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The propagation of radiation both in ideal single crystals and in crystals with microchannels is 
analyzed on the basis of the general idea of particle channeling. The problem is approached by the 
route of the exact (unaveraged) equations of electrodynamics for crystals consisting of a system 
of thin planes. It is shown that in a strictly periodic lattice with a single plane per period there is no 
radiation channeling (i.e., there are no modes which are localized along the transverse 
coordinate), regardless of the relation between the wavelength of the radiation and the period of 
the lattice. This is a universal result. It stems from the circumstance that the interaction of the 
radiation with an individual plane is weak. If there is a planar microchannel with a width 
exceeding the lattice period, there is always a channeled mode with an absorption coefficient 
which differs from that in the case of motion in a continuous medium or in a uniform lattice. For 
narrow microchannels, with a width comparable to the lattice period, the spatial dimension of the 
mode in the transverse direction lies between tens of angstroms (for Mossbauer radiation) to a 
few microns (for nonresonant x radiation). The probability for the excitation of a nonthreshold 
mode of this sort, which exists regardless ofthe relation between the radiation wavelength and the 
width of the microchannel, can reach unity for beams which have a transverse dimension 
comparable to the width of the mode. Some general conclusions are also reached regarding the 
propagation of radiation in single crystals which lack microchannels. These predictions 
distinguish this regime of motion in a substantial way from that of propagation in a continuous 
medium of the same optical thickness. In particular, it is shown that during small-angle motion 
along planes in crystals the absorption coefficient and the structure of the field are different from 
those in an isotropic medium. This regime is called "nonthreshold quasichanneling." 

It is generally believed that the well-known phenome- 
non of the channeling of charged particles has no analog in 
the case of electromagnetic radiation which is passing 
through a single crystal.'-4 It is furthermore believed that no 
radiation-transport regime of this type prevails even in any 
type of individual channel with a width a less than a thresh- 
old value Axmi,, which is some hundreds of angstroms. 

For radiation with a wavelength R = 2 r / k  exceeding 
the lattice period d and the channel width a, that thesis 
seems obvious and provokes no debate. In the other case, 
that of short-wave radiation, with R <a, d, that assertion is 
customarily justified in the following way. For a wave which 
is localized in the transverse coordinate x (transverse with 
respect to the channeling direction) in a region Ax there will 
unavoidably be some uncertainty in the transverse wave 
number, Ak, 5 217-/Ax. Under the assumption that channel- 
ing is possible only if the uncertainty (related to Ak, ) in the 
direction in which the wave is moving A O z A k , / k  is 
smaller than the angle of total external reflection, 
0, = (21x1 ) ' I 2  [XZ - w:/2w2 is the nonresonant suscepti- 
bility of the medium in the x-ray range, and 
we = ( 4 ~ N f / r n ) " ~  is the plasma frequency], we find the 
minimum localization region to be Ax,,, 2 2n-c/w, . For the 
typical values w e  =: (3-6). 10" s- ' we have Ax,,, =. 300- 
600 A. This figure is more than two orders of magnitude 
greater than the distance between the planes in a crystal. 
Even in the case of resonant Mossbauer radiation with 
lxmax I z lop4 we would have Ax,, =: 100 A. It is concluded 
on this basis that there can be no nondiffractive orientational 
motion, strongly coupled with the crystal, of x radiation or y 
radiation. This motion would be impossible in natural ho- 
mogeneous crystals, in crystals with microchannels of width 

a < Ax,,,, and in superlattices with a period d < Ax,,, . 
On the other hand, it is well known from the theory of 

plane dielectric optical-range waveguides (Ref. 5, for exam- 
ple) that there exists a rich spectrum of natural modes in 
waveguides for which the width of a central layer, with a 
susceptibility higher than that of its surroundings, satisfies 
a)A. As the ratio a/A is reduced, the mode spectrum thins 
out, and at a/A < 1 only a single mode can propagate 
through the waveguide (a  "mode without a cutoff ") .  The 
propagation constant (longitudinal wave number) for it, 

is found from the dispersion relation 

and differs by an amount AD = k b 2 x 2 / 8  from that in the 
case of a continuous medium without a channel. A charac- 
teristic circumstance for this mode is that, in opposition to 
the qualitative estimates made above, this mode exists for 
any value of a, no matter how small. At a purely formal level, 
such a mode should exist even if the value of a approaches 
the crystal period d, and even if it vanishes. Since the entire 
standard theory of dielectric waveguides is built on the foun- 
dation of the macroscopically averaged equations of electro- 
dynamics (i.e., this theory uses an average susceptibility 
x = ( ~ ( x ) )  as a starting point and ignores the atomic struc- 
ture of the channel walls), both a direct derivation from ( 1 ) 
in the case a = d and the qualitative estimates of Ax,,,, made 
above are generally incorrect, and they do not resolve the 
question of whether radiation can be channeled in single 
crystals. 

In the present we work from an exact solution of the 

171 5 Sov. Phys. JETP 67 (a), August 1988 0038-5646/88/081715-04$04.00 @ 1989 American Institute of Physics 171 5 



rigorous electrodynamic equations-equations which have 
not been averaged over the distance between planes-to ana- 
lyze the problem of the mode structure and channeled mo- 
tion of photons in a crystal and the macroscopic manifesta- 
tions of this effect. This is the first such analysis. In 
particular, we predict that a channeled regime of photon 
motion occurs for radiation of arbitrary wavelength (includ- 
ing As a,d),  even for arbitrarily narrow microchannels 
(down to a--d, but with a # d ) .  In a sense (without trans- 
verse localization of the wave, but with a reduced coefficient 
over a narrow angular interval near O z O ) ,  this channeled 
regime prevails even at a = d, i.e., in a uniform lattice with- 
out a channel. Such a regime, which is not limited by a 
threshold a,d > A, Ax,,, ; a)d,  could reasonably be called 
"nonthreshold channeling." 

For the analysis we first consider a crystal which con- 
sists of two parts separated by a distance a. Each part of the 
crystals constitutes a system of thin planes with a period d, 
which are oriented parallel to the interface. The middle of 
the space between the parts of the crystal, a ,  coincides with 
the yz plane. In the course of the analysis, a may vary all the 
way to a = d, giving us the case corresponding to a common 
single crystal. 

It is a simple matter to justify the use of continuous 
planes which are averaged along the longitudinal direction z 
by making use of the wave nature of radiation. Specifically, 
the change Ap in the wave number in the course of the inter- 
nal rereflection of waves which would be required for chan- 
neling is related to the effective reflection angle O by 
Ap,,, = k - p , , ~ k 0 ~ / 2 .  Using 0 , , , 5 ( 2 ( ~ ( ) ' / ~ ,  we 
find that the minimum coherence length along the scattering 
planes, Az,,,, 2 27~/Ap,,, , within which the structure of the 
scatterer is in principle indistinguishable, is determined by 
Az,,, 2 2n-/(k 1x1). The latter relation leads us to the esti- 
mate Az,,, >d,e for all possible values of k and of the longi- 
tudinal period of the lattice, d, . 

As a sinusoidal wave is incident along the positive z 
direction near crystal planes which are infinite along t h e y  
axis, there is no variation along y. This circumstance is ex- 
pressed formally by the expression dE,/dy = 0. Maxwell's 
equations then reduce to the wave equation 

d'E,/d~'+d'E,/d~~+ 1i2& (x)  E,=O, k=o/c .  (2 )  
For a system of uniform planes the dielectric constant can be 
written 

Here X =  ( ~ ( x )  ) is the macroscopic susceptibility of the 
crystal which has been averaged over the period d and which 
corresponds to an average dielectric constant E = 1 +x. 
The replacement of the actual susceptibility ~ ( x )  for planes 
of nonzero "thickness" a=:0.1-0.3 A by relation (3 ) ,  which 
holds for infinitely thin planes, can be justified quite easily 
both by the natural conditions a ,  d > a  and by arguments 
similar to those advanced above in the estimate of Ax,,,. 
Since the relation Ax,,, S a  holds for any crystal, the actual 
structure of ~ ( x )  within a is unimportant and can be ap- 
proximated by expression (3 ) .  This replacement is not possi- 
ble in the case of superlattices with a 2 Ax,,, . 

Writing E, = u(x)u(z)  we find v(z) = exp(ipz), 
where the separation parameter B has the meaning of a lon- 
gitudinal wave number. 

As a result, we arrive at  an equation for the transverse 
modes: 

m 

The eigenvalues x and the modes u can be found from the 
boundary conditions. Making use of the symmetry of the 
problem, we can characterize the transverse structure of a 
mode either by an even solution 

u,=A cos (xx) 

or by an odd solution 

u,=A sin (xx). ( 6 )  

We will show below that nonthreshold channeling can occur 
in a crystal only for an even mode, (5) .  

In the region a/2< 1x1 <a/2 + d, a solution of Eq. ( 4 )  is 

I L = R  exp (ixz) +C exp (-ixx) . 
( 7  

Since the susceptibility is periodic, ~ ( x )  = ~ ( x  + d ) ,  solu- 
tion ( 7 )  must obey the condition of the Bloch theorem, 
U ( X  + d )  = fu(x) ,  where f = exp(iud) is the Bloch param- 
eter, and u the quasimomentum. Making use of that circum- 
stance and also the continuity, u(a/2 + d - 0 )  = u(a /  
2 + d + O ) , w e f i n d  

u (a/2+d)=fu(a/2). (8)  

Correspondingly, since we have u1(a/2 + d )  = fu1(a/2) 
and, simultaneously, 

[this relation follows directly from (4 )  and includes the incre- 
ment in the jump in the derivative which is characteristic of 
singular susceptibilities and also, in quantum mechanics, 
characteristic of singular potentials], we find 

The solution of the homogeneous system (8), (9) has a non- 
trivial value for the amplitudes B and C only if the determi- 
nant of this system vanishes. The latter requirement leads us 
to an equation for the Bloch parameter: 

f2-f [ 2  cos(r.d)+ (2G/x)sin(zd) ]+ l=O.  (10) 

To find the spectrum of transverse wave numbers x, we 
make use of the boundary conditions for the solutions (5 ) ,  
(6) ,  and ( 7 )  in the plane 1x1 = a/2, i.e., at the boundary of the 
channel: 

~ , ( a / 2 )  =u(a/2),  uaf(n/2) =u'(a/2) -Gua(ai2). (1  1)  
Once the amplitude C has been eliminated with the help of the 
relation 

C=B esp (iza) [f-exp(izd) ]/[exp(-id)-f], 
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which follows from (a ) ,  we can reduce the system ( 10) to the 
dispersion relation 

for the even solution ( 5 ) or 

for the odd solution (6). The resulting system of equations, 
( 101, ( 1 1 ), ( 13), contains the complete solution of the prob- 
lem. 

We will first show that, in contrast to the direct analogy 
with the limiting case a = d of a microchannel in an ordinary 
dielectric waveguide with "continuous" walls,' no channeling 
will occur in a uniform lattice with one plane per period d (no 
channeling will occur in this case in the sense that there will be 
no mode which is localized along the transverse coordinate). 
To demonstrate this point, we eliminate G /K from Eqs. ( 10) 
and ( 12) and also from ( 10) and ( 13). We find expressions 
for f in the cases of even and odd modes: 

In the limit a = d ,  simple trigonometric conversions lead to 
the result f = f 1, with a purely real quasimomentum u. Us- 
ing (a ) ,  we see that this result is evidence that the even and 
odd modes are completely periodic (with periods of d and 2d, 
respectively). These modes are therefore completely unloca- 
lized, regardless of the relation between d and A ! We recall 
that this result was derived within the framework of the origi- 
nal restrictions a 4 d ,  Ax,,, and is valid only for single crys- 
tals. The effect is essentially related to the very weak reflection 
from an individual plane; this situation may change in artifi- 
cial structures, where channeling is of course also possible 
within a single layer in a periodic superstructure. 

Let us examine the solution at a > d. Eliminating the pa- 
rameter f from system ( lo),  ( 12), ( 13), we find the following 
dispersion relations: 

for an even solution and 

2x/G=-sin(xa) +2 sin2 (xa/2) tg(xd) (16) 

for an odd solution. We will analyze these relations only for 
the most important and most debatable case, that of a thin 
microchannel with xa, xd 4 1. 

A direct expansion of ( 15) leads to a wave number 

which characterizes a unique even nonthreshold mode u(x).  
Correspondingly, the expression for fz 1 + ivd in this case 
becomes 

The imaginary part Y" = - k ' ( a  - d ) x 1 / 2  of the complex 
quasimomentum Y = Y' + iv" for the solution ( 17) charac- 
terizes the decrease in the mode amplitude with distance from 
the channel in the transverse direction in the region Ix 1 > a/2.  
It can thus be seen from the f structure that the total spatial 
width of the mode is roughly equal to A = a + 2/1vW I .  Final- 
ly, we can write the overall structure of a nonthreshold chan- 
neling mode: 

E, [a/2+nd< lxl<a/2+ (n+l)d,  z ]  =u(x) .erp[i(vnd+pz) 1, 
U(X) = A  cos (xa/2) {f sin [?c (  1x1 -a/2-nd)] 

This result is illustrated by Fig. 1. 
The dispersion relation (16) has no solution for odd 

modes with xa, xd 4 1, so there are no odd modes in a narrow 
channel. 

Analysis of the expression for the longitudinal wave 
number, 

p-p'+ip"=(k"-r""'" 

=k-(G/2kd){l-Gd[ 1 + 3 ( ~ - d ) ~ / d ~ ] / 1 2 ) ;  

and the relation for Y" together shows that true channeling 
[by which we mean the existence of a mode which is localized 

FIG. 1. I-Structure of a nonthreshold mode in the presence of a 
microchannel of width a = a, > d; 2-the same, for a = a, > d, 
a, <a,; 3-structure in the case of quasichanneling in a uniform 
lattice with a = d. The vertical bars show the positions of crystal 
planes. 
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in the transverse direction, whose amplitude falls off on both 
sides of the channel, and for which the longitudinal attenu- 
ation coefficient is lower by an amount 
Sp  = k 3 ~ " ~ ' ( a  - d)214 than that for a uniform lattice] oc- 
curs for an arbitrary value a > d and under the condition 
x' < 0. 

Interestingly, although localized modes are not found in 
a uniform lattice without a channel (a = d ,  v" = O), the val- 
ues of f l '  and p " and the wave structure (line 3 in Fig. 1 ) 
nevertheless differ from the results P'  = k(1  + X I /  

2) ,  0 " = kxn/2, which correspond to aplane wave and which 
are found from the average electrodynamic equations. The 
differences are by amounts 

This regime of orientational motion of a wave in an ideal lat- 
tice with a = d could reasonably be called "nonthreshold qua- 
sichanneling." It has some interesting features. In particular, 
along with an absolute change SP :, (x', X" ) in the longitudi- 
nal attenuation coefficient, there is an asymmetry of this coef- 
ficient as a function of the frequency on the two sides of the 
absorption line. This situation is not found in an isotropic 
medium of the same composition. 

The efficiency with which a nonthreshold mode is excit- 
ed can be characterized by an amplitude K, which, as in the 
case of charged particles, can be found from the following 
condition: At the entrance surface of the crystal (2 = O), an 
incident plane wave E,, = exp [i(k,,x + k,,,z) ] / L  ' ", 
which is normalized to the transverse dimension of the beam 
or the crystal, L, and the channeled mode E, are continuous. 
We find the expression 

K= 3 Ego ( x ,  0) E; (x, 0) dx. 

Since the transverse dimensions of the mode satisfies 
A z a  + 2 ) v "  / )a, d and the oscillation amplitude of the field 
E,, over a period d is very small, we can write an approximate 
expression for the field Ey : 

For such a field E y ,  the total probability for excitation of a 
nonthreshold mode is 

In particular, when radiation is incident exactly along a chan- 
nel axis (k, = 0) ,  the excitation probability IK I2z4 /  
(L  I Y "  I ) will actually be determined by the ratio of the trans- 
verse dimension of the mode and the width of the crystal (or 
the width of the beam). 

Let us look at some quantitative characteristics of the 
channeling. For nonresonant radiation we would have 
x 'z  - w:/2w2 and u" zw:  (a - d)/4c2. The initial condi- 
tions xu, xd<  1 are seen to hold, for this particular x,  under 
the condition a <a,,, z 2 ' I 2  C/W, =. 150-300 A. With 
d = 2.5 A, we z (3-6). 1016 s-', and values a=: 5-30 A, we 
then find v" =. (0.5-5). lo4 cm- ', which corresponds to a to- 

tal width Az4-0.4 p m  for the mode. The mode width de- 
creases sharply near a resonance. For example, near the K 
edge of the fundamental absorption band of a diamond crystal 
with h, = 284 eV we would have X'Z - 44. 10W3 (Ref. 6 )  
and Az0.8-0.08 p m  for the same values az5-30 A. Still 
greater localization of a nonthreshold mode would corre- 
spond to Mossbauer transitions, for which we would have 

where a, is the total resonant cross section, which includes the 
Mossbauer factor, and r is the level width. For a tantalum 
crystal which contains an abundance of 99.99% of the isotope 
I8'Ta in its natural state, with &a, = 6.26 keV, kz3.10'  
cm-' and a0z1.7.10-'8 cm2, we find x 'z  - at the 
frequency w = wo + T. We find that the size of the mode for a 
microchannel of width a z 5-12 A decreases to 120-40 A. 

The relative decrease in the absorption coefficient during 
channeling, relative to that for unchanneled motion (in an 
isotropic medium of the same optical density or in crystals 
lacking a channel at large angles of incidence), is Sfl "/ 
fl"z10-4-10-2 for nonresonant x radiation and SP"/ 
fl " -0.5( 10-3-10-') for resonant x radiation (in the case of 
diamond, which we examined above). Correspondingly, for a 
crystalwith 181~awewouldhaveSfl  "/fl "=.0.5(10-2-10-') 
near a Mossbauer y transition. All of the effects found here 
could be observed easily by measuring (for example) the an- 
gular dependence of the transmission. An extremely charac- 
teristic circumstance is that the relative contrast of the trans- 
mission maximum along the channeling direction, 
[exp(Sfl "z) - l]/[exp(Sfl "2) + 11, will increase with the 
thickness of the medium. Despite the small value of Sfl ", it 
may reach a value of some tenths at large values z, 1/lP " 1. 
We might add that for extended samples of this type it should 
also be easy to observe nonthreshold quasichanneling, which 
would be seen as a maximum in the transmission in the 0 z 0  
direction in high-quality single crystals lacking channels. 

In conclusion we would like to point out that (for exam- 
ple) voids of width a =  1&50 A in intercalated crystals or, 
possibly, structural defects of crystals such as edge disloca- 
tions with d < a 5 2d might serve as microchannels. 
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