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A generalized system of quantum equations that describes the space-time development of 
cooperative Raman scattering in the multimode case is obtained. It is shown that the process is 
spatially inhomogeneous, and allowance for propagation effects leads to the appearance of 
amplitude-phase modulation of the pulses of the scattered fields. The spatial and angular 
distributions of the intensities of the scattered fields are investigated numerically. 

1. INTRODUCTION 

The dynamics of the development of cooperative Ra- 
man scattering (CRS) of light is mainly described at the 
present time by two approaches: the semiclassical and the 
quantum. The main advantages of the first are the simplicity 
of the exposition and the lucid allowance for the spatial de- 
velopment of the CRS. However the semiclassical equations 
do not describe the generation of the pulses of the scattered 
fields and ,therefore require the introduction of external 
sources ofspontaneous noise or the specification of nonzero 
initial conditions. In Refs. 1-3 equations describing CRS 
were obtained on the basis of this approach; it was shown 
that in the nonresonance case there exists in the initial stage 
of scattering a periodic solution with alternating pulses of 
Stokes and anti-Stokes radiation. In Ref. 4 resonance CRS 
was investigated with allowance for the effects of propaga- 
tion for scattered waves without allowance for the anti- 
Stokes component. 

The main advantage of the quantum theory is that it 
takes into account the spontaneous sources, and this makes 
it possible to describe consistently the process of occurrence 
of CRS in an initially uncorrelated system of atoms (or mol- 
ecules). On the other hand, the quantum theory uses an ex- 
pansion of the field with respect to plane waves, so that in 
this theory it is difficult to describe the spatial development 
of the CRS. In Refs. 5 and 6, which are based on a systematic 
quantum approach, a system of equations is obtained that 
describes the process of CRS with allowance for relaxation, 
stimulated, spontaneous, and parametric processes, but 
without allowance for propagation effects. 

In the present paper, which is devoted to the kinetics of 
space-time development of CRS in a system of two-level 
emitters, the system of equations obtained in Ref. 5 is gener- 
alized to the case of transverse and longitudinal multimode 
scattering. It is shown that the generalized system describes 
the space-time development of the scattering. The use of this 
system to describe the process is not restricted to values of 
the Fresnel number near unity, and this makes it possible to 
describe CRS in media with any geometrical shape. By 
means of numerical solution of the system we investigate the 
spatial distribution of the intensities of the scattered waves at 
different times and the mode structure of the scattering in a 
medium with periodic structure. We show that in the quan- 
tum theory, as in the semiclassical t h e ~ r y , ~  allowance for the 
spatial effects leads to strong amplitude and phase modula- 
tion of the scattered-field pulses. 

2. GENERALIZED SYSTEM OF QUANTUM EQUATIONS 

We consider the process of Raman scattering of a given 
steplike exciting pumping field (frequency w,, wave vector 
k, ) by a system of N two-level (transition frequency w ,  ) 
emitters contained in a volume V. The initial state of the 
system is incoherent and unexcited. Scattering gives rise to 
fields at the combination (Raman) frequencies: Stokes field 
(frequency w,  , wave vector k, ) and anti-Stokes field (fre- 
quency a,, wave vector k, ). 

The Hamiltonian of the system has the form5 

t- (a, g i 8 )  [ a t ~ ~ t ~ - ~ , i -  h . ~ .  I 

where 

are the matrix elements of the operator of the scattering ten- 
sor, g, are the constants of the coupling of the atoms to the 
scattering fields in the presence of pumping, e,,,, and e, are 
the unit polarization vectors of the photons of the scattered 
fields and the pumping field, a,t + (a,,), a 2  (a,"), and b + 

(6) are the operators of creation (and annihilation) of the 
Stokes and anti-Stokes fields and the pumping fields, respec- 
tively: 

N 

R.*= 0,' erp (t*q), o+j= (o,j*ioi) 12, 

where u{, 04, and a; are the Pauli spin operators of atom j. 
The collective atomic operators R,+ and R;  satisfy the 

commutation relations 

where 
N 
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From the equation for the operators in the Heisenberg 
representation 

with the Hamiltonian ( 1 ) and the commutation relations 
(2)  we obtain then the following system of equations for the 
intensities of the scattered fields: 

where n, = ( b  + b ) ;  n,.,, = ( a c a , ) ,  n, >n,., ,  (we ignore 
the depletion of the pumping), rk = (c/L (k)  + c/L, ) - I  is 
the lifetime of a photon in the active region (L (k )  is the 
length of the sample in the direction of mode k, Lo is the 
photon mean free path), TI and T, are the times of longitu- 
dinal and transverse relaxation, respectively, and 

gives the characteristic time of interaction between the 
atoms and the field. The quantities F,,,,, and Ek Y 2  ,, 'I are de- 

fined as the correlation functions of thk operators of the 
fields and the dipole moments of the atoms: 

F ~ , ,  k,' = ili-l (a,, gk,)  <ak,b+KGp-k;)t  

E k , ,  k,, = ih-' (a,, Fk,) ( a k , b i R i , ' - k p ) .  

The correlation functions of the dipole moments, S,:,,\ and 

describe the cooperative processes: 

The terms 

describe the spontaneous processes (in the case k:,,, = k,,,, 
we obtain 9 = N /2 - R ,  and Ao = N /2 + R ,  , the popula- 

iv 

tions of the lower and upper levels, where R ,  = 4 1 (ui ) is 
, = I  

the half-difference of the populations of the working levels of 
the atoms). The quantity 

determines the correlation function of the Stokes and anti- 
Stokes fields and the pumping field. The terms of the type 

Q k k R k  ,, describe processes of four-wave parametric 

interaction, and the terms Cn,.. , ,R,, , .  .- ,.. describe the sti- 
k" 

mulated processes. 
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The intensities of the scattered fields are given by 

The correlation coefficients y (k l  - k )  give a measure of 
the coupling between the different modes of the scattered 
fields: 

N 

The calculation of these coefficients is analogous to the cal- 
culation made in Ref. 6. In the case of a medium with period- 
ic structure we obtain for a sample of rectangular shape with 
measurements L, , L,, L, 

W sin(LBkJ2) sin (L,Ak,/2) sin (L,Ak,/2) y(kf-k) = - 
V sin (dxAk,/2) sin (d,Ak,/2) sin (d,Ak,/2) 

' 

where d,, d,,, d, are the distances between neighboring emit- 
ters along the corresponding axes. For a sample of cylindri- 
cal shape, we initially expand the collective atomic operators 
along the z coordinate (the z axis is along the sample axis) 
with respect to plane waves and over the transverse section 
with respect to cylindrical functions (in contrast to a rectan- 
gular sample, for which plane-wave expansions are made 
with respect to all coordinates). We then obtain a system of 
equations of exactly the same form as (3 )  but with correla- 
tion coefficients 

(1 I ,  [ (k'-kj ,p] sin (L, (kf-k) ,/2) 
y (k'-k) =2 2 

L, (k'-k) ,p sin (d ,  (kl--k) ,/2) ' ( 5 )  

wherep is the radius of the transverse section, J, is a Bessel 
function of the first kind of the first order, and 1 denotes the 
projection of the vector onto the plane of the transverse sec- 
tion. 

We introduce the collective operator of the half-differ- 
ence of the populations of the working levels of the atoms: 

where K are the natural modes of the medium (for a medium 

with periodic structure K = 2 n i K O i ,  n ,  = 0,1,2 ,...; KUi are 
i 

the fundamental vectors of the reciprocal lattice). From (6)  
we determine (u;), and, substituting in the expression for 
R,,,. -, , we obtain 

It follows that the main contribution to the scattering inten- 
sity will be made by modes for which the condition (7)  is 
satisfied. 

3. RESULTS OF A NUMERICAL EXPERIMENT 

Even in the case of a finite number of modes the general- 
ized system of equations ( 3 )  cannot be solved analytically. 
In principle, it can be solved by numerical methods for any 
number of modes and for a medium of any geometrical 
shape. We present here the results of numerical solution for 
the most important case, that of a cylindrical sample elon- 
gated along its axis (z axis). In this case, as can be seen from 
the expression for the correlation coefficients ( 5 ) ,  the main 
contribution is made by the first few modes situated near the 
fundamental mode (which we take to be the mode ky(,, with 
(k:(,, ) I  = 0, (k:(,, ), = w,(,, /c). This assertion is con- 
firmed by the numerical experiment. Then in the system (3 )  
R,,,' - , and R,,,, + ,<, - ,kp can be represented in the form 

where 
N. 

1 1 
R3,k ;= - ("?)exp (ik,q), Y (k) 3 -z exp (ikLrLj), 

2 j=1 NL jZI 

and N, and N, are the numbers of atoms in the transverse 
section and along the axis of the sample, respectively. 

Figure 1 gives the dependence of the normalized half- 
difference of the populations, R ,  /N, and VwfIs/2&c2, 
VwtJu/2&c2 on the normalized time in the center of a cylin- 
drical sample in the case of longitudinal pumping. 
Allowance was made for one transverse mode and five longi- 

71 tudinal modes k a  1 = k , k:(,, f -, 
L, 

It can be seen from (4) and (5 )  that y(k, - k K )  is a FIG. 1. Timedevelopment of the processof cooperat~ve Raman scattering 
at the center of a cylindrical sample ( A ,  = 6.8.10 ' cm, 1, = 5.3.10 ' 

sharply directed function having peaks at the values cm,/1,=4.34.10 C c m , ~ , = ~ c m , p = 2 . 5 ~ 1 ~ - ' c m , ~ - - ~ , = 3 ~ ~ ~ - "  
sec, T / T ,  = 0.75, where T ,  is the time of the cooperative processes; 

( 7 )  N =  lo1', r/T2 = 0.03): 1)  V o : I , / 2 d c L ,  2)  V o : 1 0 / 2 d c z ,  3 )  R , / N .  
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FIG. 2. Spatial distribution of the intensities of the scattered fields ( t  / 
T =  32.5): 1 )  v~j1 , /27 i f r~~,  2) V W : I , / ~ ~ ~ C ~ .  

k:(,, + 27r/L, , where r / L ,  is the magnitude of the funda- 
mental translation vector of the reciprocal lattice with re- 
spect to the coordinatez) for each of the two scattering com- 
ponents. 

It is well known that even in the single-mode case the 
CRS process has an oscillatory nature5 due to the presence of 
two scattered components, in contrast to superradiance. 
These oscillations strictly follow the oscillations of the popu- 
lation difference, and in the case T = T = K, the process 
becomes purely periodic. I t  can be seen from Fig. 1 that in 
the multimode case of the quantum theory, as in the semi- 
classical theory, the allowance for propagation effects has 
the consequence that in addition to these oscillations there is 
phase and amplitude modulation of the pulses of the scat- 
tered fields. In contrast to the semiclassical theory, the mod- 
ulations are here deeper, but with increasing number of 
modes they are partly smoothed. Compared with the single- 
mode case, the field amplitudes are reduced. 

Figure 2 shows the spatial distribution of the scattered- 
field intensities at a certain time. I t  follows from the figure 
that in an extended medium the scattering process is spatial- 
ly inhomogeneous. In our symmetric problem the field in- 
tensities have maxima in the center of the sample, since we 
take into account both the forward fields, traveling from the 
left to the right, as well as the reverse waves of both scatter- 
ing components. 

By means of the generalized system (3 )  one can also 
consider the angular dependence of the scattering. This is 
more conveniently done in the case when there is one longi- 
tudinal mode and several transverse modes for each of the 
scattered components. Then instead of ( 8 )  we obtain 

where 
NL 

Figure 3 gives the dependence of the normalized number of 
photons of the scattered fields, n,, , /N,  on the scattering an- 
gle at a certain time. Investigations showed that the scatter- 
ing is strongly directed and basically along a layer formed by 
two conical surfaces having axes that coincide with the axis 
of the cylindrical sample but different angles. The values of 
these angles and the thicknesses of the layer are very close to 
the values obtained earlier in Ref. 6. In contrast to Ref. 6, the 
optimal scattering angle varies as a function of the time in a 
narrow interval between two limiting values of the scattering 
angle, which are equal to the angles of the cones. In the direc- 
tion of the sample axis there is no scattering. 

Thus, the generalized system of equations (3 )  makes it 
possible to describe at the quantum level the dynamical de- 
velopment of the process of cooperative Raman scattering of 
light with allowance for the spontaneous, stimulated, para- 
metric, and relaxation processes and propagation processes. 
By means of this system one can investigate the spatial distri- 
bution, angular distribution, and mode composition of the 
scattering. 
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FIG. 3. Angular distribution of the number of photons of the scattered 
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