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A general expression for the probability of transitions between stable states of an oscillator in a 
strong resonant field, with a frequency significantly exceeding the reciprocal relaxation time, is 
obtained in a quasiclassical approximation. The transition probability is determined to 
logarithmic accuracy by the action for a certain auxilary system moving in a complex phase space, 
while the time component is real. It is shown that in the quasi-energy representation the 
transitions are of the "above-the-barrier" (not tunnel) kind, regardless of the temperature of the 
medium. They are attributable to diffusion over the quasi-energy, due to the relaxation processes. 
Explicit expressions for the transition probabilities are obtained for the case of weak damping. 
Their dependence on the parameters of the oscillator and on the temperature of the medium is 
investigated. 

INTRODUCTION 

Many physical systems have several stable states. If the 
quantum diffusion and fluctuations, arising from interac- 
tions between a system and the medium (thermostat), are 
small enough, then the system is predominantly localized in 
the close vicinity of the stable states. The transitions between 
the states occur infrequently: their probabilities W per unit 
time are small compared with the characteristic reciprocal 
relaxation time T , ~  I. When these systems are in thermody- 
namic equilibrium, the transitions are caused by tunneling 
and by thermal activation; their statistical distribution is al- 
ways ofthe Gibbs type, regardless of the mechanism of inter- 
actions with the medium. 

The nature of the transitions and the form of the distri- 
bution turn to be more complex for systems, placed in a 
strong field that is periodic in time (and in general, for the 
systems not at equilibrium). Even when T = 0 and the equi- 
librium system is localized at the lowest energy level, and 
even for weak interaction with the medium, the quasi-energy 
distribution has, generally speaking, a finite width (when 
describing the quantum states in a periodic field, the quasi- 
energy plays a role analogous to that of the energy of the 
systems at equilibrium'). Indeed, even though only relaxa- 
tion processes with the transfer of energy from the system to 
thermostat take place when T = 0, in reality an elementary 
scattering act may cause the system's quasi-energy to ap- 
proach its value for the stable state, but also to move away 
from that value, with some finite relative probability w < 1 
(because quantum states with definite quasi-energy are su- 
perpositions of states with definite energy). 

Thus, even when T = 0 there is a probability of "above- 
the-barrier" (in the quasi-energy representation) transition 
from a stable state, induced by dissipation. In a quasiclassi- 
cal case, when the number Nof quasi-energy states localized 
in the proximity of a given stable state is large, the probabili- 
ty for this transition is 

We note that A does not include the constant of interac- 
tion with the medium in the limit of weak interaction. 

If, in addition to the quantum states localized in the 

vicinity of the stable state, there exist quantum states local- 
ized elsewhere but with the same values of quasi-energy 
(metastability in the quasi-energy representation), the di- 
rect tunnelings from the stable states are also possible. Ther- 
mal fluctuations also affect the probabilities of transitions at 
finite temperatures. The prevalence of either transition 
mechanism is determined not only by the properties of an 
isolated system and the temperature (as in equilibrium sys- 
tems with weak dissipation), but also by the mechanism of 
interaction with the medium. The latter also determines the 
form of the system's distribution in quasi-energy. 

The problem of transitions between stable states, when 
quantum effects are neglected, was considered in a number 
of works, beginning with Ref. 2. In this approximation, the 
transition probability Wcalculated with logarithmic accura- 
cy is equal to the probability of the optimal fluctuation that 
takes the system from one state to another along a certain 
trajectory in the phase space. The calculation of In W in the 
general case reduces to the computation of this trajectory 
(cf. Refs. 3 and 4).  If quantum effects are essential, then, 
generally speaking, the notion of the optimal trajectory of 
transition in real phase space is inadequate. Specifically, the 
momentum is imaginary for "pure" tunneling.5 

It is shown below that in some cases a transition in a 
system interacting with a medium, can be related to the mo- 
tion of an auxiliary dynamic system with twice as many de- 
grees of freedom as the original system. This motion takes 
place in a complex phase space and in real time. Its charac- 
teristic duration is determined by a natural parameter, the 
relaxation time 7,. 

The concept of motion with real time is especially im- 
portant when describing systems placed in a strong high fre- 
quency field, when the height of the quasi-energy barrier is 
AU<.Ziw. In such systems T, % a p ' ,  where ir, is the imagi- 
nary tunneling time defined in the standard manner. It is 
easy to see that within a "time" ir, even weak interaction 
with the medium r;'<AU/fi (but T;'> W,, where W, is 
the probability of tunneling) would have caused a complete 
change in the character of the motion: the correction to the 
quasi-energy due to the oscillating (in real time) terms in the 
Hamiltonian of interaction would have become -fir;' 
exp(wr,), which greatly exceeds the barrier height 
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AU(l1n W, I -AUr,/fi, and for that reason, T; ' > W, 
B (AU/fi) exp( - wr, 1. 

In the present paper the problem of computations of the 
transitions probability and of the quasistationary distribu- 
tion is considered for a nonlinear oscillator excited by a reso- 
nant field. In the sufficiently strong field, the nonlinear oscil- 
lator can have6 two stable states with different amplitudes of 
the forced oscillations. This system is of immediate interest 
in connection with the well-known problem of collisionless 
dissociation of molecules in a laser field.7 It is used as a mod- 
el when investigating optical bistability (see Refs. 8-10). 
The nonlinear-oscillator model describes also the lateral mo- 
tion of an electron with nonparabolic dispersion in a magnet- 
ic field. According to recent experimental data" bistability 
of the cyclotron motion was observed under resonant pump- 
ing. 

The theory of the fluctuation transitions between stable 
states of a classical oscillator in a resonant field was devel- 
oped in Refs. 3 and 12. The limiting case of small dissipation 
was considered also by another method in Refs. 13 and 14. 
Calculations of tunneling probabilities for an oscillator were 
carried out in Refs. 15 and 16, and most completely in Ref. 
13. The stationary distribution for certain values of param- 
eters was calculated numerically in Ref. 17. 

The kinetics of the oscillator is analyzed below, in the 
quasiclassical approximation. The transition probabilities 
are assumed exponentially small and calculated to logarith- 
mic accuracy. In chapter 1 the quantum kinetic equation is 
derived. In chapter 2 it is solved utilizing the method of ei- 
konals, and a general expression for the probability of transi- 
tions per unit time is given. In chapter 3 the complex extre- 
ma1 trajectory of the auxilliary system is found for the case of 
weak damping. In chapter 4 it is used for the calculations of 
the transition probabilities and for the analysis of some ex- 
tremal cases. In chapter 5 the probability of leaving a state 
with smaller oscillations amplitude is investigated in weak 
fields. The Conclusion contains some summarizing remarks. 

1. KINETIC EQUATION FOR A NONLINEAR OSCILLATOR 

The hamiltonian of the isolated oscillator is 

Expression ( 1 ) is written for the simplest model of an oscil- 
lator (Duffing model), where the dependence of a natural 
frequency on the amplitude arises as early as in the first or- 
der in anharmonicity. It is precisely this expression which 
leads for y(w, - w,) > 0 to bistability in a resonant field 
Fcos wFr in a definite interval of F.6 

If the anharmonicity and the interaction with the medi- 
um are small enough, then the motion of an oscillator can be 
divided into "fast" (with frequencies which are multiples of 
0,) and "slow." The latter can be conveniently described in 
terms of the smooth, dimensionless, dynamic variables q and 
P : 

q= (koF/fi) ' h  (qo cos OFT-POWF-~ sin oFr ) ,  

p= ( k ~ ~ I f i ) ' ~ ( q ,  sin O ~ T + P ~ O ~ - '  cos OFT), [p, q] =-ik, 
k=3hIyl ( 8 0 ~ ~ 1 6 ~ 1  I-', 80=0*-0~, 1 6 ~ 1  <OF. (2)  

The parameter R is determined by the ratio of the difference 
in the adjacent frequencies of transitions between the oscilla- 
tor's energy levels to the detuning of the field frequency 

w, - w,. We assume 

When Eq. (3)  is satisfied, the slow motion is almost invaria- 
bly quasiclassical (cf. Ref. 13); il plays the role of the 
Planck's constant for the slow motion. 

Neglecting small rapidly oscillating terms we obtain 
from Eqs. ( 1 ) and (2)  the equation of motion for q and p 

where 
g'g(q, ~)='/r(q~+p"l)~.-qfl'", p=31yI F2(32~F916~13) -1  

(5 )  

(the products of the operators p and q have to be symme- 
trized; to be specific, we assume Sw > 0 and y > 0) .  The di- 
mensionless operatorg(q, p )  in Eq. (4)  determines the spec- 
trum of the quasi-energies of the system. It contains only one 
dimensionless parameter P which describes the intensity of 
the resonant field. 

If the interaction between the system and the oscillator 
is so weak that there is very small damping of oscillations 
within one period 277/w,, then the envelope of the oscilla- 
tor's density matrixp for the times AT$ w; ', w, ' fiw, is the 
characteristic excitation energy for the medium) can be de- 
scribed by an equation without delay (cf. Ref. 18 ) 

%(q1, qz, pi, pz)=g(qr, pt)-g(qz, pz)+l(q1, q2, Pi, pz). 

In many oscillating systems the relaxation is due to an inter- 
action, linear to the system's coordinate (momentum), with 
the medium. Consequently, 

fi= [erp (fioF/T) - I ]  -'. 

Expression (7 ) ,  with Eq. (2)  taken into consideration, cor- 
responds to the expression, well known for an oscillator, for 
the linear friction operator in the occupation-number repre- 
sentation (cf. Ref. 18; the term iR is omitted from R, since it 
is small wherever the quasiclassical approximation is appli- 
cable). The damping parameter r corresponds to the fric- 
tion coefficient in the phenomenological description of re- 
laxation (the friction force equals - 2rdq , /d~) .  When 
deriving (6)  and (7)  it was assumed, that T, Sw, 
RSw - (2n  + 1 ) (a,, om (see Ref. 18 for details). At the 
same time, the ratio of r and Sw (the parameter 0- ' ) can be 
arbitrary, i.e., in a certain sense, the damping is not consid- 
ered weak. 

Equation (6)  can also be rewritten in the Wigner repre- 
sentation 

1770 Sov. Phys. JETP 67 (9), September 1988 M. I. Dykrnan and V. N. Srnelyanskir 1770 



FIG. 1 .  Phase plane for the classical 
nonlinear oscillator (q and p are the 
slow variables [cf. Eq. (2)  1. The solid 
line is the separatrix between the re- @ gions of attraction to the foci f1 andf2, 
while S is the saddle point. 

The solution of (8) in the lowest order inR describes the 
motion of an oscillator along the classical trajectory 

Equation (9) has three stationary solutions for the following 
intervals of parameters R > 3'12, f l  kl' (a) < f l  < P k2' (0) 
(the values are given in Ref. 3). Two of the solutions 
(with the minimum and maximum values of the sum 
q2 +P2) correspond to the stable state, and the third solu- 
tion corresponds to the unstable state of the oscillator. The 
foci (nodes) f,, f2 and the saddle point Son  the phase plane 
correspond to these states. The separatrix passes through the 
point S, which separates the areas of "attraction" to the foci. 
The form of the phase plane is depicted in Fig. 1 for the case 
of relatively weak damping. 

2. GENERAL EXPRESSION FOR THE TRANSITION 
PROBABILITY 

When R 4 1 the system, initially localized in the vicinity 
of the point of common position in the phase space, has dur- 
ing the dimensionless relaxation time R- ', an overwhelming 
probability, after following the classical trajectory (9) of 
eventually approaching that stable state (state 1, for exam- 
ple) in whose domain of attraction it was initially posi- 
tioned. The transitions between states occur after much 
longer times ( - W- ' ac exp(G/A) ). It is obvious that the 
probability for the transition 1-2 in unit time, W,,, is the 
same as the probability to reach the domain of attraction of 
state 2 in unit time. Having reached that region at some 
point, the system subsequently approaches the state 2, fol- 
lowing the trajectory (9). 

The probabilities to reach different points which are not 
located on the same trajectory (9)  and are separated from 
each other by Aq, Ap) [ A  (2ii + 1 ) ] 'I2, are significantly dif- 
ferent. To logarithmic accuracy, the value of W,, is deter- 
mined by the probability to reach a certain optimal point, the 
point of "entry." In the classical limit 
(A - 0, ii - oo , AE ( 1 ), when the bundle of transition trajec- 
tories in the phase space is narrow, the point of "entry" is 
obviously located on the boundary (the saddle point is the 
"entry," cf. Ref. 3). For tunneling, it is located inside the 
region of attraction of the state 2. 

In the time interval R-' ) t )  W the distribution of 
the systempw (q, p )  is quasistationary almost everywhere in 
phase space, except for the narrow neighborhood 
(Aq,Ap- [R(2ii + 1) 1"' of state 2, where the population 
rises linearly with time, due to the flow from state 1. Virtual- 
ly the entire value of p,  (q,p) is located in the vicinity of 
state 1. It is exponentially small in the region of attraction of 
state 2, but it has a sharp maximum in that part of the trajec- 
tory (9) whic~h leads from the point of "entry" to state 2. To 

logarithmic accuracy, p , (q,p) is constant along this portion 
of the trajectory and it is equal to W,,. 

It is convenient to look for a quasistationary solution of 
the equation (6)  in a quasiclassical form" 

p (qi, qz) =po exp [ih-iS(qi, q d l ,  (10) 

where the function S satisfies the equation 

andp, determines a relatively smooth pre-exponential factor 
that will not be investigated in the present work. If the sys- 
tem is localized predominantly in the vicinity of a focus 
(node) f with the coordinates qf and pf on the phase plane, 
i.e., pw(qf,pf) =: 1, then it follows from Eqs. (6)-(8) and 
(10) that 

The foregoing quantitative considerations lead to the 
conclusion that in the region R- ' ( t ( W - ' the probability 
of a transition f- f '  in unit time is 

where the minimum is taken over the points t j  a n d j  in the 
attraction region of the state f', including its boundary. 
Thus, the calculation of ln Ware reduced to computation of 
the function S satisfying Eq. ( 1 1 ), with the boundary condi- 
tions ( 12) and ( 13). The criterion of applicability of Eq. 
(13) is 

Equation (12) can be viewed as the Hamilton-Jacobi 
equation for some auxiliary classical two-dimensional parti- 
cle with the coordinates q, and q2, with S(ql,q2) its action, 
and Z(q,,q,,  pl,p2) the Hamilton function (cf. Ref. 6). The 
equations of motion for this particle are 

and the particle moves with the energy Z = 0. The trajec- 
tory which determines the probability of transitions from the 
focus f corresponds to the boundary conditions 

The momentum components corresponding to the initial 
and final points are determined by the values of q,,, (0) and 
q,,, ( t ) ;  the values of pj (0) are close to ( - 1 ) j+ 'p,- while 
p, ( t )  are close to ( - 1) '+'ti( j = 1,2). It is not difficult to 
find the values of p,, ,  (0) if Eqs. (15) are linearized in the 
vicinity of the focus. Then, taking Eq. ( 12) into account, we 
have 

~ j (O)=(-~) '+ 'p~f  x ~ j j * [ q j ,  (0)-q,] ( j ,  jr=l, 21, (17) 

where Ail are determined by the equations 
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(the derivatives in ( 18) are calculated in the focus). Equa- 
tion ( 17) corresponds to allowance for the quadratic terms 
in the equation for the action S(q,,q2) in the vicinity of the 
focus, 

which, in turn, corresponds to a Gaussian form of the quasi- 
stationary distribution p,  (q, p )  in the vicinity of a focus. 

The solution of the kinetic equation by the eikonal 
method was used in many studies of fluctuations in classical 
systems, starting probably with Ref. 19. This method yields 
the same results as the method of functional integrationqor 
the probabilities of transitions in the Markov system (cf. 
Ref. 4). It can be shown that the latter is also true for the 
quantum systems considered here. 

We note that there are trajectories on which 

among the solutions of the Eqs. (15)-(17) (this follows 
from the expression R* (q:,q:, - p:, - p:) 
= - 2'?(q,,q2,p1,p2) that follows in turn from the fact that 

the density matrixp(q,,q,) is Hermitian). It is these trajec- 
tories, and some others close to them, which determine the 
values of the transition probabilities, as is clear from Eqs. 
(12) and (13). 

Since the Hamiltonian 2Y does not have singularities in 
the finite region (q,,, , p,,, ), it follows that only one extremal 
trajectory passes through each point q, = q, = Q, 
p,  = -p2 = j  (Im Q = I m j  = 0), except for the foci and 
the saddle, and in general this trajectory proceeds to the fo- 
cus. The values of q, ( t ) ,  p ,  ( t )  and q,(t), -p2(t)  on it are 
described by Eq. (9)  for q ( t ) ,p ( t ) .  With Eqs. (13), (16), 
and (17) taken into account, it follows that the extremal 
trajectory (20), along which the transition between stable 
states takes place, arrives at the saddle point (q,,p, ) accu- 
rate to terms -A: 

This means, that in the system considered here under quasi- 
stationary conditions the transitions between states are not 
related to tunneling. 

3. EXTREMALTRAJECTORIES IN THE CASE OF WEAK 
DAMPING 

The form of the trajectories and the value of G in ( 13) 
that determines the transition probability, depend on the di- 
mensionless oscillator parameters p and C? and on the 
Planck number E, i.e., on the temperature. The value of G 
can be determined for every set of these parameters by solv- 
ing numerically Eqs. ( 13), ( 15), and ( 17). In some limiting 
cases G can be found analytically. We investigate below the 
case of weak damping 

when the oscillator damping is small during the characteris- 
tic period of slow oscillations lo, - o,l - I .  Along with the 
parameter T/So, the type of damping is determined by the 
ratio of the width of the quasi-energy levels (which is 
- W / A  in the dimensional units) to the distance between 

them ( -Mu) .  The corrections to the probability on the 
account of dissipation are small only when 

(The parameter T//ZSo 4 0 :  r /3f iy  also determines the ra- 
tio of the width of energy levels of a nonlinear oscillator to 
their nonequidistance, and determines the character of the 
damping in the absence of the external field, see Ref. 18). 

In the limiting case of zero damping, the Hamiltonian 
of a two-dimensional particle R' [Eq. (6) ] is reduced to the 
difference g(  p,,q, ) - g(  p2,q2), i.e., the variables with the 
indices 1 and 2 are separable. At the same time, Eq. (15) 
coincides with (4)  for q, andp, and differs from (4)  by the 
sign on the right for q, andp,. The solution q( t)  andp(t) of 
Eqs. (4) corresponds to essentially nonlinear oscillations 
with fixed g. It is described by the periodic functions 
Q(g,q,(t) ,P(g,q,(t) : 

The natural oscillation frequency o ( g )  and the Fourier 
components Q, and P, can be expressed in terms of com- 
plete elliptic integrals, Q(g,q,) ,P(g,q,) are rational functions 
of the Jacobi elliptic functions. It is important in what fol- 
lows that the solution of (4)  in the form q(t) = Q( g , q , ( t ) ) ,  
p ( t)  = P( g,q, ( t)  ) holds true for both real and complex val- 
ues of phase q, ,. When Im q, # 0 it describes closed trajector- 
ies in the complex phase space qg.  Some examples of the 
projections of these trajectories on the plane Req,Imq with 
the fixed g but different Imp are shown in Fig. 2. 

The relaxation effects cause trajectories ( 15 ) to be no 
longer closed. It is obvious that when the damping is small 
the trajectories are spirals with small pitch. Certain turns of 
the spiral come close to the trajectories (23). To describe 

FIG. 2. Projection of the trajectories (4)  on the plane Re q, Im q in the 
region of quasi-energy g, where there are two types of classically allowed 
motion: between points q,,q, and q,,q,. Curves 1-6 correspond to increas- 
ing values of the phase imaginary part Im p(0 < Im p <@, where 2i@ is 
the imaginary period of the functions Q(g,p),P(g,q,). When Im q, = 0 the 
trajectory corresponds to the segment (q, ,qz) .  At some value of Irn y, = 6' 
the trajectory goes off to infinity, while at Im q, = Q it coincides with the 
segment (q,,q,). The trajectories with @ > Im p >  0 are shown dashed. 
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such motion in the interval At-a) 1, it is convenient, in 
accordance with the idea of the averaging method (see Ref. 
21), to switch from the oscillating functions q,,, ( t) ,  p , ,  ( t )  
to the functionsg,,, (t) ,  4)1,2 ( t ) :  

Equations (15) for g,,, ( t) ,  p , ,  ( t )  and with Eq. (6) and 
(23) taken into consideration, take the form 

The function R,  which describes the relaxation of an 
oscillator, is periodic in p, and p, 

B-R(~ , ,  g., q,, q 2 ) = E  ~ . ~ ( g , ,  gz ) e~p [ i (n~~ l+m~z) ] .  (26) 

The Fourier components R,, (g,,g,) are determined from 
(7),  (23), and (24). Since, according to Eq. (5) ,  the differ- 
enceg, - g, is small, it follows, that the terms with m = n in 
Eq. (26) of the lowest order in Q-I, are slowly changing, 
while the terms with m +n are rapidly oscillating [with the 
period -wc,\ zo&: 1. Correspondingly, g,,, and p,,, ( t )  
are sums of the smooth (g,,, (t),G,,, ( t )  ) and rapidly oscil- 
lating terms, and the latter are small ( - Q- ' ) . - 

The equations for slowly changing variables g,,pj look 
like equations (25) for gj and p,, where R is given by Eq. 
(26), where only the diagonal terms (with m = n) are taken 
into account. The - function R depends only on the half-sum 
of the phases p = $ ( G I  + G2). Besides, recognizing that 
Ig, - g,l - 0- I, the values of g, and g, in R,, (gl,g2) can be 
assumed equal. It can be proven that the system of equations 
forg(t) = g,(t)  = g,(t), @ ( t )  has a simple integral 

w-'(g) E R., (P. I) exp (2inq) =C. 
n 

The value of the constant Cis determined by the initial con- 
ditions ( 16) and ( 17) along the trajectory. Solving equa- 
tions ( 18), it can be shown, that C = 0 in the lowest order in 
52-', independently ofq,(O) and q2(0), so that on the extre- 
ma1 trajectory 

or, taking into account the explicit form of the relaxation 
operator (7) 

+2 )',1m (P~Q,) exp (2inq) =O, 

Equation (27) allows us to express the slowly changing part 
of the half-sum of the phases in terms of the slowly chang- 
ing part of quasi-energy g, after which the equation for g ( t )  

becomes closed. It also follows from Eqs. (25) and (27) that 
along the extremal trajectory 

1 

The values of ?,(0), @,(o) and g(0)  are determined by the 
values of q, (0)  and q,(O) in Eq. ( 16). At the same time for 
the symmetric trajectories (20) we have 

and on the whole 

(we note, that this approximation is true in the limited re- 
gion JIm[p,(O) - p2(o) 11). - 

Equation (28) has an obvious solution p = na  
(n = 0, f 1 ,... ). When ,$ = nz- Eq. (29) goes over into the 
equation for the slowly changing part of quasi-energy on a 
classical trajectory (a)  that describe the approach of an os- 
cillator to a focus. However, along with this solution, Eq. 
(28) has another solution, one with Im G #O. Equations 
(27)-(29) are ture, when the latter does not pass through 
the singularity where jQ( g,@) I -+ m , IP(g,@) I -. m . 

4.TRANSlTlONS PROBABILITIES FOR THE CASE OF WEAK 
DAMPING 

The probability to leave a stable state k ( k  = 1,2) is 
determined by the action on the trajectory (20), which goes 
according to Eqs. (16) and (16a) out of the vicinity of the 
focus f, into the vicinity of a saddle point S. This trajectory is 
described by the real solution of Eq. (28) for exp(2i+), 
which is not equal to unity (i.e., Im G +O, Re = m). The 
sign of 1mG along the entire trajectory (vanishing of 1mG 
signifies either tangency or intersection with the trajectory 
corresponding to the solution Im G = 0, which is possible 
only in the singular points, the saddle and the foci). As fol- 
lowsfromEqs. (17), (18), and (24), thesignofgdoesnot 
change either, i.e., quasi-energy changes monotonically 
along the trajectory. To find the explicit form of the values of 

andg in the vicinity of foci is not difficult, by starting from 
Eqs. ( 17), ( 18), and (24) (we note here that in the lowest 
order in 0-' these equations have the solution 
g,(O) =g,(O) for any q,(O),q,(O) which are close to qf); 
the sign of; turns out to indicate motion towards the saddle. 

To calculate the action along the trajectories described 
by Eqs. (24) and (27)-(30), it is convenient to use the rela- 
tion 

which stems from Eqs. (23) and (24); here S,(q,g) is the 
simplified action for periodic trajectories (4)  and (23) (cf. 
Ref. 6) .  Taking Eq. (31) into account, accuracy to terms 
- 0- ' ,  the action S ( t )  [Eq. ( 15) ] on the trajectory coming 
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from the small vicinity of the focus f is equal to 4, z 

Starting from the Eq. (32), we obtain the value of G 
(13), which determines the probability of transition from 
the focus f and equals the imaginary part of the action along 
the trajectory (20) going from the focus to the saddle 

(here gJ and g, are the values of quasi-energy g in the focus 
and in the saddle point). 

Equations ( 13), (28), and (33) reduce the problem of 
calculation of In W in the limiting case of small damping to 
the problem of solving Eq. (28) for G(g) and subsequent 
integration. The value of G in Eq. (33 ) depends only on two 
dimesionless parameter:, P and Z, i.e., on the field intensity 
made dimensionless, and on the temperature, while the 
damping parameter r does not enter in (33 ) . In this respect, 

FIG. 3. Dependence of GI and G, (the curves 1-4 and l', 4', respectively) 
the of Eqs' ( ) and ( 33) for In is the on @in the limiting caw of weak damping for various .: = 0,0,01,0,2, 1 
expression for the logarithmic probability of an activation GI +, on the curve 1 as 8-0;  the form of this curve in the area of 
transition through a potential barrier, when interaction with PS0.005 is well described by the formula (41 ). The line of the kinetic 

"phase transition"b = b,, on which GI = G, is shown dashed. The points the medium is weak ln Wa = - The quasimenergy PI =0.013 and&=0.036 are the values of& for iis 1' and l = 0, respec- 
Ig, - g,/ difference assumes the role of the barrier height A U tively. - 
in E ~ S .  (13) and (33), and the quantity 
- 22 g )  Im G( g )  plays the role of the reciprocal 

temperature (which in this case depends on quasi-energy g ) .  
Thequantity - U - ' a 1 (  g )  Im G( g )  playsthesamerole 
in the expression for the quasistationary distribution in qua- 
si-energy in the vicinity of the initially occupied stable state. 
This distribution follows from Eqs. ( 10) and (32). I t  can be 
found also in an alternative way, by expressing kinetic equa- 
tion (6) in matrix form with the eigenfunctions T, ( q )  of the 
operator g in Eq. ( 5  ), localized in the vicinity of the stable 
state. The quasiclassical solution of the corresponding equa- 
tion for the element of the matrix p,, for 0- l &A g l is 

which is in agreement with the result of Eqs. ( 10) and (32). 
The results of the numerical calculations of GI and G,, 

which determine the probabilities for transitions from the 
foci f, and f, (corresponding to the smaller and larger ampli- 
tudes of the forced oscillations), are depicted in Fig. 3. The 
value of GI is monotonically diminishing, while the value of 
G, is monotonically increasing, with increase in the effective 
field P. At the bifurcation points, where the focus 

fk ( k  = 1,2) merges with the saddle point, Gk turns into 
zero. In the area of small 7i the values GI (for smallp) and G, 
(for relatively largeP) have a strong dependence on Z when 
n <p& 1 GI experiences a logarithmic increase with decrease 
of 8. With increase of temperature, GI,, decrease. When 
E > 1 the ( E  + 4)G1,, curves cease to depend on Z, with accu- 
racy of several percents, and go over into the curves of Fig. 2 

in Ref. 3, plotted without considering quantum effects. 
Explicit expressions for GI,, can be found in several 

limiting cases. When the temperatures are relatively high, 
7is 1, it follows from Eq. (28), that l1mG 1 < 1. Retaining 
only the non-zero terms of the lowest order in I m ( p )  in Eq. 
(28) and taking Eq. (23) into account, we obtain 

Q-Q (g, c p )  , P=P (g, 9) 

(the asymptotic behavior of Eq. (34) provides good descrip- 
tion of GI,, in the entire region Z > 1 ). It follows from (33) 
and (34), that G a  T -' in the classical limit T$?h,. The 
quantity A -'TG plays the part of the transition activation 
energy. It depends on the single parameter P. Equations 
( 13), (33), and (34) for In Wcoincide completely with the 
results of Ref. 3. 

It is easy to solve Equation (28) in the vicinity of the 
point of bifurcation P = P when the initially occupied fo- 
cus f is close to the saddle point. The characteristic frequen- 
cy of the oscillations is small in the vicinity of such a focus, 
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w ( gf) < 1 (at the same time we assume, that it exceeds the 
damping w(gf))fl-I). Then IImp(g)I-w(g)(l  and is 
also given by Eq. (34), and for arbitrary values of Ti too. It is 
possible to explicitly calculate the ratio of the integrals 
m,(g)/m, (g), appearing in Eq. (34), in the vicinity of the 
bifurcation points. The obtained result is 

The values of G,,G, decrease quickly (non-analytically in 
I fl - fl 1 ) as the bifurcation point is approached. We note 
that the probability for tunneling from state 1 near the bifur- 
cation point is much smaller Jln W, 1 a (4/27 - p)514 (Ref. 
13). 

Using the proposed approach, it is not difficult to ac- 
count for dissipation when calculating the probability of 
transitions, a problem which has attracted much attention 
lately (cf. Ref. 22 and 23). It is easy to see that the dissipa- 
tion-induced correction to the action in Eq. (32) along the 
extremal trajectory is -ap'. In the region of strong quan- 
tum damping, when a- ' $ A  [see Eq. (22) 1,  this correction 
leads to an exponentially large factor in W, even if the damp- 
ing is classically weak R- ' < 1. 

5. PROBABILITY OF LEAVING A STABLE STATE THAT 
CORRESPONDS TO A SMALLER AMPLITUDE OF FORCED 
OSCILLATIONS IN A WEAK FIELD 

The probability to leave state 1 and the form of distribu- 
tion in the vicinity f, in relatively weak fields fl< 1 are of 
considerable interest for many concrete physical systems, 
where the condition B& 1 is often satisfied (cf. Ref. 7).  Us- 
ing the results obtained in Sec. 2, they can be explicitly found 
for the case of weak damping a- ' < 1. They turn out to de- 
pend in a complex way (non-analytically for the limiting 
case Ct-' -0) on Planck's number E in the relaxation model, 
Eq. ( 7 ) .  This follows from the fact, that Im G ( g )  defined by 
Eq. (28) approaches as Ti-0 the value 8(g) at which the 
extremal trajectory tends to infinity. (Q(g,i0(g) ) I- '  = 0. 
When I Im @ (g) I > 10( g)  1 the averaging method in the form 
of Eqs. (24) and (27)-(30) is not applicable. It can be 
shown, though, that when 7i & W 3 ,  the difference 
J I ~ @ ( ~ )  - 8(g) I is not too small and formulas (27)-(30) 
hold true. 

When P is small, the expressions for w(g) and 8(g),  
and also for Q, (g) and P, (g), are simplified. In particular, 

Substituting the corresponding expressions into Eq. (28), 
we find that for not very low temperatures 

When Ti -P( 1 Eq. (37) coincides with the limit B< 1 in 
(33) and (34) (in that case~~0.98.ilTi- ' ,  cf. Ref. 3). Equa- 
tion (37), however, is also true for E < l (<,- 1 . 8 6 ~ - " ~ $  l 

when Ti ( 1 ) . As one can see from Eq. (37), the transition 
probability and the form of distribution of quasi-energy are 
described when Ti)B by a simple activation law, while the 
main term in G, does not depend on the field. When Ti -09 1 
the value of ~ m @ ( ~ )  - 0(g) is determined by the ratio Ti/P. 
Equation (28) in that region can be reduced to the form 

( I  -2) 3-z ( l f  z).E exp [20 (g )  ] =0, 

The solution to Eq. (38), with (36) taken into account, can 
be easily tabulated for various ratio Ti/P. When ii )fl it coin- 
cides with (37). In the reverse limiting case 

Im ~ ( g )  =0(g) -'/,{2fi exp [20 ( g )  I ) ' "  ('/i-gBP), 
(39) 

The main terms in (39) have a logarithmic dependence 
on the field intensity F2 ccP, i.e., the distribution with respect 
to the quasi-energy and the probability W,, of the 1 - 2 tran- 
sition have a power-law dependence on F2. In particular, 

In Ref. 13, 15, and 17 the power-law dependence on F was 
also obtained in a relatively weak field, when calculating the 
probability W, of tunnelings from the focus f,, W, c F2/il. 
Obviously, the exponent in Eq. (40) is one half less than the 
exponent in W,. Thus, the "above-the-barrier" transitions 
induced by dissipation turn out to be many times less prob- 
able than the tunnelings. G, rapidly decreases with the in- 
crease in temperature (but W,, increases), and the depen- 
dence of GI on Ti within the region E<P is not analytical. 

It is evident from Eq. (39) that E-0 and 
~ m @ ( ~ )  +B(g) with decrease in temperature. At the same 
time, the extremal trajectory goes off to infinity, and the 
proposed approach is inapplicable. Still, analysis shows that 
when Ti<flp4 the transition probability in the zeroth ap- 
proximation in ii and R-'  is formally given by Eqs. (13), 
(282, and (33) with E = 0 (even though it turns out that 
Imp(g) > 8(g) in a definite region of g; we note that it is 
possible to find the explicit solution of Eq. (28) for arbitrary 
0 ) .  The corresponding results have been used to plot curve 1 
for GI in Fig. 3. When 0 is small we have 

The main term In fl -' in Eq. (41 ) is two times larger than 
the main term in GI of Eq. (39). This means that the transi- 
tion probability sharply changes its value, when ii changes 
slightly -W3. The term In fl - '  coincides with the main 
term in /1 (In W, 1 .  At the same time, the large term in In W,,, 
which is independent of the field and equals 3/1 - I ,  is larger 
by il -' .ln 2 than the one in In W, 1 3 .  This confirms the con- 
clusion that even in a weak field and as Ti-0 the departure 
from state 1 is not by tunneling (tunneling from state 2 is 
impossible, regardless of the values of P) . 

CONCLUSION 

The existence of diffusion in quasi-energy, which is due 
to interaction with the medium (and accompanies a drift in 
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the direction of a stable state), leads to the conclusion that 
both stable states of an oscillator are strictly speaking meta- 
stable at any temperature. The probabilities W,, and W,, of 
transitions 1 - 2 and 2- 1 are finite. At the same time the 
values of W,, and W,,, differ strongly exponentially for all 
values of the parameters. This pertains also to the stationary 
populationsp"' andp',' of the states 1 and 2: 

Only at acertain relation between the parametersb, fl, and ii 
i.e., between the field intensity F 2 ,  the frequency detuning 
oF - w,, the damping r ,  and the temperature, when 
/GI - G,/ 5, A, does a diffuse kinetic first-order "phase tran- 
sition" occur and the andp',' are close order 
(cf. Ref. 3). 

In the classical theory, the position of the phase-transi- 
tion lineP,(fl) on theP,fl plane did not depend on T (Ref. 
3). It follows from the discussed result that this holds true up 
to iiz I. A phase transition at lower T can be caused by a 
change in temperature. As can be seen from Fig. 3, with the 
decrease in temperature G, grows faster than G,, and as a 
result, the region ( P,R) expands; it is in this region where 
the state I is mostly occupied (it corresponds to a smaller 
amplitude of the forced oscillations of the oscillator). 

The results of the calculations of GI,, for the case of 
weak damping were given above r<luF - uO/ When 
r - loF - a,/ the value of G, can be found analytically near 
the bifurcation points fi = B L3 - ,' (a) where the stable sta- 
tionary state k ( k  = 1,2) merges with the unstable state. The 
results here coincide with the results obtained in the classical 
theory (see Refs. 3 and 12), if one replaces Tin the expres- 
sion for In W,, s by h F / E  + 4. 

The fact that the obtained transition probability signifi- 
cantly exceeds its value obtained by accounting for tunneling 
decay only (which is possible for state 1) is important from 
the point of view of the analysis of a problem of collisionless 
dissociation of molecules in a laser field.' The difference in 
probabilities is especially significant at not very low tem- 
peratures 5 %  (T//wF - wo/ ) 3  for weak fields [cf. Eqs. (39) 
and (40) I .  It can be shown that even a relatively weak inter- 
action with the medium, modulating oscillator's frequency, 
or small random variations of the field intensity in time 
(with the characteristic frequencies AwF % loF - w,l ) can 

lead to a strong increase in W,, in weak fields, and at lower 
T. The authors are grateful to A. S. Ioselevich and M. A. 
Krivoglaz for the discussion of the results of the paper, and 
to E. V. Mozdor for carrying out the numerical calculations. 

"In quantum theory it turns out to be more convenient to calculate the 
density matrix in the coordinate rather than in Wigner representation, 
especially in the presence of weak damping. 

" It follows from the theory of elliptic functions (see for example Ref. 20), 
that the functions Q(g,p) and P(g,p) are periodic in Re q, and Im p .  
They have two poles of the second order in the rectangle of the periods. 
Later in the text we will assume that Im p = 0 for the real trajectories 
passing through the region of attraction of the initially occupied stable 
state. 
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