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Bistable and periodically pulsating reflection of a monochromatic optical wave is predicted for a 
thin film of resonant atoms deposited on an insulating substrate. The correspondence between 
these effects and the transmission of a monochromatic wave by an optical resonator is considered. 

A thin film of two-level atoms of thickness much less 
than the wavelength of the incident light represents a very 
comprehensive model for studies of nonlinear optical phe- 
nomena such as nonlinear surface waves,' nonlinear reflec- 
tion of ultrashort optical pulses,2 and "two-wave" solitons' 
which can be treated analytically. These phenomena are 
typical of exactly integrable Hamiltoniansl-"nd yield im- 
portant examples of solitons in optics. A model of a thin film 
of resonant atoms makes it possible to deal also with another 
class of nonlinear optical phenomena associated with nontri- 
vial dynamics of open dissipative systems. The most familiar 
phenomena of this kind are optical bistability and spontane- 
ous pulsations (self- pulsation^),^ which are being studied 
intensively at present because of potential applications in 
optical data processing and construction of optical comput- 
ers. Bistability in a film of this kind has been discussed ear- 
lier5 on the basis of a quantum model and more recently6 
using a semiclassical model. 

We shall use the semiclassical approach to show that 
the reflection of a monochromatic light wave by a thin film 
of two-level atoms as a function of the conditions demon- 
strates bistability and periodic pulsations. We shall consider 
a situation in which a thin film is backed by a reflecting 
surface, for example, the free surface of an insulating sub- 
strate which returns part of the transmitted radiation back 
to the film. A system of this kind exhibits two feedback 
mechanisms. The first of them is due to the specific nature of 
the interaction of light with a thin film of resonant atoms and 
represents a fluctuation-induced reduction in the reflection 
of light which reduces (because of saturation) the absorp- 
tion in the film and this in turn reduces the effective refrac- 
tive index of the substrate and the reflection coefficient of the 
film-substrate interface. When the surface density of two- 
level atoms is sufficiently high (in excess of a certain critical 
value) and for certain intensities of the incident light the 
same light wave may be reflected in two different steady- 
state regimes characterized by high and low transparencies 
of a thin film. The situation is fully analogous to optical 
bistability of passive low-Q Fabry-Perot resonators filled 
with resonant atoms if they are considered in the mean field 
approximation.' However, in contrast to the case of optical 
resonators, when results of this kind are not always correct, 
the conclusions in the case of a thin film are exact. The sec- 
ond feedback mechanism involves return of the transmitted 
signal to the film. The phenomena due to this mechanism are 
largely governed by the phase shift (advance) of the re- 
turned signal. If this phase shift is a multiple of 277-, the pro- 
cess of reflection of a monochromatic wave is bistable and, 
depending on the fraction of the returned signal, the critical 
value of the surface density of two-level atoms decreases. 

When the phase shift differs from a multiple of 2~ by n-, i.e., if 
the returned signal is in antiphase with the incident one, then 
suitably modulated transmitted radiation can be compensat- 
ed fully by the returning radiation so that the reflected radi- 
ation may exhibit periodic pulsations and a characteristic 
hysteresis in steady-state and pulsating regimes. This role of 
the explicit feedback mechanism can be followed readily by 
replacing the basic differential-difference equations with 
point mapping that can be dealt with analytically. In the 
specific case of the absence of a reflecting surface the expres- 
sions obtained become identical with those in Ref. 6. 

1. BASIC EQUATIONS 

We shall assume that a film of two-level atoms, evapo- 
rated on an insulating substrate of thickness L, is illuminated 
normally by a plane electromagnetic wave and the electric 
field of this wave is 

E = 8 ,  exp [ i ( k z - m i ) ] +  c.c., z t o ,  

The wavelength is much greater than the thickness of the 
film and we shall assume that the film is oriented in thez = 0 
plane. The equations describing the interaction of light with 
such a film have been discussed repeatedly in the literature.' 
If we allow for relaxation and for the wave reflected from the 
z = L surface of the insulating substrate, we can rewrite 
these equations in the following dimensionless form: 

p (z) --i{$ (T) -a (T) -vRei" (7-ao)), ( 4 )  

where 

The density matrices p ,  , and p,, described the state of an 
atom at its lower and upper energy levels; p,, represents a 
transition between these levels due to the resonant interac- 
tion; d is the reduced dipole moment of the transition; No is 
the steady-state difference between the populations of the 
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upper and lower atomic levels in the absence of external 
fields; n,, is the refractive index of the insulating substrate; 
R is the reflection coefficient of the z = L surface deduced 
allowing for the absorption of the signal in the region occu- 
pied by the film ( 0  < z < L ) .  Here, A, yo and y represent the 
dimensionless resonance defect and the rates of relaxation of 
the polarization and of the difference between the popula- 
tions of the two-level atoms. The function E ( T )  describes the 
dimensionless amplitude of the electric field in the film, 
which consists of the incident $, and reflected $, waves or, 
which is equivalent, of the transmitted (forward) $,. and 
the returned (backward) 25'. waves; a ( ~ )  is proportional to 
the amplitude of the incident wave. The quantity T, is the 
dimensionless time taken by the signal to travel from the 
z = 0 to the z = L plane and back again, whereas s represents 
the phase shift due to such motion, including a contribution 
of a possible change due to reflection by the z = L surface. 

It is important to stress the following circumstance. If 
R = 0, Eqs. ( 1 )-(4) become identical with the equations 
given in Ref. 7 and describing, in the mean field approxima- 
tion, the transmission of a plane light wave through a low-Q 
Fabry-Perot resonator containing resonant atoms. There- 
fore, if R = 0, then in spite of the difference between the 
positive feedback mechanisms, reflection of a monochro- 
matic wave by a thin film of resonant atoms may be bistable. 
At the exact resonance A = 0 the cooperation parameter7 
corresponds to 

If C,, > 4, then absorption bistability is observed. In Eq. (5 )  
we use r,, = y,,/t,, to denote the homogeneous width of a 
spectral line. 

If R #O, Eqs. ( 1 1-(4) represent an extremely complex 
system of equations which cannot be investigated in its gen- 
eral form. However, if the rates y and yo of the relaxation 
processes are sufficiently high, 

so that during the time ro of action of the feedback mecha- 
nism all the relaxation processes in the thin film decay, i.e., 
the system becomes of the instantaneous-response type, and 
all the other changes in time occur on the scale of r,, then the 
derivatives in Eqs. ( 1) and (2 )  can be ignored. We can then 
reduce Eqs. ( 1) and (2 )  to their singular limits and the 
quantities 

are described by recurrence relationships deduced from the 
expression 

The implicit form ( 7 )  of point mapping distinguishes the 
model under consideration from other models of optical sys- 
tems that can be reduced to mapping (see Ref. 9 and the 
review in Ref. 10). For simplicity, in the present paper we 
shall consider only the pure absorption case characterized 
by A = 0, a monochromatic incident wave a,, = a = const, 
and two values s = 2 r m  and s = 2 r ( m  - 1/2), of the phase 
shift, where m = 1, 2, ... . Then, Eq. (7 )  expressed in terms 
of variables x,, = 23,, /(yy,,) 'I' and a parameter a = 2a/ 
( yy,,) "%ecomes 

where R >O corresponds to a phase shift amounting to 
s=27im and R < O - s =  2 r ( m  - 1/2). 

The different regimes of reflection of a monochromatic 
wave by a thin film of resonant atoms under conditions de- 
fined by Eq. (6)  are closely related to stable fixed points and 
cycles of mapping represented by Eqs. (7 )  and (8 )  (Ref. 
10).  Many relationships governing the appearance of stable 
cycles of one-dimensional mappings x, + , = f ( x )  are de- 
termined by the presence and positions of extrema of the 
function f ( x )  (Ref. 11 ). In the simplest case when v = 0 we 
find that the extremal points x, f '(x, ) = 0 of the mapping 
of Eq. (8 )  are as follows: 

An analysis of the above shows that in the case of the map- 
ping described by Eq. (8 )  when v = 0, there are no regions of 
stochasticity or sequences of period-doubling bifurcations. 

2. OPTICAL BlSTABlLlTY 

The fixed points 2 = f (Z) of the mapping of Eq. (8 )  
satisfy the following equation: 

Using the notation 

we find that Eq. (9)  reduces to the familiar expression 
Y =  X ( l  + 2C/ (1  + X 2 ) )  of the mean field theory of pas- 
sive optical cavities containing resonant atomse7 If C >  4, i.e., 
when 

a given value of the amplitude of the incident wave from the 
interval 

corresponds to three fixed points of the mapping (8 ) .  We 
shall denote them by x,, x,, and x,, in accordance with 
their values x, < x ,  < x, . We can easily show that 

so that for the same value of a we have 
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Everywhere with the exception of a narrow ( - C - '  when 
C S 1 )  range of the parameters Ynear Y-, we also have the 
inequality 

The stability of these fixed points can be determined by 
considering small deviations X, = x ,  - E. Linearization of 
Eq. (8 )  in respect of these deviations gives 

where 

We can easily show that the instability condition of the fixed 
points IR ( Y  - 6)/( 1 + 0) / > 1 is equivalent to the inequali- 
ty da/dZ < 0. Therefore, in the region of Eqs. ( 10) and ( 1 1 ) 
we have bistable reflection of a monochromatic wave and the 
dependence of the reflected wave on the incident one is char- 
acterized by a hysteresis (Fig. la) .  Introduction of an ex- 
plicit feedback mechanism (involving reflection from the 
z = L plane) reduces the critical density of resonant atoms, 
necessary for bistability reflection of a light wave from a thin 
film, by a factor ( 1 i- R ) / ( 1 - VR ) if R > 0 and increases 
thisdensity by afactor (1 + Y ~ R  I)/(1 - lR 1) ifR<O. 

3. SELF-PULSATIONS 

Outside the range defined by Eq. ( lo ) ,  the reflection of 
a monochromatic wave is a steady-state process if R > 0 and 
the dependence of the intensity of the reflected wave on the 
intensity of the incident wave is single-valued. The situation 
is different from R < 0. An analysis is carried out most easily 
for the values of R close to - 1. We shall consider only this 
case characterized by R + - 1 .  We then have 
Z,a( 1 + Y) . It  follows from Eq. ( 14) that in the interval 

when 

1+v 
a* =- [el- I* (ClZ-4C,)"n] I h  

1-IR1 

the only fixed point of the mapping (8 )  becomes unstable. 
We shall now determine what is the corresponding situation. 
We shall consider fixed points 5, and F, of double iteration 
of the mapping (8  ) : 

If we introduce the notation J, = (5, + RE,)/( 1 + IR 1 )  
andJ, = (2, + R2, ) / (1  + IR I ) ,  we find that 

FIG. 1. Dependences of fixed points (a)  and 2-cycle points (b)  of the 
mapping described by Eq. (8) on the amplitude a of the incident wave. 
The dashed curves represent stable points a )  This map describes the re- 
gion defined by Eq. (10). The unit intervals along the abscissa and the 
ordinateare thequantities (1 + A ) / ( 1  - vR) and 1 + R, respectively. b) 
Case corresponding to R- - 1 subject to the condition ( 15). The points 
j2, and 2, ofa 2-cycle ofthe mapping described by Eq. (8 )  are related toy, 
and y, by j2, + (J, + IR IJ2)/(1 - lR I), and 3, = (J2 + lR I J , ) /  
( 1 - lR 1 ) .  The unit intervals along the abscissa and the ordinate corre- 
spond to (1 - IR ) / (  1 + v )  and 2. The horizontal dashed lines estab- 
lished the correspondence between the parameters of the regime of self- 
pulsations when R - - 1 and the regime of bistability with R - 1; in this 
case the quantitiesflandJ correspond to the abscissa and ordinate in Fig. 
la. 

and in the limit R + - 1 we have 

ijl+y2=a(l-IRI) ( 1 - t ~ ) - I .  

The solution of these equations is identical with the fixed 
points of the mapping (8)  : 

which describes bistable reflection of a wave of a certain am- 
plitude f l  from the same film of resonant atoms, but in this 
case the phase shift of the returned signal is a multiple of 277. 
The value of B is governed by the condition ( 16). It follows 
that double iteration of the mapping (8 )  in the limit R -+ - 1 
in the range defined by Eq. ( 15) is characterized by a nontri- 
vial fixed point forming a 2-cycle (J,, J, ) of the original 
mapping. The following variants of the 2-cycles are possible: 
(Y, , YM 1, (yt, Y H  1, and (Y,, Y ,  1. We can determine the 
range of the parameter a, where this or other 2-cycle exists 
(Fig. lb )  using the inequalities ( 12) and ( 13). For example, 
in the interval 

the quantities y,, y,, y, + y, depend continuously and 
monotonically on f l  and Eqs. ( 12) and ( 13) are satisfied. 
Therefore, each parameter a from the interval 

corresponds to one and just one pair (y, , y, ), namely (y,, 
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y,)such that y, + y , = a ( l - I R 1 ) ( 1 + v ) - '  . At the 
point a = a,  this 2-cycle transforms continuously to the 2- 
cycle composed of the points (y,, y ,  : 

which is defined in the interval 

At the same time in the range a+ <a<a, there is a 2-cycle of 
points (y,, y, ) . It should be stressed that the values ofy , in 
each pair (y,, y, ) and (y,, y,) are different, since they 
correspond to different values of the parameterfi. It is worth 
noting the range a- <a<a, of existence of a 2-cycle of the 
original mapping (8):  it is much wider than the range 
a- <a<a+ of instability of the fixed point of the same map- 
ping (Fig. lb) .  

Physical conclusions can be drawn from the results ob- 
tained provided we know the stability of the 2-cycles. We can 
easily show that the 2-cycles composed of (y,, y,) and 
(y, , y, ) are stable and the 2-cycle (y,, y, ) is unstable. 

Thus, in absence of a steady-state regime, a-<a<a+ 
the only stable regime of reflection of a monochromatic wave 
by a thin film characterized by R - - 1 is that of self-pulsa- 
tions with a period 2~~ and an amplitude, according to Eq. 
( 3 ) ,  proportional to l J ,  - J ,  1 .  At the point a = a _ the re- 
gimes lose the stability in a soft manner, whereas at the 
points a = a + and a = a, the change in the reflection re- 
gime is ofthe hard type, and in the rangea, <a<a, there is a 
characteristic hysteresis of the steady-state pulsating re- 
gimes. 

4. CONCLUSIONS 

The investigated regimes of reflection of a monochro- 
matic light wave from a thin film of resonant atoms are very 
similar to the passage of a monochromatic wave across a 
nonlinear optical In a sense, we can even speak of 
equivalence of optical cavity systems and sets of thin films of 
two-level atoms and reflecting surfaces. This circumstance 

widens the range of validity of the results of numerous inves- 
tigations of lasing and transmission of light across nonlinear 
optical cavities. On the other hand, it provides a new formu- 
lation of the problem of simulation of the transmission of 
light across nonlinear cavities in which real optical systems 
are replaced by sets of thin films and mirrors. Since such 
problems are correctly formulated and-as shown above- 
they have simple analytic solutions in the ranges defined by 
Eq. ( 6 ) ,  a promising approach is a further study of the inter- 
action of light with other sets of thin films and reflecting 
surfaces. Moreover, this correspondence between a thin film 
and a low-Q cavity with resonant atoms, considered in the 
mean field approximation, makes it possible to apply the 
results of Ref. 2 to the case of transmission of ultrashort 
optical pulses by nonlinear cavities and the results of the 
present study can be applied to transmission of a monochro- 
matic wave across nonlinear resonators with an external 
mirror. 
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