) sin (a-0/2)  
nu = 

(1-cos2 ((1,/2) cosZ(P/2) ) "' ' 
cos (P/2) sin (@/2) 

n, = 
(I-cos2 ( 0 / 2 )  cos2 (P/2) ) '" 

The space of three-dimensional rotations is isomor- 
phous to the total space of the B-phase order-parameter 
which is a rotation matrix with directrix n. On the other 
hand, for simple antiferromagnetic ordering with one vector 
d, just as in an A-phase with fixed orbital vector 1, the true 
order-parameter space is narrower than the rotation space, 
since the group of rotations around the vector d does not 
alter the state of the liquid. Therefore all the changes of the 
vector d are exhaustively mapped by any diametral section of 
the rotation-space sphere, a section ismorphous to the sur- 
face of the three-dimensional sphere traced by the end point 
of an arbitrarily directed vector d. The order-parameter vari- 
ation space is shown in Fig. 1. According to ( 10) and ( 1 1 ), 
when a is twisted the angle 6 does not change, and the direc- 
trix n rotates around the z axis. The trajectories of this mo- 
tion are circles of arbitrary radius with centers on the sphere 
diameter and located in planes perpendicular to the z axis 
(Fig. l a ) .  If only the angle Q, is twisted, with a = const, the 
trajectory "pierces" the sphere many times, returning each 
time to a diametrally opposite point (Fig. l b ) .  Figure l c  
shows an example of a trajectory with simultaneous twisting 
o f a  and @. 

The fact that nondissipative transport of the spin-mo- 
ment components takes place in states with twisting of the 
angles a and cP follows directly from Eqs. (5 )  and (7 )  for the 
balance of P and M and from expressions (8 )  for the fluxes. 
The dissipative process that eliminate the twisting is the 
phase loss, in orther words the phase slipping, i.e., a change 
of the phase advance on some section of the channel length 
by 2n- or by a multiple of 2a.  In a channel with macroscopic 
transverse dimensions, the phase slipping is effected by mo- 
tion of the vortices across the channel.' The nondissipative 
transport of the spin moment is stable, meaning also observ- 
able, if the phase slipping is accompanied by a surmounting 
of a sufficiently high activation barrier. Such a barrier can be 
of topological origin if the contour for the trajectory with the 
twisting cannot be contracted by continuous deformation 
(homotopy) into a point." I t  is seen from Fig. 1, however, 
that all the trajectories with twisting of a and Q, have no 
topological stability. The twisting of a (Fig. l a )  is always 
eliminated by contracting the contour into a point. On the 
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FIG. 1. Twist trajectories (thick lines with 
arrowheads) of the precession phase a and of the rota- 
tion angle @ of the order parameter in the order-pa- - 

P = O  O < j 3 < n  J3=Z rameter space (three-dimensional-rotation space). 
The single-cavity hyperboloids are the surfaces 
f i  = const: a )  twisting of a; b)  twisting of @ for var- 
ious f i  c)  twisting of a and Q, @ = 2a for various fi. 

other hand, twisting o: @ with repeated "piercing" of the 
sphere is either eliminated completely by homotopy if the 
number of piercings is even (the process of contraction of a 
contour with two piercings by a @ - +  n- transition is clear from 
Fig. lc ) ,  or is transformed by homotopy into a contour that 
pierces the sphere once if the number of piercings was initial- 
ly odd. We, however, regard dissipative transport as a mac- 
roscopic phenomenon, whereby in a channel of macroscopic 
length the angle is twisted a large number of turns. Yet twist- 
ing by only one turn (one piercing of the sphere) over a 
macroscopic length corresponds to a vanishingly small gra- 
dient (transport velocity) and is of no interest to us. Such a 
topological analysis, however, is valid only in the presence of 
complete degeneracy in the order-parameter space consid- 
ered by us. There exist energies that lift this degeneracy and 
delimit a narrower space in which certain twist trajectories 
become topologically stable. Thus, magnetic-anisotropy en- 
ergy in the A phase stabilizes the spin supercurrent in longi- 
tudinal geometry with twisting of @ and with a moment M 
directed along the z axis (0 = 0) .  There can exist also 
barriers of nontopological origin, I.'' for example in the case 
of mass superflow in the A phase.'6 In either case, the neces- 
sary condition for stability is that the state with the nondissi- 
pative flow correspond to the minimum of a suitably chosen 
thermodynamic potential. This reduces to the condition that 
the quadratic form for the energy of the static fluctuations be 
positive-definite in the vicinity of the state with the flow. 
This condition has already been used earlier, ','"it is a gener- 
alization of the known Landau criterion, and will be used 
later on in this paper. In this approach to the stability prob- 
lem, the state with the flow is treated as a quasi-equilibrium 
one. It is actually a stationary dynamic state, in which dissi- 
pative loss of spin is compensated for by external pumping. 
This loss, however, is noticeable only in a scale on the order 
of the macroscopic length of the channel (see the discussion 
in Ref. 1 ). The method employed is therefore a check on the 
stability to local phase slipping, which takes place over a 
scale that is small compared with the channel length. If the 
stability condition is violated, the phase-slipping processes 
not suppressed by a high activation barrier lead to an expo- 

nential damping ofthe spin flow with increase of the distance 
from the channel end through which the spin is pumped. 

4. NONDlSSlPATlVE PRECESSION TRANSPORT 

An example of magnetic superflow is precession-mo- 
ment transport in the B phase, investigated in Refs. 7-10. In 
experiments on nonlinear transverse NMR, the spin preces- 
sion is excited by a pulse that rotates the moment M through 
a definite angle without noticeably changing its absolute val- 
ue. According to the theory,I2-l4 the ensuing relaxation is 
such that there are likewise no noticeable deviations of M 
from its equilibrium value xH. The reason is that the dipole 
energy singles out those trajectories for which the angle @ 
ceases to be a rapidly changing variable (d@/dt  = 0 )  and 
w, -w, (M-, H) . The stationary value of @ is determined 
from the non-averaged equation that leads to a zero change 
of the moment M6 zM.  The resultant dynamics has one de- 
gree of freedom corresponding to the angle-moment vari- 
able pair a and P =  M, - M = M ( u  - 1)  Eqs. [ ( 4 )  and 
( 5 )  1. The spatial twisting in the fast variable, in the preces- 
sion phase a, corresponds to nondissipative transport of the 
precession moment P. 

Following Ref. 10, we determine the critical value of the 
gradient V a  = h, at  which twisting in a becomes unstable. 
The initial equation for the free energy is 

w 
F=Fo+F,+V = - - (M+P) H S 1 I Z A ( u )  ( V a ) 2 + V  ( u )  

2x 

It is recognized here that 

and the only gradient remaining in Eq. (9 )  is V a  with re- 
spect to the fast variable. For the angle @ in the dipole energy 
for the B phase, 

we must choose its stationary value determined, with dissi- 
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pation neglected, by minimizing Vwith respect to @, i.e., by 
the condition dv/LJ@ = 0. It follows hence that 

'/2-u 
(u > -'/,) : cos (P = - 

I f u  ' V(u)=o, for$<104O 

To check on the stability one must choose a thermody- 
namic potential 

that has a minimum at the specified values of 
P = M ( u o  - 1 ) and Va = h, . This is done by a suitable 
choice of the Lagrangian multipliers w, = - yaF/aP 
(precession rate) and j, = - yJF/JVa = A  ( u o ) h a  
(precession-moment flux). It is easy to verify that the fluctu- 
ations of M and @ always increase F, so that it sufficies to 
retain in the fluctuation energy only the terms quadratic in 
the small deviations u = u - u, and Va' = Va - ha (we 
omit hereafter the zero subscript of u,);  

The fluctuation energy is positive-definite, i.e., the twisting 
in a is stable so long as ha does not exceed the critival value 

Since the dipole energy and all its derivatives vanish at 
/3 < 104", we have h, = 0 and the nondissipative precession 
transport is unstable. For P < 104", using ( 14) and expres- 
sions (A. 14) and (A. 15) for the rigidity constant A ( u ) ,  we 
find from ( 17) that 

A plot of h, ( u )  for the case Val?  is shown in Fig. 2. At 
u = - 1/4(P = 104") the critical gradient increases jump- 
wise from zero to a value on the order of the reciprocal dipole 
length 6 6 ' - O/c. But we have obtained the dependence of 
h, on the value of u = cos fi  in a channel in which superfluid 
transport takes place. E~periment,'.~ on the other hand, 
yielded the dependence of h, on the difference w, - w,. 
This turned out to be a square-root dependence with the 
values of h, everywhere lower than 66'. As indicated in 
Ref. 10, to explain this behavior, account must be taken of 
the difference between the value of u = cos f i  in terms of 
which h, was defined in Eqs. ( 17) and ( 18) for the channel, 
and the value of u, = cos which determines the differ- 
ence w, - w,,  in the volume in which the spin is pumped. 

The spatial distribution of p is determined from the condi- 
tion that the precession rate w, be constant in space for a 
stationary flow ( V a  does not vary with time), exactly as the 
chemical potential remains unchanged in stationary super- 
flow. This condition yields a connection analogous to the 
Bernoulli equation in hydrodynamics, between the local val- 
ues of Va and u = cos p in different points of space. Com- 
paring the expressions for w, = - yM - '(aF/du) in the 
channel, where Va+O, and in the chamber, where Va = 0, 
andusing (12) and ( 1 4 ) ,  weget 

These relations can be used to determine the dependence of 
h, on u, = cos 0, directly connected with the difference 

from the previously obtained dependence of h, on u = cos f l  
in the channel [Eqs. ( 17) and ( 18) 1. The b, (u, ) curve is 
drawn on the same Fig. 2 as the h, ( u )  curve. The section 
with the vertical slope on the h, ( u )  curve goes over into a 
section with a finite slope on the b, ( u ,  ) curve. The expres- 
sion for h, on this section is obtained by substituting 
u = - 1/4and Va = h, in ( 1 9 ) :  

Using expressions (A. 14) and (A.  15) for A ( u ) ,  we obtain 

h,= [ 4 ( o ~ - o t ) o L / ( 5 ~ ~ ~ ~ - ~ , ~ )  for V a - L t  
(21 

h,= [2 (mp-wL) o ~ / ( ~ c ~ ~ - ~ c ~ ~ ~ )  ] I h  for Valli . 

Expression (21) coincides in the case Val2 with the 
expression obtained for the critical gradient a,, by F ~ m i n . ~  

FIG. 2. Critical gradient h, for precession transport. The figure 
shows the dependences on u = cos f l  in the channel with the 
precession flux, and on the quantity 

in the chamber where the spin pumping takes place. In the case o f  
a nonuniform magnetic field, w ,  is the Larmor frequency at that 
point o f  the chamber having the same value of the field as in the 
channel. 
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He, however, assumed that a,, is the critical gradient for a 
specified flux through the channel, whereas a given preces- 
sion phase difference was assumed in our above calculation 
of h,. Were the flux rather than the phase difference given, 
the term y- ' jpVa= -A(u,)h,Va in Eq. (IS) for the 
thermodynamic potential F, would be replaced by the term 
- A(u)h,Va, which would contribute to the fluctuation 
energy, in view of the u - u, fluctuation, and this would 
influence the calculation result substantially. According to 
Fomin, at a given phase difference the critical gradient is 
another quantity, a,, , which exceeds a,, (i.e., our h, ), but 
is of the same order of magnitude. This other value was de- 
termined by a calculation showing that at Va > a,, there are 
no stationary solutions with a specified difference w, - w, . 
In a state with Va = a,, , however, the angle B is zero, and 
according to Ref. 10 the instability in the present paper 
should set in earlier. 

An additional constraint on the possibility of observing 
the nondissipative precession transport is imposed by the 
very condition that a regime with a fixed angle @ exist. As 
indicated at the beginning of this section, the angle @ is de- 
termined from the condition dMc /dt = 0. If spin diffusion is 
significant, this condition reduces to an equation more com- 
plicated than a V/d@ = 0 used aboveI4: 

where D is the spin-diffusion coefficient. This equation has a 
solution for @ so long as the gradient Va does not exceed a 
value on the order of -S1/(DwL ) ' I 2 .  This constraint may 
become significant on going to fields stronger than those 
used so far in experiment. 

5. WONDISSIPATIVE TRANSPORT WITH TWISTING OF TWO 
ANGLES 

Besides the simpler cases of magnetic superfluid trans- 
port, the averaged spin-dynamic equations ( 14)-( 17) have 
also stationary states with simultaneous twisting of the two 
fast angle variables @ and a .  Let us examine the stability of 
such states. The thermodynamic potential Fused to calcu- 
late the stability must include, besides the free energy, terms 
with Lagrangian multipliers that ensure a minimum of the 
potential given by the mean values of M, P = M ( u  - I ) ,  
V@ = h, and Vah,. We shall not give in detail the deriva- 
tion of the quadratic form for the fluctuation energy, since it 
is similar to the derivation given in the preceding section. A 
substantial contribution to this form is made only by the 
gradient and dipole energies; the fluctuations of M are di- 
carded since they obviously increase the energy. Ultimately, 
the fluctuation energy is 

+ (B' (u)ha+C1(u)hm) V  ~D'U'+' /~( ' /~A" (u) ha2 
+ B " ( ~ ) h , h ~ + ~ / ~ C " ( u )  hmZ+VN(u))u '  *, 

where A(u) ,  B(u) ,  and C(u)  are the rigidity constants in 
Eq. (9 )  for the gradient energy, and are defined by (A. 14) 
and (A. 15). The dipole energy determined from ( 13) for the 
B phase is averaged over 0, which is now the fast variable: 

For the energy SF to be positive-definite, all the coefficients 
of the diagonal terms must be positive. According to expres- 
sions (A. 14) and (A. 15) for the rigidity constants A, B, and 
C, and according to the condition V" > 0, which will be 
shown below to be necessary if SF is to be positive, this re- 
stricts only the gradient ha,  if the gradients are directed 
alongz. In thiscaseA " <O(B " = C " = Oinbothcases), and 
the requirement for stability is 

We can next minimize SF with respect to u' (the condition 
that the coefficient of uI2 be positive ensures that the extre- 
mum with respect to u' is a minimum), after which we obtain 
a quadratic form of the fluctuations of the two gradients, and 
the condition that it be positive-definite yields the following 
inequalities for the gradients ha and h, : 

for ha, h&2: 

[ 2 K Z ( l + u )  -KKz ( l + ~ ) ~ + ' / , K ~ ~ ( 1 i - 3 ~ ~ )  ]haZ 

- [ 2 K Z ( l + u )  +2KZKu] h,ho+K'hq,z 
< X Q ~ ~ - ~ ( K - ' / ~ K ~ )  ( 1 - u 2 ) ,  (26) 

for ha, h&: 

Here K = 2K, + K,, K , =  ( ~ / 4 ? )  ( 2 4  - C i  ), 
K2 = (x/f) (Ci  - C:. As u- 1 (8-O), the stability re- 
gion contracts. The reason is that the order-parameter space 
contour around which the trajectory is "wound" in the case 
of a twisting shrinks strongly in this limit and contracts to a 
point. If it is assumed, however, that the phase slipping of the 
a precession proceeds without difficulty, there still remains 
@ twisting due to the multiple "piercing" of the sphere. One 
can visualize a state in which, as a result of the slipping, the 
energy takes on the lowest value for the given twisting. Such 
a state, as will be now shown, remains stable also as 8-0 .  
Minimizing the gradient energy (9)  with respect to Va for a 
given V@, we get 

The rest of the stability-condition derivation is similar to 
that used before, and we find as a result that the considered 
state is stable until the gradient V@ reaches the following 
critical values: 

for VcD, V a l i :  
'" Q [ c L 2 ( l + u )  - C , , ~ U ]  

, (29) 
c,lZcL 

for V @ .  VallrS: 

Equations (29) and (30) determine the critical gradients for 
a supercurrent of the same type (due to @ twisting) in the B  
phase as considered in Refs. 1 and 4 for the A phase. In the B  
phase, however, the stability of such a transport is main- 
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tained by the averaged dipole energy. In the A phase, the 
dipole energy does not stabilize the supercurrent, since 
V" (u) < 0 there; this is offset, however, by a stronger stabil- 
ity factor-the anisotropy energy of the magnetic suscepti- 
bility, which makes the magnetic superfluid transport stable 
at gradients exceeding the reciprocal dipole length. 

6. OBSERVATION OF MAGNETIC SUPERFLUID TRANSPORT 

The concept of magnetic superfluid transport was first 
invoked for the interpretation of experiments on longitudi- 
nal-magnetization relaxation in the A p h a ~ e , ~ . ~  but this inter- 
pretation was not unique. Closely connected with the mag- 
netic superfluidity phenomenon were experiments on 
magnetic-soliton propagation in the A phase.27 A chain of 
such solitons is the texture, twisted in @, discussed in Sec. 3. 
In the experiments mentioned there, the spin was pumped by 
a pulse that rotated the spin through 180" at one end of the 
channels formed by a stack of parallel plates. This excited a 
packet of solitons propagating along the channels and trans- 
porting spin. The solitons were recorded at the other end of 
the channels by an NMR procedure. However, a large num- 
ber of distinctive features of magnetic superfluidity can be 
observed only if the spins are continuously pumped. It was 
just this procedure which was first realized in the B-phase 
experiments.'v8 

To pump the spin in a cw regime it is natural to use a 
rotating magnetic field. In experiments on precession trans- 
port , '~~ they applied in addition a constant-magnetic-field 
gradient, as a result of which there was produced in the 
chamber an inhomogeneous texture with a dynamic do- 
main. l 4  We discuss here the possibility of uniformly pump- 
ing the spin. It is possible to use for this purpose relations 
( A S )  and (A.7) of the Appendix. We begin with the B 
phase. To determine the dissipative terms in the Leggett- 
Takagi mechanism it is necessary to calculate certain mean 
values of the derivatives with respect to the dipole energy 
[seeEq. (13)l:  

sin2 !3 (35 cos2 P+10 cos p+ 2 ) ,  

(31) 

(l+cos p)2(5  cos2 p-2 cos 1+2). 

We seek homogeneous stationary states with low values o f p  
and M. In this case (5 )  and ( 7 )  can be written in the form 

where ?;I, = - H, cos(a - g,) is the component, perpen- 
dicular to the precessing moment, of the rotating transverse 
magnetic field H, . The angle a - g, is determined from (4) ,  
and it is assumed here that the moment precesses at the same 
rate as the angular velocity w of the field H, , i.e., d ( a  - g,) /  
dt = 0. If the frequency w satisfies the transverse NMR con- 
dition, then a - g, = 180": and % = H, . 

The stationary-state parameters are determined from 
the condition dP /at = dM /at = 0: 

where Q is the best power released per unit volume in this 
spin-pumping method. 

A similar stationary state maintained by a rotating 
magnetic field can be produced also in the A phase, the di- 
pole energy for which is given by 

where fl is now the frequency of the longitudinal NMR in 
the A phase. In the calculations for the A phase, the averag- 
i n g ~  are over both fast variables a and @. For the stationary- 
state parameters we obtain 

Solving the problem of small-oscillations about the ob- 
tained stationary state, we can verify that this state is stable. 

Thus, in both the A and B phases it is possible to achieve 
dynamic suppression of the magnetic moment if the value of 
the latter under continuous spin pumping is much lower 
than the equilibrium value. If such a regime is realized in a 
chamber having an exit channel through which the liquid 
can flow into a region where the spin pumping less intense or 
zero, magnetic superfluid transport will be effected in such a 
channel. 

7. CONCLUSION 

The region of existence of stable magnetic superfluid 
transport was determined in the present paper from the con- 
dition that the small-fluctuation energy be positive near a 
state with magnetic nondissipative flux. This condition can 
be regarded as a generalization of the well known Landau 
criterion in superfluidity theory. The use of this criterion 
points to the feasibility of stable superfluid spin transport in 
the A phase, and also of superfluid spin and precession trans- 
port in the B phase, determined in the general case by twist- 
ing of two "fast" angle variables: the rotation angle in the 
order-parameter spin state and the precession phase. For the 
experimentally observed precession transport in the B phase, 
the Landau criterion yields the dependence of the critical 
gradient on the angular velocity of the precession, and this 
dependence agrees qualitatively with experiment. It must be 
remembered, however, that the Landau criterion can give 
only the upper bound of the critical gradient, and actually 
the superflow dissipation, i.e., the phase slipping, always sets 
in earlier as a result of activated formation of vortices and of 
their motion across the field. 

The spin-dynamics equations derived in the present pa- 
per, averaged over the two fast angle variables, point to the 
existence of a regime of dynamic suppression of the magnetic 
moment, in both the A and B phases; this regime an be used 
to effect stationary magnetic nondissipative transport. 

The author thanks Yu. M. Bun'kov, V. L. Golo, and I. 
A. Fomin for helpful comments and discussions. 
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APPENDIX 

Derivation of averaged spin-dynamics equations for the fast 
angle variables and their conjugate moments 

In the strong-field limit, small oscillatory increments to  
the free precession of the moment M determine the rate of 
dissipation of the noequilibrium part of the moment M. Let 
the angle 0 =Po satisfy the adiabaticity condition d F /  
d p  = 0, which is exact for free precession of M without nuta- 
tion (the 6 axis coincides with the M axis). This condition is 
a quadratic equation for P, and its solution, under the as- 
sumption that the ordering energy G is low, yields in lieu of 
the relation P = Mc (cos p - 1 ) for free precession without 
nutation (see Sec. 2)  the more accurate relation 

sin go dG 
P=ME (COS po-l) - -- 

ME 4 3 '  

We introduce next as the dynamic variable, in place ofp, the 
small anglep ' = P - p,, that determines the nutation oscil- 
lations. In this case Do is regarded as a function of the mo- 
ments P and Mc and is defined by (A. 1 ). Since the nutation 
oscillations o f p  ' are small, we can expand the free energy in 
powers of p ': 

We retain in this expansion the term with dF/dp, although it 
is equal to zero at = Po. The point is that the derivation of 
the equations of motion calls for derivatives of this term, 
which are no longer equal to zero and yield non-Hamilto- 
nian terms. The equations of motion (1 )  assume the form 
(the non-Hamiltonian terms, which do not contribute to the 
dissipation, are contained in the square brackets) : 

d P 
-=- 

6G 
y -- yMiH, sin p cos (a-cp) - a f 

d t  6 a  2 ( 6 F / 6 P )  ' (A.3) 

a a -- 6% a p ,  - yH, ctg p sin (a-cp) S y  
at  ap a p  

The rotating magnetic field H, is assumed weak, and is 
therefore retained only in Eqs. (A.3), where it is important 
for the balance of the moment Pand for matching the rates of 
change of the angle y, and of the precession phase a. The 
partial derivative in the non-Hamiltonian terms of the equa- 
tions can be calculated in the Fz Fo approximation (we put 
hereafter Mc = M )  : 

dZF M2 dZF M dZF 
-=- - =  = 

M sin Po 
dpZ 2 ~ '  d P  dg Xsin  8,' dM dp  x ( l+cos  Po) ' 

We solve in operator form (i.e., using Green's func- 
tions) the last pair of equations in (A.5): 

where w, = yM/x  and we have introduced the differenti- 
ation operator a, = d /dt. Since Po is a function of P and M, 
defined implicitly by the condition dF/dP = 0, we have 

r a G = ---- [- + (1-cos go)-] 
d m  ' 

(-4.9) 
M sin P o  da 

We find next the periodic increments to the linear-in-time 
contributions to a and Q>. We retain here only the dissipative 
terms, since only they are significant in the final averaged 
equations. According to (A.3) and (A.4),  we have 

- Y M  
a'=-at-i - I - a f  

{ x  sin po oM2+a.? [ " d (6F/6p)  

+- d f  ]+ (A. 10) x d (6F/6MB)  ' d 

These small oscillatory increments must be taken into ac- 
count when the equations for P and M are averaged [see 
(A.3) and (A.4) 1 .  The equations for a and Q> can be aver- 
aged with the oscillatory increments neglected. Ultimately, 
after averaging Eqs. (A.3) and (A.4), we obtain Eqs. (4)- 
( 7 )  with the following expressions for the dissipative terms: 

Expression ( 9 )  for the gradient energy is obtained by aver- 
aging over a rather unwieldy initial equation for the gradient 
energy,I4 in which one can neglect the gradient of the angle 
p ,  since it is not a fast variable. We finally get for the B phase 

V a ,  vmjj; 
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va. vQG: 

(A. 14) 

where c,, and c, are the velocities of the longitudinal and 
transverse spin waves. 

If the dissipation is determined by the Leggett-Takagi 
mechanism, the dissipative function is equal to 

where o is the vector of a small total rotation in spin space. 
Changing to the Euler angles we have 

f=r{($I M )'++(El sin p da )' 
2 dF  dF dF  +-[(am 1 .)'+6 I.,I (A.  17) 

where the derivatives with respect to the angles are taken for 
a fixed vector M. Since the moments that are conjugate to 
the Euler angles are the components of M along moving 
axes, they vary if the Euler angles change and M remains 
fixed. It follows hence that 

dF Pcosp-ME(l-cosp) +- . (A.18) 
aMo sin p 

The differences between the derivatives ( d F / d a )  and ( d F /  
d,B) and the derivatives dF/da  and dF/@ at fixed compo- 
nents P, M l ,  and Mo are small in the limit of a strong field 
(fast precession), but they must be taken into account even 
in this limit, for otherwise the dissipative terms will be lost 
from the equations for dP/dt,  dM</dt and dMo/dt. 

For a homogeneous B phase, the dissipation is deter- 
mined by the Leggett-Takagi mechanism, and the ordering 
energy reduces to the dipole energy, which is independent of 
a .  Using expression (A.  17) for the dissipative function, and 
the fact that only the dipole energy depends on @ and 8, we 
obtain expressions for the dissipative terms in the balance 
equations for P and M. 

The terms containing the operator ( w L  + 2 T) - I ,  are due to 
nutation oscillations and vanish in the limit as f l-0. They 
were therefore disregarded in the discus.sion of the dynamic 
suppression of the moment in Sec. 6. 
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