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An analysis is made of a resonant interaction of a gas of two-level systems with its own radiation 
field and with an external amplitude-modulated field. I t  is shown that an analog of the stochastic 
Fermi acceleration mechanism may appear in such a gas when certain stochastization conditions 
are satisfied. In the present case this mechanism leads to significant generation of a radiation field 
of two-level systems even in the case of relatively low values of the constant representing the 
interaction of the field with the two-level medium. An analysis is made of the possibility of 
observing this effect in atomic and molecular gases, and also in crystals containing impurity 
centers. 

INTRODUCTION 

The phenomenon of dynamic chaos in various physical 
systems is currently attracting much attention. '-%ne of the 
topics being investigated is dynamic chaos due to interaction 
of light with matter.4 It is meaningful to distinguish two 
types of nonlinear opti6al systems manifesting the property 
of stochasticity: dissipative dynamic systems and Hamilto- 
nian systems. We shall consider dynamic chaos using the 
Hamiltonian approach, which imposes restrictions on the 
characteristic times of the dynamics of the system. 

A stochastic instability of nonlinear oscillations is fre- 
quently a harmful effect which limits the effectiveness of 
various physical processes.I4 However, in some cases such 
an instability can be used to heat a to exchange 
energy effectively as a result of interaction of intermode re- 
sonances in the process of excitation of polyatomic mole- 
cules or in laser photochemi~try,~ etc. Probably the most 
interesting potential application of dynamic chaos is that 
based on the stochastic acceleration mechanism first put for- 
ward by Fermi in connection with the problem of accelera- 
tion of cosmic rays.' Zaslavskil and Chirikov demonstrated7 
that this mechanism may be realized in fairly simple nonlin- 
ear systems with several degrees of freedom when the condi- 
tions for the stochastic instability are satisfied. At present 
the stochastic acceleration mechanism is regarded as one of 
the promising methods for the acceleration of particles (see 
Ref. 8 and the literature cited there). I t  would therefore be of 
interest to study an analog of this stochastic acceleration 
mechanism in nonlinear optical processes. 

It was shown in Ref. 9 that when an ensemble of two- 
level systems interacts with its own radiation field (self-con- 
sistent field), fluctuations of the polarization, of the differ- 
ence between the populations, and of the self-consistent field 
may become chaotic when the value of the constant repre- 
senting the interaction between field and matter is sufficient- 
ly large so as to correspond to a situation when the approxi- 
mation of a rotating wave is no longer valid. A numerical 
experiment"' was used in a study of the interaction of an 
ensemble of multilevel systems characterized by a strongly 
nonequidistant spectrum with a self-consistent radiation 
field and with an external harmonic field in resonance with 
the lowest transition in the multilevel systems. It was dem- 
onstrated in Ref. 10 that the interaction of the radiation field 
with such multilevel systems can become chaotic when the 

rotating wave approximation is no longer valid and it was 
also shown that when the conditions are suitable, a self-con- 
sistent radiation field may grow in a diffusion-like manner 
and this may be accompanied by the filling of higher states in 
multilevel systems (which is an analog of the Fermi stochas- 
tic acceleration effect). We demonstrated earlier" that in 
the interaction of an ensemble of two-level systems with a 
self-consistent field and with an external harmonic field a 
high value of the constant of the interaction of such systems 
with the field is not an essential condition for dynamic chaos. 
A similar conclusion was reached also in Ref. 12 using a 
different model. It should be pointed out that in all these 
investigations it was found that dynamic chaos should ap- 
pear for a nonzero initial population of the upper levels and 
that chaos should be strong mainly after an initial inversion 
of two-level or multilevel systems. 

In the present paper we shall discuss the interaction of 
an ensemble of two-level systems (atoms, molecules, impuri- 
ties in crystals, interband transitions in semiconductors) 
with its own radiation field and with an external amplitude- 
modulated field whose carrier frequency is in resonance with 
a transition of two-level systems. Our main task is to find the 
conditions for the appearance of an analog of the Fermi sto- 
chastic acceleration effect in such a system. This effect re- 
sults then in significant generation of a self-consistent radi- 
ation field when the constant of the interaction between the 
field and matter is relatively low. We shall find the condi- 
tions for a transition from regular to chaotic behavior corre- 
sponding to different laws governing modulation of the en- 
velope of the external field. We shall show that the 
amplitude of the self-consistent field generated under dy- 
namic chaos conditions can exceed the amplitude of the ex- 
ternal field and the amplitude of the self-consistent field gen- 
erated under regular conditions. We shall also demonstrate 
that chaotic generation of the field is possible when only the 
lower levels of two-level systems are initially populated. We 
shall show that unlimited acceleration (in the nondissipative 
regime) of the self-consistent radiation is possible when two- 
level systems are subjected to an external field which is a 
periodic sequence of pulses. Some statistical characteristics 
of the behavior of two-level systems under advanced chaos 
conditions will be found. The feasibility of observing these 
effects in atomic and molecular gases and in crystals with 
impurity centers will be discussed. 

The paper is organized as follows: Sec. 1 gives the deri- 
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vation of the equations describing the interaction of an en- 
semble of two-level systems with a self-consistent radiation 
field and with an external amplitude-modulated field; the 
criterion of overlap of nonlinear  resonance^'-^ is used in Sec. 
2 to obtain the conditions for a transition from regular to 
chaotic behavior for different ratios of the parameters of this 
system and for different laws of modulation of the envelope 
of the external field. We shall estimate the maximum ampli- 
tudes of the self-consistent field generated in the chaotic re- 
gime and find some statistical characteristics of the behavior 
of two-level systems. Analytic estimates will be confirmed 
by numerical calculations the results of which are given in 
Sec. 3. The section headed Conclusions gives the physical 
parameters which should ensure observation of these effects 
in gases and in crystals with impurities. 

1. PRINCIPAL EQUATIONS 

We shall consider a sample in the form of a gas of two- 
level systems with a transition frequency wo enclosed in a 
single-mode ring cavity with a natural frequency w. We shall 
seek the field and polarization of the two-level medium in- 
side the cavity in the form 

E ,  (z, t) =El  (z, t) cos (ot-kz) +Ez (z, t) sin (at-kz) , ( 1 ) 

P(z, t) =pd[u(z, t) cos (ot-kz) -v (z, t)sin (at-kz) J ,  

o=ck, ( 2 )  

where d is the magnitude of a matrix element of a dipole 
 transition;^ is the density of the two-level medium. We shall 
assume that an external amplitude-modulated field injected 
into the cavity in the z = 0 plane can be described by 

E,  (t) =EoF (t) cos (o t )  , ( 3 )  

where F ( t )  is a given slowly varying function which we shall 
assume to be a periodic function of time. The field inside the 
resonator satisfies the following boundary conditions13: 

El (z=O, t )  = E ,  (z=1, t) +EoF ( t ) ,  

E,(z=O, t) =E,(z=l, t), 

where I is the characteristic size of the medium containing 
two-level systems. The interaction of these systems with the 
electromagnetic field will be considered using a semiclassi- 
cal approach, describing the two-level systems in terms of 
quantum mechanics and the electromagnetic field using the 
classical Maxwell equations. l4 The corresponding equations 
deduced from the self-consistent system of the Maxwell- 
Bloch equations subject to the boundary conditions of Eq. 
(41, are 

e l = w C 2 ~ + G F  (t) , 

where Eo,1,2 = dEo,1,2/fi, A = w,, - w ;  w c  
= (2.irpd 'wO/fi) ' I 2  is the cooperative frequency of Ref. 15; a 

dot above a symbol denotes differentiation with respect to t. 
The variables u(z, t )  and u(z, t )  are related to the polariza- 

tion of the two-level medium in accordance with Eq. (2)  and 
the variable w is expressed in terms of the amplitudes of the 
populations of the upper (aj  ) and lower (b,) levels of the jth 
two-level system as follows: 

where AV= (Az)n-2 is a physically infinitesimally small 
volume; z is the coordinate of the center of a layer of thick- 
ness Az9A (A = 2n/k is the wavelength of the radiation); r 
is the characteristic radius of the sample containing a gas of 
two-level systems; N, is the number of such systems in A V 
(N, > 1) .  A bar above dynamic variables in the system ( 5 )  
denotes spatial averaging defines as follows: 

where A(z, t )  is one of the functions u, u, w, or  E , , ~ .  The 
system ( 5 ) is derived by separation of variables correspond- 
ing to the mean field approximation16~'7 

The condition of validity of Eq. (6 )  will be discussed later. 
The system of equations (5 )  admits the following conserva- 
tion law (we shall drop the bar above the dynamic vari- 
ables) : 

If E~ = 0 the system ( 5 )  describes nonlinear cooperative 
fluctuations: it describes a periodic process of energy trans- 
fer from the two-level medium and vice versa. 15,'8 Such fluc- 
tuations have been observed experimentally. 19." 

The system (5 )  can be simplified in the case of an exact 
resonance (A = 0) .  In fact, in this case we can show that if 
u (0 )  = E~ (0) = 0, then ~ ~ ( t )  = u ( t )  = 0 for any value of t .  
Then the first and last equations drop out of the system (5 ) .  
In  future, whenever possible, we shall drop the index 1 of the 
field component E ,  . 

We shall introduce the following variables satisfying 
the law of conservation of Eq. (7 ) :  

u (t) =-sin x (t) , w ( t )  =-cos x ( t )  . (8  

In terms of the variables defined by Eq. ( 8 )  the system of 
equations ( 5 )  with A = 0 becomes 

x+oC2 sin x=GP(t). (9 )  

The variable x ( t )  is related to the self-consistent field by 
x ( t )  = ~ ( t ) .  Equation (9)  describes a physical pendulum 
acted upon by an external force F ( t ) .  An analysis of the 
dynamics of the system described by Eqs. ( 5) and (9)  will be 
made in the next section. 

We shall conclude the present section by considering 
the criterion of validity of the mean field approximation de- 
scribed by Eq. (6 ) .  

The approximation of Eq. ( 6 )  is correct if the envelopes 
of u,  u, w, and vary little along the coordinate in a dis- 
tance equal to the characteristic length I. We shall introduce 
a quantity Q,,, = {a,, G 'I2, R), where R is the characteris- 
tic frequency of variation of the function F ( t ) .  The criterion 
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of validity of Eq. (6)  can then be written in the form 

2. STOCHASTICITY CRITERION 

We shall now consider possible behavior of the solu- 
tions of Eq. ( 9 )  for different ratios between the parameters G 
and w, and for different forms of the functions F ( t ) .  We 
shall represent the function F ( t )  in the form of a Fourier 
series 

F ( t )  =f.+ r, [ f n c  cos ( n R t )  + f n s  s in (nRt )  1. ( 1 1 )  

In this section we shall consider the dynamics of the pendu- 
lum described by Eq. ( 9 )  under the action of a force F  ( t )  
containing one harmonic (F  ( t )  = sin Rt)  or two or more 
harmonics, and we shall describe the influence of the zeroth 
harmonic&. 

The motion of this pendulum in the absence of any per- 
turbation ( G  = 0 )  is periodic and in the phase plane it has 
two singularities: elliptic with the coordinates x = 0  and 
x  = 2nn (n  = 0, + 1 ,  f 2, ...) corresponding to the initial 
populations of the lower levels of two-level systems ( u  = 0, 
w  = - 1 ,  E = 0 )  and hyperbolic with the coordinates x = 0  
and x  = r ( n  + 1 ) ( n  = 0, + 1 ,  ... ) corresponding to com- 
plete filling of the upper levels of two-level systems ( v  = 0, 
w  = 1 ,  E = 0 ) .  The separatrix of the pendulum (represent- 
ing a special path in the phase plane separating vibrational 
and rotational motion and passing through hyperbolic 
points) corresponds to complete transfer of energy from the 
atoms in the system to the field and back again. 

The behavior of the solutions of Eq. (9)  in the G # O  
case depends strongly on the number of harmonics in the 
spectrum F ( t )  and on the value of the parameter G/R2. We 
shall analyze the case when F ( t )  contains one harmonic. 

1 )  We shall assume that G/R2  < 1 ,  so that when 
G /of 5 1 ,  the action of an external force on the pendulum 
can be regarded as a perturbation resulting in nonlinear re- 
sonances between the harmonics of the natural frequency of 
the nonlinear motion of the pendulum and the frequency R  
of the external force.'-' If R > w, , an overlap of the nonlinear 
resonances in the vicinity of the separatrix creates a narrow 
stochastic layer and the rest of the phase space is filled main- 
ly by periodic paths.' If R 5 w, a wide stochastic layer forms 
in the vicinity of the separatrix and it fills a major part of the 
phase space, with the exception of the vicinity of an elliptic 
point.' In this case the width of the stochastic layer in the 
rotational part of the phase space is of the order of the size of 
the vibrational part.' Therefore, the maximum self-consis- 
tent field which can be generated under stochastic condition 
when the modulation law is F ( t )  = sin Rt, amounts to 
IEmax I - 4wc . 

2)  It is pointed out in Ref. 21 that very different behav- 
ior is possible if G/f12 > 1 .  In this case it is convenient to 
replace x ( t )  with a new variable 
$ ( t )  = x ( t )  + GW'sin Rt. The equation describing the be- 
havior of the pendulum in this case is 

An equation of the ( 12) type is encountered in studies of the 

dynamics of a problem of passage across a nonlinear reso- 
n a n ~ e . ~ . ~ ~  Adopting an expansion 

G 
= ( - I ] ~ J , , , ( ~ )  exp i(++rnQt), 

52 (13)  
m=-m 

we find that Eq. (12) admits nonlinear resonances of the 
$ = mR type ( m  = f 1 ,  + 2, ... ). The condition for over- 
lap of these nonlinear resonances is2.22 

When Eq. (14) is obeyed, a stochastic modulation layer ap- 
pears in the phase space and its width is2322 

The width of this modulation layer determines the maxi- 
mum amplitude of the self-consistent field generated when 
G / R 2  > 1 and the condition for chaos [Eq. ( 14) ] is satisfied. 
An important feature is that in this case we can expect sto- 
chastic excitation of the self-consistent field when only the 
lower levels of the two-level systems are initially populated: 
w(0) = - 1 ,  v (0)  = 0, ~ ( 0 )  = 0. The diffusion rate Dof the  
self-consistent field E inside a stochastic modulation layer 
depends strongly on the value of the parameter V  = G/wf . If 
V Z  1, the diffusion is rapid: D a  (of R ) / V ,  whereas if V <  1 ,  
the diffusion is slow: D a 010 ( V In V) " Ref. 22). In the lim- 
it R-0 the width of the stochastic modulation layer in- 
creases in accordance with Eq. ( 1 5 ) ,  but then the rate of 
diffusion inside the layer falls proportionally to 0. 

We shall now analyze the case when the external force 
of Eq. ( 1 1 )  contains two or more harmonics (we shall con- 
fine ourselves to the specific case when all the harmonics are 
characterized by f = 0 )  and when the condition G /R\ 1 
is satisfied. Then, the condition for the appearance of chaos 
in Eq. ( 9 ) ,  valid in any part of the phase space, can be ob- 
tained if we go over rigorously from canonic variables ( x ,  E )  

to the action-angle variables and then apply the criterion of 
overlap of nonlinear resonances. However, in view of the 
complex functional relationship between ( x ,  E )  and the ac- 
tion-angle variables, it is more convenient to carry out an 
approximate analysis of the conditions for the appearance of 
chaos in three parts of the phase space: in the vicinity of an 
elliptic point, in the vicinity of the separatrix, and in the 
region corresponding to rotational motion. In  the vicinity of 
an elliptic point the Chirikov parameter is 

K,= ( G f  lx(O1 I )'"/Q, (16) 

where f denotes the characteristic average value of the non- 
vanishing harmonics f ,, ( n  > 0 )  of the force described by Eq. 
( 1  1).  If ~ ( 0 )  = 0  and x ( 0 )  < 1, we find that 

and the criterion of the appearance of chaos near the elliptic 
point K, 2 1 becomes 
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It is clear from Eq. ( 17) that even when the initial excitation 
of the system is weak so that ISwI & 1, the stochasticity crite- 
rion can be readily satisfied. 

In the vicinity of the separatrix (in the vibrational and 
rotational regions), we always have a stochastic 
When the conditions' 

are satisfied, the thickness of this stochastic layer becomes of 
the order of -4w,, which is the width ofthe region inside the 
separatrix. 

The parameter of overlap of resonances in the rota- 
tional region of the phase space ( / & /  Bw, ) is 

Since for G /R2 < 1 and I~l/w, $1, we have K, < 1, it follows 
that in this part of the phase space the transition to chaotic 
dynamics is impossible. The above analysis demonstrates 
that an increase in the number of harmonics in the spectrum 
F ( t )  compared with the case when F ( t )  = sin Rt or G /  
R2  < 1 makes possible stochastic generation of the radiation 
field when the initial excitation of the two-level systems is 
very weak, but it does not change significantly the maximum 
amplitude of the self-consistent field produced by chaotic 
generation. 

We shall assume now that G /a2 > 1. For simplicity, we 
shall consider the case when F ( t )  contains just two harmon- 
ics: 

F(t)=Gt sin Qlt+G2 sin Q,t, G,,2/Ql,2Z>1, (20) 

whereG,=Gfn,G,=Gf,,R,=nR,R2=mR,n#m.A 
new feature compared with F ( t )  = sin Rt, and G/R2 > 1 is 
the feasibility of formation of a wider stochastic region be- 
cause of overlap of the individual stochastic modulation lay- 
ers. The equation describing the dynamics of a pendulum of 
Eq. (9 )  under the influence of an external force of Eq. (20) 
is 

where 

$(t)  =GIQ,-Z sin (S2,t) +GzR2-'sin (Q2t). 

Using the expansion of Eq. ( 13 ) , we find that Eq. ( 2  1 ) ad- 
mits the possibility of nonlinear resonances of the type 
$ = m , R ,  +m,R, (m, ,  m, = + 1, f 2 ,... ). The condi- 
tion of overlap of nonlinear resonances is now 

In Eq. (22) we no longer have the transition in the limit to 
Eq. (14) even when m, = 0 and this is due to the condition 
G ,,, > a:,, . When the conditions of Eq. (22) are obeyed, a 
chaotic region forms in the phase space and the width of this 
region determines the maximum amplitude of the self-con- 
sistent field: 

We can see from Eq. (23) that the presence of two harmon- 
ics in F ( t )  on condition that G,,,/R:,, > 1 increases the 

maximum amplitude of the self-consistent field I&,,, I ap- 
proximately twofold compared with the case when the per- 
turbation F ( t )  contains just one harmonic [see Eq. ( 15) ]. 

In the subsequent numerical analysis of the system ( 5 )  
we shall consider also the case when F ( t )  is a periodic se- 
quence (train) of pulses. The spectrum F ( t )  then also has 
the zeroth Fourier harmonic f,. Therefore, we shall consider 
the influence off, on the dynamics of Eq. (9).  The effect of 
the zeroth harmonic reduces essentially to deformation of 
the pendulum potential Uo(x) = - wf cos x, resulting in 
the loss of translational invariance: 

U(X) + U ( x f 2 n ) ,  U(x) --m when x + ~ ,  (24) 

where U(x) = Uo(x) - f, x. Now, if stochastization of fluc- 
tuations in a potential well formed by U(x) occurs under the 
influence of the nonzeroth harmonics of F ( t )  and the ener- 
gy of the system (of the self-consistent radiation field) grow- 
ing in accordance with the diffusion law reaches the value of 
the energy near the separatrix, unlimited (in the nondissipa- 
tive approximation) growth of the self-consistent radiation 
field is possible. Such unlimited growth of the self-consistent 
field can occur for any, no matter how small, value of the 
zeroth harmonic f,& 1. It should be pointed out that this 
effect of a strong increase in the velocity of motion of a non- 
linear system [in our case the field ~ ( t )  performs the role of 
this velocity] as a result of stochastization of nonlinear fluc- 
tuations is fairly common and can be observed in other phys- 
ical systems with the potential exhibiting the property de- 
scribed by Eq. (24). 

We shall end this section by deriving some statistical 
characteristics of the behavior of two-level systems under 
advanced chaos conditions when G /R2 > 1. For simplicity, 
we shall consider only the case F ( t )  = sin Rt (the case of 
many harmonics can be considered similarly). The behavior 
of the system is then deduced from Eq. (12) and the vari- 
ables v (  t )  and w(t) describing the two-level system are relat- 
ed to $(t)  in accordance with the expressions 

~ ( t )  --sin[$-GQ-"in (Qt) 1, 

w ( t ) = - c ~ s [ ~ - G R - ~  sin(Qt) 1. 
All the calculations will now be carried out for u(t) and the 
results of w(t) will be fully analogous. It is known from Refs. 
l , 3 ,  and 22 that when the stochasticity criterion of Eq. ( 14) 
is obeyed, $( t )  is a random variable which can be described 
satisfactorily by a function distributed uniformly in an inter- 
val [0, 2n].  Using this fact, we find that the distribution 
function f (v) and the first moments of the random process 
v(t)  are of the form 

We shall now consider the behavior of another impor- 
tant characteristic of the random process u(t), which is the 
correlation function 

It is known from Ref. 1 that when the overlap criterion of Eq. 
( 14) is satisfied so that K$ 1, the correlation function of the 
process $(t)  behaves as follows: 
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where the time for decoupling the correlations amounts to 
t ,  = 2T/ln K, where T = 2n/R. Using Eq. (28),  we can 
show that 

R (t) -@ (t) esp (-rlt,) , (29) 

where Q ( T )  is an oscillatory function of time. According to 
the Wigner-Khinchin t h e ~ r e m , ' ~  the width of the spectrum 
of the process u(t)  is - l/t, and, therefore, the system under 
consideration exhibits a line broadening mechanism asso- 
ciated with the appearance of the chaotic instability. The 
contribution to the line width made by the broadening mech- 
anism associated with dynamic chaos is the largest, since we 
are considering the dynamics of the interaction of the field 
with the two-level systems over intervals shorter than all the 
other characteristic field and matter relaxation times. 

3. RESULTSOF NUMERICALCALCULATION 

We checked the analytic estimates obtained in Sec. 2 by 
a numerical investigation of the system of equations (5) .  In 
this investigation we considered the laws governing modula- 
tion of the external field, when F ( t )  contains one harmonic 
or two harmonics [ E q  (20) 1,  and also when F ( t )  repre- 
sents a periodic sequence of rectangular pulses with the du- 
ration of a single pulse To and an interval between the pulses 
T - To. In the latter case the expressions for the coefficients 
in the Fourier expansion of Eq. ( 11 ) are 

The precision of these calculations was monitored by check- 
ing that the conservation law (7)  was satisfied. We found 
that Eq. ( 7 )  was satisfied to within a few tenths of a percent. 
The difference between chaotic and regular paths in the dy- 
namic system (5)  was found by calculating not only the 
paths, but also the Fourier spectrum and the logarithm of the 
separation between two paths closest at the initial moment 

FIG. 2. Local instability; the initial conditions and the parameters are the 
same as in Fig. 1. 

where a prime is used for a path with similar initial condi- 
tions. The results of these numerical calculations are pre- 
sented in Figs. 1-6. The paths characterized by chaotic be- 
havior (Figs. l a  and lb )  exhibit a local instability (Fig. 2) 
and a wide Fourier spectrum (Fig. 4a). Regular paths (Figs. 
3a and 3b) are characterized by the absence of a local insta- 
bility and by a discrete Fourier spectrum (Fig. 4b). 

The results of numerical calculations carried out for the 
case when F ( t )  = sin R t  demonstrate that stochastic exci- 
tation of the self-consistent field in the case of initial popula- 
tion of the lowest levels of the two-level systems 
[ w  (0 )  = - 1, E ,  (0 )  = E~ ( 0 )  = 0 ]  is possible only if R 5 w, 

FIG. 1. Self-consistent f i e l d ~ ( t )  ( a )  and the difference between the popu- FIG. 3. Self-consistent f i e l d ~ ( t )  ( a )  and the difference between the popu- 
lations w(f)  (b )  in the case of chaos: G / w i  = 2, O / w ,  = 1, lations ( b )  in the case of regular motion: G / w :  = 0.5. O / w ,  = 1, 
~ ( 0 )  = u ( O )  = E , ,  ( 0 )  = 0, w(0) = - 1, and F ( t )  =sin fLt. u(0)  = u(0) = E , , ~  (0)  = 0, w(0) = - 1, F ( t )  = sin at. 
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0 3.1 ti. l 0 

and G2 G,, (if R Z  1, we have G,, -0.7, whereas for 
R = 0.1, we find that G,, ~ 0 . 9 ) .  The maximum amplitudes 
of the self-consistent field generated under these conditions 
are in good agreement with the theoretical estimates ob- 
tained in Sec. 2. Moreover, we investigated numerically the 
influence of a finite detuning A.fO on the chaotic dynamics 
of the system. If A 5 w,, the size of the chaotic region in the 
phase space changes only slightly compared with the case 
when A = 0. If A > w, , the size of the chaotic region becomes 
narrower and for A $ w, only a narrow stochastic layer re- 
mains near the separatrix (w = 1, E ,  = E~ = 0) .  

A numerical investigation carried out using F ( t )  de- 
scribed by Eq. (20) subject to the conditions G ,,, /a:,, 5 1, 
G,/fl: 9 1, G,/Cl: 5 1, and G,,,/Q:,, $ 1 demonstrated that 
chaotic generation of the field is possible when only the low- 
er levels of the two-level systems are populated initially 
[w(O) = - 11; then, /E,,, I is described satisfactorily by the 

FIG. 5 .  Self-consistent field E (  t )  in the case when F ( t )  is a periodic se- 
quence of rectangular pulses: G / o f  = 2, w ,  T = 6.28, oCT, = 0.5, 
u ( 0 )  = ,,, ( 0 )  = 0, w ( 0 )  = - 0.99, and u ( 0 )  = [ l  - w ( O ) ~ ] " ~ .  

FIG. 4. Fourier spectrum of the process w ( t )  in the case of chao- 
tic (a )  and regular (b)  motion. The initial conditions and the 
parameters are the same as in Figs. 1 and 3, respectively. The 
frequency v is measured in units of o,. 

theoretical estimates given by Eqs. ( 15) and (23) .  
Figure 5 demonstrates the dynamics of growth of a self- 

consistent radiation field when an ensemble of two-level sys- 
tems is subjected to a periodic sequence of pulses [Eqs. ( 11 ) 
and (30) 1. When the conditions for chaos are satisfied, dif- 
fusion growth of the field from E = 0 to E -  20, is observed 
(pendulum separatrix) and this is followed by an almost 
linear regular unlimited growth. It  should be noted that such 
a time dependence is exhibited also by the differences be- 
tween the populations and by the polarization of the two- 
level systems: chaotic fluctuations become fast regular ones. 
An increase in the pulse repetition time T increases, other 
conditions being equal, the time during which chaotic fluc- 
tuations ~ ( t ) ,  ~ ( t ) ,  and w(t) take place and this is associated 
with the reduction in the amplitude of the zeroth harmonic 
f, = To /Tand with a corresponding reduction in deforma- 

FIG. 6 .  Field ~ ( t )  in the case of regular motion; the data are as in Fig. 5, 
except for o, T = 4. 
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tion of the potential U(x) = - w f  cos x - fo x. When the 
condition for chaos is not satisfied, regular fluctuations are 
observed and the maximum amplitude of the self-consistent 
field does not exceed / & I  - 2w, (Fig. 6 ) .  

CONCLUSIONS 

Our results thus demonstrate that in the case of a reso- 
nant interaction of a gas of two-level systems with an ampli- 
tude-modulated external field and with an intrinsic radi- 
ation field we can expect stochastization of fluctuations of 
the difference between the populations and of the polariza- 
tion of the two-level systems accompanied by a diffusion-like 
growth of the self-consistent field. The conditions for sto- 
chastization and maximum amplitude of the self-consistent 
field I&,,, I depend strongly on the spectrum of modulation 
of the external field and on the ratio G/f12. When the sto- 
chastization conditions are satisfied, we can expect excita- 
tion of the self-consistent field with I&,,, ( exceeding the am- 
plitude of the external field and significant growth of the 
self-consistent field may occur even when only the lower 
levels of the two-level systems are initially populated. When 
a gas of two-level systems is subjected to a periodic sequence 
of pulses and the stochastization conditions are satisfied, the 
self-consistent field grows in two stages: 1 ) diffusion growth 
to -20,; 2 )  unlimited (in the nondissipative approxima- 
tion) regular growth. Under advanced chaos conditions the 
difference between the populations and the polarization are 
random processes and the spectra of these processes are 
broadened by an amount of the order of the modulation fre- 
quency fl. 

These effects can be observed clearly when laser radi- 
ation interacts with atomic and molecular gases character- 
ized by a relaxation time T2 - 10-7-10-9s and d -  10-18cgs 
units, 1- 10-0.1 cm, p -  1012-10'" ~ m - ~ ,  w,, E,, 1/T, 1/ 
To- lo9-10'' s-' or in crystals with impurity centers under 
conditions close to those needed for the observation of opti- 
cal ~ u ~ e r r a d i a n c e ~ ~ . ~ ~ :  d- 10 p 2 0  cgs units, p- 10'6-1018 
cmp3, 1- 1-0.001 cm, T,- 10-7-10-10 s, w,, E,, 1/T, 1/ 
To- lo9-10'' s-I. Weak attenuation of the field in the reso- 
nator (with the attenuation time rp - 10 - '-10 lo  s )  can be 
achieved if the transmission coefficient of the mirrors is - 1- 
0.1%. 

When an amplitude-modulated field interacts with two- 
level systems, dynamic chaos can appear in principle also in 
the microwave range due to Rydberg transitions of atoms 
and molecules in experiments of the type described in Refs. 
20 and 26. In this case the densityp can be quite low because 
of the large values of the dipole moments of the transitions 
and of the relaxation times of the Rydberg states. 

We shall conclude by noting one of the interesting gen- 
eralizations of the problem considered above: chaotic dy- 
namics of the interaction of an amplitude-modulated field 
with an ensemble of multilevel systems allowing for the co- 

operative effects. The stochastic Fermi acceleration effect 
may be manifested by multilevel systems both by the growth 
of the self-consistent radiation field and by filling of the up- 
per levels of the multilevel systems. 
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