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The trapping kinetics in subthreshold percolation systems is investigated. Expressions are 
derived in the low-reaction-rate limit for the decrease in the reagent density for neutral and 
charged particles reacting in an external electric field. The influence of trap diffusion on the 
reaction kinetics is analyzed. 

I. INTRODUCTION 

Diffusion-controlled reactions (DCR) ,  aggregation, 
and percolation processes are of increased interest today in 
the physics of disordered media. The two-particle descrip- 
tion of the kinetics for diffusion-controlled reactions was 
first developed by Smoluchowski.' According to this theory, 
the rate of an irreversible bimolecular reaction 

h' 

A + BZ Product (1 )  

is given by an analog of the law of mass action: 

ap,/at=ap,/al=-k, ( t )  papB, ( 2  

where p, and p, are the densities of the particles A and B. 
The effective reaction rate constant k, ( t )  is taken equal to 
the density flux @'d) of the reagent A across a reaction 
sphere of radius a = R, + R, toward a particle B, where 
R, and R, are the radii of the particles A and B. The density 
p, (r,t) obeys the diffusion equation 

r9pA (r, t)ldt=DApA(r, t ) ,  ( 3 )  

where A is the d-dimensional Laplace operator, d is the spa- 
tial dimension, and D = D, + D, , where D, and D, are the 
diffusion coefficients for the particles A and B. The bound- 
ary conditions are of the form 

where k ,  is the rate constant for the chemical reaction, Sld' 
= 2,fi  /2 ad - I / T  ( d  /2) is the area of a d-dimensional sphere 

of radius a ,  and T (x)  is the gamma function. The superscript 
( d )  in (4 )  and throughout this paper indicates the dimen- 
sionality of the system. Forp, <p,, the probability for an A 
particle to survive for a time t is given by the formula 

pA (t)/p,= Wed) (t) = e x p [ - ~ ~ ~ ( a , k , , ~ , t )  1 , (5 )  

where the Smoluchowski flux f o r d  = 1,2,3 is given by 

k,nBt, t<tJ1'  - D k , )  ' ,  
(8  

n ,  is the concentration of the B particles and k ,  = 47raD. 
The Smoluchowski theory is valid if the reagents are homo- 
geneously distributed. It has been found2-l4 that in many 
cases the Smoluchowski solution describes only an interme- 
diate limiting case of the problem, and that the initial ( t  = 0 )  
fluctuations in the reagent density in fact completely deter- 
mine the DCR kinetics in the limit t -  cc . 

The random walk problem was considered in Ref. 10 for 
a particle migrating in a lattice containing immobile traps. 
At late times all the particles are trapped, except for those 
within fairly large regions devoid of traps. Within these re- 
gions the motion of the particle is described by the diffusion 
equation (3 )  with the boundary condition 

where Z is the boundary of the region. This gives rise to the 
familiar fluctuation beha~ior'.'~'.' ' 

where q = const(d,D,a,n, ) .  In Ref. 12 this result was de- 
rived by the diagram method, and corrections determining 
the onset of the asymptotic regime were found. 

The DCR kinetics becomes more sensitive to fluctu- 
ation effects as the density of the system increases. One an- 
ticipates that the fluctuations will be most important when 
the fraction of the volume filled by the active particles (the 
gas parameter a = n,ad ) is of the order of unity. However, 
the kinetics of fast reactions in such systems is clearly diffi- 
cult to investigate experimentally, since for a-  1 the diffu- 
sion-controlled reaction takes places during an extremely 
short time interval 7- 10- l3 s (Ref. 13). Furthermore, most 
industrial and natural processes occur in dense systems with 
high reagent concentrations and moderate reaction rate con- 
stants. It is therefore of interest to consider slow reactions in 
dense systems and in systems containing inert barriers and 
traps. 

The vast majority of theoretical papers on DCR kinet- 
ics have been concerned with low-density systems. For ex- 
ample, it was shown in Ref. 14 that in systems where not all 
collisions between the reagents result in reaction, the kinet- 
ics is the same as for fast reactions, except that the time and 
the gas parameter have to be resealed. Fluctuation effects in 
these systems are delayed even longer than for DCR reac- 
tions, and the fraction of unreacted particles (from the equa- 
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tions of formal kinetics) is also less. Dense systems differ 
fundamentally from dilute ones because in the prepercola- 
tion region (large a ) ,  the particles cannot diffuse over long 
distances but are instead localized in bounded regi~ns. '~. ' '  
The replica technique was used in Ref. 17 to analyze the 
trapping kinetics, and it was stated that the fluctuation ki- 
netics in the long-time limit remains the same even beyond 
the percolation point (when the density of immobile traps is 
increased ) . 

In the present paper we will show that dense percola- 
tion systems, in which the particles react slowly with traps 
and barriers, and reaction systems containing traps and inert 
barriers both exhibit various intermediate types of limiting 
behavior, which in many common cases describe the reac- 
tion of nearly all of the reagent. The large number of inter- 
mediate fluctuation limits obtained in this paper reflects the 
multiplicity of the parameters in the model (diffusion coeffi- 
cients for the various particles, densities, true reaction rate 
constant, particle dimensions, and also the external field in 
the case of charged particles). 

We mention in particular Refs. 18 and 19, in which esti- 
mates are obtained for the observed reaction rate constant in 
dense systems. Those results rest essentially on the assump- 
tion that the reaction kinetics obeys the exponential depend- 
ence predicted by the formal kinetic theory. We show below 
that this is not the case in subthreshold percolation systems, 
so that the conclusions reached in Refs. 18 and 19 do not 
apply. 

For threshold percolation systems, qualitative scaling 
estimates for the long-time fluctuation kinetics were derived 
in Ref. 20. 

It is well established experimentally that most reactions 
in solid and amorphous solutions do not obey the laws of 
formal kinetics (see, e.g., Refs. 21-26). Instead, one fre- 
quently finds 

where c,b = const, 0 <  b < 1 .  The reaction rates given by 
( 11 ) are slower than those predicted by the equations de- 
rived using the formal kinetic theory. Some physical mecha- 
nisms leading to a dependence of this type are discussed in 
Ref. 26. 

According to the kinetic theory developed in this paper 
for reactions in subthreshold percolation systems, the slower 
kinetics ( 1 1 ) may be attributed to localization of mobile rea- 
gent particles within bounded fluctuation cavities. This lo- 
calization occurs during the entire course of the reaction in 
disordered systems with a high (subthreshold) density. In 
view of the similarity of many amorphous and solid solutions 
to prethreshold percolation systems, our results can also be 
used to analyze the reaction kinetics in these systems. 

In Sec. 1 of this paper we derive some intermediate 
limiting expressions for neutral particles reacting with im- 
mobile traps, d = 2,3. The same system, but with mobile 
traps, is considered in Sec. 2. In Sec. 3 we derive the fluctu- 
ation kinetic equations for a percolation system that con- 
tains, in addition to traps, inert immobile particles (bar- 
riers) that restrict the diffusion of the reagent ( d  = 2,3).  
The study of this system is continued in Sec. 4, with the 
additional complication that the traps are allowed to move. 
One-dimensional analogs of the systems considered pre- 
viously are examined in Sec. 5. In Sec. 6 we consider a uni- 

form external field acting on charged particles in the system 
analyzed in Sec. 1, while in Sec. 7 we do the same for the 
system treated in Sec. 2. Some of the results in this paper 
were discussed briefly in a previous publication.27 

1. REACTIONS OF NEUTRAL PARTICLES WITH IMMOBILE 
TRAPS/BARRIERS IN TWO- AND THREE-DIMENSIONAL 
SYSTEMS 

We consider the densityp, (r , t)  of particles A diffusing 
over a lattice. The lattice sites can be occupied independently 
by immobile neutral particles B (traps through which the A 
particles cannot pass), with probability p,; we assume that 
p, >pA always holds. There is a small probability that an A 
particle will be absorbed (annihilated) upon encountering a 
B particle. Otherwise, when absorption of A by B does not 
occur, A is reflected elastically from B. In this paper we con- 
sider dense percolation systems in which the fraction of emp- 
ty sites is less than the percolation limit for the lattice; each 
particle A is consequently localized in a closed region con- 
sisting of a single connected component (Fig. 1 ). 

The density p,, (r,t) of the A particles in the cavity R is 
governed by the diffusion equation (3 )  with the boundary 
condition 

where h = k ,  (So DA ) ' ;  S td' is the area of a d-dimensional 
sphere of radius a ,  where a is the reaction radius. The bound- 
ary I: may consist of several connected components if some 
of the B particles lie inside f2 (Fig. 1 ). The + and - signs 
in ( 12) correspond to the outer (inner) parts of Z. 

The topology of this region differs from that for the 
Smoluchowski problem, because here we consider trapping 
ofA particles at an internal multiply connected surface of the 
cavity, rather than trapping at the outer surface of a sphere 
of radius a surrounding a given trap B. It was shown for 
similar problems in Ref. 11 that to calculate the mean den- 
sityp(t)  of the A particles it suffices to consider only spheri- 
cal cavities, which give the main contribution to p ( t )  for 
large t. 

We thus consider Eq. ( 3 )  in a spherical cavity with the 
boundary condition ( 12) and the "homogeneous" initial 
condition 

The solution is expressible as an expansion in the eigenfunc- 
tions of the associated Schrodinger-type equation 

FIG. 1. A fluctuation cavity containing a localized particle A and sur- 
rounded by traps. 
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The eigenfunctions f o r d  = 2 and 3 are given by 

y,13' ( r )  =Cn sin A,'"r/(l,'"r), (14) 

Y , (~ )  ( r )  =CnJo(Ln'hr). (15) 

The eigenvalues satisfy the equations 

where x = A :,/'I, 1 is the radius of the cavity, and J( ,(x) and 
J2 ( x )  are Bessel functions. The solutions of ( 16) and ( 17) 
are illustrated in Figs. 2 and 3. 

We introduce the dimensionless parameters 

wherefl reflects the relative magnitudes of the chemical and 
diffusion reaction rate constants, and 6 is the ratio of the 
particle and cavity dimensions. 

For fast reactions (fl > c ) ,  

where n>O, d = 3. The eigenvalues for the two-dimensional 
problem are bounded similarly in order of magnitude. For 
large times the survival probability in a d-dimensional cavity 
is equal to 

W,(d)  ( t )  =exp(-xlZDAt/12), 

where x ,  is the smallest root of the eigenvalue equation. The 
survival probability W:;" ( t )  can be averaged over the cav- 
ity dimensions with the weighting factor p,, 
= exp[ - n ,  V(R) ] by using the method of steepest de- 

scent; here V(R) is the d-dimensional volume of the cavity 
0 ,  n ,  = - 7 In( 1 - p ,  ), and 7 is the density of lattice 
sites. The radius 1 Id' of an optimal cavity increases with time 
as t I / ' "  t 2' , so that 

where k,, is the square of the first zero of the function J, , (x) 
(Figs. 2 and 3 ) .  From this we recover the well known result 
( 10). The reaction can be said to undergo a transition to the 
totally diffusion-controlled regime as t- CC. 

In the case of a slow reaction (fl<(), each of the equa- 
tions ( 16), ( 17) determines a single solution which is close 
to zero, 0 < x r '  < 1. Figure 3 shows a graph for the three- 
dimensional case, when fl(cm ) - ' - 0 (m is the area of a d- 
dimensional sphere of unit radius) and the straight line 

FIG. 2. Graphical solution of the equation tan x = x (  1 - P(Cm) ' ) ' 
for04 ' > l  and/3{ ' < I .  

FIG. 3. Graphical solution of the equation J, (x)  J,, ' (x)  = fl(Cxm) ' 
f o r f l < - ' % l  andD< ' < I .  

x ( 1  - f l / < m ) '  approaches the tangent to thecurve tan(x)  
at the point x = 0, which ensures the existence of a small 
root. For the two-dimensional problem, Fig. 3 shows the 
situation when fl(gm)p'-O; in this case the hyperbola 
f l ( f m ~ ) ~ '  approaches the coordinate axes and intersects 
the graph of the function J, (x)/J( ,(x) near the point x = 0. 

For a three-dimensional system the eigenvalues are giv- 
en by 

where S, is the area of the surface Z. 
For slow reactions (f l<&),  we have A, &A,, for every n .  

The expansion in the eigenfunctions of Eq. ( 13) is 

m 

(1+h,12) '" sin A,"? exp (-J,,D,t). 

(22) 

The terms in the sum in (22) with n) 1 are all small in abso- 
lute value compared with the first, and they decrease far 
more rapidly with time. For D, t &  1 we have 

Using a Hartree-Fock expansion in the small rate constant, 
it is easy to show that expression (23 ) for the survival proba- 
bility holds for all dimensions d and arbitrary cavity shapes 
if fl<a/l,,, , where I,,, is one-half the maximum diameter 
of the cavity R. Clearly, W:,d' ( t )  is largest for spherical cav- 
ities. 

Averaging the survival probability W:t l ( t )  with 
weight p, ,  ( V), we find by the method of steepest descent 
that 
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(k.nBt)'], W(" (t) =2 (27a) -''a(nk.n.t) " exp [- - (nu) '" 

We remark that in these expressions for Wd' ( t )  it is the 
exponentials that are significant, since the coefficients may 
change when averaged over the cavity shape. For systems of 
arbitrary dimension 

where c = const(a,k, ). 
The radius I jd' of an optimum fluctuation cavity fl in- 

creases with time. On the other hand, the condition that the 
reaction rate be small is equivalent to the smallness of I I"', 
I jd' <aD - I .  For I jd' > a@ - I  then the smallest eigenvalue of 
the diffusion operator is given by Eq. ( 18) (see Figs. 2 ,3) ,  so 
we obtain the asymptotic formula ( 10). The transition from 
the intermediate regime (28) to ( 10) occurs at a time ?-id' 
equal to (aa2/D, )DP 'd+  2 ' .  The time to onset of the inter- 
mediate fluctuation regime (28) can be found by equating 
the exponentials in the formal-kinetic result (5)  and in (28); 
one obtains rid' - (a2/D, ) (Dad ) - I. The intermediate re- 
gime (28) holds for times rid' < t < rid', and in dense sys- 
tems with low reaction rates (P<{) we have r : " ' /~~~ ' -  ( a /  
D)d + ' > 1. The survival probabilities Wd' (7, ) and 
Wd' ( r Z )  determine the fraction of unreacted particles at 
the corresponding times: 

In practice, for arbitrary reactions involving trapping in 
dense systems, the experimental time exceeds 10 -' s if 
D > 10' in liquids (assuming D, - 1 0 - - h m ' / s )  and 
f l - '  > 10 in solids (with D, - 10- "' cm2/s). If the charac- 
teristic conversion time for the system exceeds lo-' s, then 
Wd' (r2)/ Wd' (r l  ) << 1 and only the intermediate regime 
(28) will be observed. 

2. NEUTRAL PARTICLES AND MOBILE BARRIER TRAPS 

a. Three-dimensional systems 

The fluctuation effects are smaller if the traps can move. 
Following Ref. 28, we can estimate the survival probability 
for the A particles in the system as follows. When averaging 
the survival probability in the cavity we multiply W,':' ( t )  by 
the "survival probability" p,, ( t )  for the cavity. By defini- 
t ion ,~ , ,  ( t )  is the probability that during the time t ,  the vol- 
ume of the cavity will not decrease due to trap diffusion. We 
can find a lower bound for p,, ( t )  by setting p,, ( t )  equal to 
the probability that none of the B particles will ever cross the 
cavity boundary Z during the time t. For spherical regions 
this probability is equal to 

where @jd' (I)  is the flux across the surface Z found by solv- 
ing the Smoluchowski problem (6)- (8)  for the survival of 
immobile particles in a medium with diffusing traps. The 
diffusion coefficient in Eqs. (6)-(8) is equal to the self-dif- 

fusion coefficient D, of the traps in the dense system, and 
the cavity dimension I appears in place of the particle radius 
a .  

The resulting fluctuation-kinetic dependence will cor- 
rectly describe the reaction kinetics if it predicts a slower 
time-dependence of the survival probability than given by 
the formal-kinetic result ( 5 )  from the Smoluchowski theo- 
ry, in which the reaction radius is equal to the sum of the 
radii of the A and B particles, and the effective diffusion 
coefficient is equal to the sum of the diffusion coefficient for 
the A particles, in a medium without traps, plus the self- 
diffusion coefficient for the B particles in a dense medium. 

If the traps are not very mobile (y>)a -  ' ), the above 
estimate for the survival probability yields a constant value 

for the radius of an optimal cavity, where y = (k, /  
D, )a2  -- d ,  as well as an exponential dependence 

for the survival probability. 
In a three-dimensional medium with diffusing barriers 

or traps of low mobility, the reaction rate for (1 )  goes 
through a sequence of successive intermediate regimes. For 
fast reactions, for which yfl' > ( 4 ~ ) ~  (and 7:" < rk3'= (a2/ 
DB ) ya- I ) ,  Eq. (28) holds for times (krn,  ) - I  

< t <a2(pk ,nB ) -', after which ( 10) takes over. As shown 
in Ref. 28, for times t > (a'.Da2I3) (D, /D, )'I3 the latter is 
in turn replaced by 

For slow reactions (yD'< ( 4 ~ ) ~ ) ,  expression (28) breaks 
down fort  > ri3) and is replaced by (32) .  The survival proba- 
bility at the transition from (28) to (32) is quite small, 

b. Two-dimensional systems 

In two-dimensional systems with relatively immobile 
traps, so that y- '  < 1 4 8  - I, the intermediate regime (28) 
discussed above for systems with stationary traps holds for 
times 

For large times t$r%',  trap diffusion into the fluctuation 
cavities determines the rate at which the A particles are ab- 
sorbed. The optimum cavity radius continues to increase as 
in three-dimensional systems, but more slowly: 

so that we get the following expression for the survival prob- 
ability in two-dimensional systems: 

4nnBDBt 
w:"=erp [- 

ln (pt/ln4 pt) ] - e x p ( - 4 s ) ,  

(36) 

where p = (4.rr'a/y)'(DB/a'). If ~ : ~ ' < t  2' (i.e., & > a ) ,  
there is a time interval ri2' < t < (Dn, ) - '  (D, /D, )' during 
which the trapping of the A particles is given by (10) .  For 
t > (Dn, ) - ' (D, /DB )' this goes over to 
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found in Ref. 28. If &<a then (28),  which holds for sta- 
tionary traps, is replaced by (36) when t > r:'. 

In dense two- and three-dimensional percolation sys- 
tems, ( 10) thus fails to hold for certain parameter values. 

If the traps are highly mobile ( y  < 1 ) then for t > (4/ 
ay) '(a2/DB )exp(4.rry- ' ) the formal kinetic result (5 )  re- 
duces to (36).  

Figures 4 and 5 schematically show the various reaction 
regimes in the three- and two-dimensional cases. 

3. NEUTRAL PARTICLES, INERT BARRIERS, AND 
STATIONARY TRAPS IN THREE- AND TWO-DIMENSIONAL 
SYSTEMS 

a. Three-dimensional systems 

In this section we analyze the trapping kinetics in a 
dense percolation lattice whose sites can be occupied (with 
probability p,), by inert immobile barriers which do not 
participate in the reaction, and by traps (with probability 
p, < p c ) .  The mobile A particles are distributed with low 
density among the sites unoccupied by B or C. The quantity 
1 - p ,  is less than the percolation threshold so that, as in the 
systems considered in the previous sections, the A particles 
are localized in cavities essentially devoid of C (Fig. 6) .  

It is obvious that as t- C C ,  the survival probability in 
this system tends to a constant limit W ,  equal to the frac- 
tion of the cavities that do not contain any traps B. The rate 
at which W(t) tends to W _  as t-- cc is determined by the 
cavities with the fewest traps. 

Let us consider the survival probability for an A particle 
diffusing in a spherical cavity with reflecting walls which 
contains a spherical trap B. The eigenfunctions for the asso- 
ciated boundary-value problem are 

The eigenvalues A,, are given by the equation 

One finds readily that in this system the survival probability 
is equal to 

FIG. 4. Various kinetic regimes, corresponding to Eqs. ( 5 )  (region I ) ,  
(24) ( I I ) ,  (32) ( I l l ) ,  (10) (IV),  (33) (V) .  The curve r/rj3' 
= ( 4 ~ )  '(?y)' separates regions Ii and 111, the curve t / r / "  
= a l " " ( y  - + / 3  ' )  l ( l~ / f l ) " ' r eg ions IVandV.  

FIG. 5. Various kinetic regimes, corresponding to Eqs. ( 5 )  ( I ) ,  (26) ( I I ) ,  
(36) ( I I I ) ,  (10) ( IV) ,  (37) ( V ) .  Thecurve t/7i2' = y'separates regions 
I1 and 111; IV and V are separated by t /rj2' = ( y - ' + /3 ' ) - (y/fl)', I 
and 111 by t / r j 2 '  = 1 6 y i  exp(4?r/y). 

if 64  1 and D, t >  1 2,  where k, is the observed reaction rate 
constant, k, = k, k, /(k,  + k, ). For a spherical cavity 
containing N traps, N<(  3 ,  we have 

W,(3)( t)  =exp ( - ~ k , ,  t / v). (41 

The mean survival probability is 

Here P ,  ( N )  is the Poisson distribution with mean equal to 
the expectation of n,, the number of traps in the cavity; 
p (  V) = exp ( - n ,  V )  , where n ,  is the concentration of bar- 
riers C. Adding (42) over N a n d  subtracting W :', we get 

A W ( 3 )  ( t )  =W(3)  ( t )  -w:) 

= )  e ~ p [ - ( n ~ + n ~ ) V ] { e r p [ n ~ l . e r ~ (  - k..r/V)]--l)dV. 
v 

(43) 

For small t, expression (43) leads to the formal kinetic 
dependence ( 5 ) for any distribution p (  V) which is normal- 
ized to unity. For t -  w the method of steepest descent gives 

In A W ( " ( t )  =-2(k,(n,+nc)t)"'. (44) 

The transition from (5 )  to (44) occurs when t > ?13' 
- ( n B  + n, )/k,n2,. 

FIG. 6. A fluctuation cavity surrounded by barrier particles C and con- 
taining a localized A particle and two traps B. 
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b. Two-dimensional systems 

The eigenfunctions of the diffusion equation ( 3 ) ,  with 
boundary conditions analogous to those used in the three- 
dimensional case, are equal to 

where N,,(x) is the zeroth-order Neumann function. The 
equation for the eigenvalues is 

N,(x) [ x J 1 ( x ~ ) + h l J o ( x ~ )  ] -1, ( x )  [ x h ' , ( x ~ ) +  hlN~(xE) ] =0, 

where x = /1 The smallest eigenvalue is 

where b =: 2.00 and c z  0.25 (Ref. 29). The survival probabil- 
ity for the A particles in a cavity f1 with N traps is given by 

Wp(" ( t )  =esp (-h,ND,t) (48) 

when N<{ -', D, t>12. Averaging (48) overNand Vby the 
method of steepest descent, we find that the optimum cavity 
radius 1 j Z '  increases: 

'I' 
lj2) z ) { ~ + R ( b l n [ l  (z 

where t%a, ( 1  +P)a2 /k , ,  a, = (n, + n,)ad -1; the re- 
laxation of W'*'(t) to W?' is given by 

In A W'" ( t )  ( ,+, 

Expression (50) replaces the formal kinetic result ( 5 )  
when 

n,+nc I+ ( k , / D ) '  t>~i'2' N --- -. 
k ,  n,,' ,+a 

The fraction of unreacted A particles at time t = ? j 2 )  is small 
and proportional to the factor exp( - n,/n, ). For suffi- 
ciently large times t > a,p - ' ( 1 + 8) - ' (a2/D, ), the relaxa- 
tion expression for A Wl2'(t) becomes 

The survival probability in two-dimensional systems 
thus decays more slowly than in three-dimensional systems. 
Significantly, the kinetics in both cases d = 2,3 differs from 
that given by the formal kinetic expression (5 ) .  

4. NEUTRAL PARTICLES, INERT BARRIERS, AND DIFFUSING 
TRAPS 

If the traps B in the system described in Sec. 3 have a 
small but infinite mobility, the kinetics is more complicated. 

The survival probability W(t)  for a particle in the system is 
again equal to W, ( t ) ,  the survival probability in cavities 
devoid of traps, plus A W(t) ,  the survival probability in cav- 
ities containing N> 1 traps. 

Due to thediffusion of traps into the cavity, W',"'(t) for 
d = 2,3 tends to zero as t- CC, and the decay is given by the 
formal kinetic equations: 

W m (  ( t )  =esp (-4ni~uIl,,L/), 

a. Three-dimensional systems 

The relaxation of A W'3'(t)  to zero is determined by 
fluctuation effects when the trap mobility is small, y >a,. "'. 
In this case, trap diffusion does not play a significant role 
during the time interval 

and A W'"(t) decays to zero according to Eq. (44) .  The opti- 
mum cavity radius I I" increases as t ' I h ,  and at time t = ?;' 
reaches its maximum value 1:' ~ a y 1 ' ~ 9 / 1 6 ~ ' a ,  ) "I, at 
which trap diffusion into the cavity becomes substantial. For 
t>?i3' the trap diffusion completely dominates the kinetics; 
in this case I I" =:I 2' = const and 

2 (2n) '" 
In AW(3) ( t )  = - - 'A k * n ~ t .  

b. Two-dimensional systems 

For low trap mobilities ( y >  1 + P ) ,  the formal kinetic 
result ( 5 )  is valid for timesa2/D< t < 7;". The trapping then 
obeys (50) for times 

Trap diffusion starts to dominate the kinetics when I - i;", 
at which the optimum cavity radius 1:" reaches the value 

wheret>y2(4a ' (1  +/3) /k , .n , , )  I .  F o r t > 7 % ' w e h a v e I j L '  
=:I L2'(t), and the relaxation of A W'"(t)  to zero is given by 

4n-y-- 'krtz,lt 
In A W(') ( t )  = - 

l n [ 4 n - ' y 2 ( 1  +PIX., n,,t ] 

If the traps are highly mobile ( y <  1 + P )  then the formal 
kinetic dependence ( 5 )  is replaced by (55) when 

where 

5. NEUTRAL PARTICLES DIFFUSING IN A ONE- 
DIMENSIONALCHAIN CONTAINING INERT BARRIERS AND 
TRAPS 

In Refs. 30 and 31, the trapping kinetics was analyzed 
for one-dimensional systems with barriers C and nonideal 
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traps B. The survival probability for a reagent particle A 
traveling along paths bounded at either end by barriers and/ 
or traps was calculated by a nonrigorous approximate meth- 
od, in which the motion of A was modeled as a series of hops 
occurring at a rate (9, the trapping rate w' being arbitrary. In 
this section we will find an exact solution of the correspond- 
ing diffusion problem. 

In thecontinuous limit, Eq. (3 )  with the boundary con- 
ditions 

holds for an A particle diffusing over a distance 1; (56) is 
appropriate for the case when the path begins and ends at 
traps, (57) when the path is bounded at one end by a trap 
and at the other by a barrier. Here we have written h = fl/a. 
The corresponding equations for the eigenvalues are 

for boundary conditions (56) and 

for (57),  where x = R ),'21. 
If the reaction rate constant is large (f l> &) then 

For large times the survival probability WX'( t )  is deter- 
mined by the smallest root x,  of Eqs. (58) or ( 5 9 ) ,  

where 

n for (58), 
2 for (59). 

The usual relation ( 10) for the relaxation of W"'(t)  to 
W'/" follows by averaging (61) over I with weight 
exp[ - (n, + n,- ) I ]  equal to the probability for the diffu- 
sion path to be of length I. 

For slow reactions (fl<{), Eqs. (58) and (59) each 
give a single eigenvalue A,, which is close to zero, and for any 
n>1 wehaveA,, $A,,= (f l{/a2)(1 +o(fl{- ' )) ,wherefis  
the number of traps at the ends of the path. For D, t$I '  the 
survival probability is given by the relation 

The kinetics in the overall system depends on the ratios 
of the numbers of paths with zero, one, or two traps at the 
ends": 

where p, is the corresponding probability. In the two ex- 
treme cases 

we have the expressions 

for the relaxation of A W(t) to zero and for the optimum 
path, of length I:" (found by the method of steepest de- 
scent ) . Equation (67) replaces the formal kinetic depend- 
ence (5 )  for times t > r i l ' -  (n, + n c ) / k r n i .  Because I:" 
is larger, for t > r:" -a2a, /DAB ' t h e  quantity fl exceeds 6, 
and (67) is replaced by ( 10). We note that the intermediate 
regime (67) holds only for smallfl withfl<n,a, so that the 
inequality r:" > rj" is satisfied. 

According to (67),  the fraction of absorbed particles is 
proportional to exp[ - (1  + n,/n, ) I ,  which is largest at 
high relative trap concentrations n, %n,. At time t = r:" 
nearly all the A particles are absorbed by the traps: 
A W"'(r2) a exp( - 2f I1*a,/fl) < 1. 

a. Mobile traps 

Now suppose that the traps move with a diffusion coef- 
ficient D,. A similar problem was considered in Ref. 28 for 
systems in which the kinetics is controlled by the diffusion of 
the A particles. In this section we consider the case when the 
kinetics is controlled by a chemical reaction, for a one-di- 
mensional system in which the traps can diffuse. 

The relation 

gives a lower bound for the survival probability A W("(t ) ,  
where the second term corresponds to the "survival" proba- 
bility along the path and is equal to the Smoluchowski flux 
(8 )  with diffusion coefficient D,. 

If the trap mobility is small, so that 

then Eq. (68)  replaces the formal kinetic result ( 5 )  for times 

Therelaxation of A W'"(t)  to zero depends on the ratioofthe 
terms in (68 ) : 

2 [fk, (nR+nc) tltb,y-I<< (nB+ nC)  /nB2a, (7  l a )  
In A W(I)  ( t )  m- 

4n, (D,t) '"In'", (nB+nc) l n ~ ~ < y - ~ < y . - ' ,  

For highly mobile traps ( y < y*),  the formal kinetic formula 
( 5 )  is valid at least to t-r:". 

For times t > 75') this estimate for A W'"(t)  is supersed- 
ed by" 

37 
In A W'" ( t )  = - -l- (U,dD)  '"+ (DB.rID) 

4 

Trap diffusion thus retards the absorption of the A par- 
ticles for all D, ; however, for D, - 0 or D, - D this fluctua- 
tional retardation begins only for very large times t- W .  

171 0 Sov. Phys. JETP 67 (a), August 1988 S. F. Burlatskil and 0. F. lvanov 1710 



6. NEUTRAL STATIONARY TRAPS AND CHARGED 
PARTICLES IN A UNIFORM EXTERNAL FIELD 

In this section we consider the trapping of A particles 
with charge q by neutral immobile traps B in the presence of 
a uniform external electric field for systems of dimension 
d = 1,2,3. The force qE causes the A particles to move to- 
ward the boundaries of the cavities in which they are local- 
ized, and the optimum cavity is thus an elongated cylinder 
extending along the field. In Ref. 32 time-dependent effects 
were considered for a one-dimensional chain in which the 
hopping probabilities from one lattice site to another were 
random in the presence of an electric field. The behavior of 
the current j ( t )  at large times t - +  m is sensitive to the 
strength of the field. 

The density of the A particles in a cylindrical cavity R of 
radius I, and length I obeys the Smoluchowski equation 

We writep,, in the form 

P Q ( ~ ,  t ) = p ~ ( x ,  t ) p 2 ( r ,  t ) ,  (74) 

where p ,  and pz are the solutions of the boundary-value 
problems (76) and (75):  

(Eq. (75) was solved in Sec. 1 of this paper), 

where u = qED, /k, T = bF, where b is the mobility of the 
particles, and D, /u = k, T /qE  = L, where L is the effective 
longitudinal dimension of the cavity, along which the field 
varies appreciably. The eigenfunctions for (76) are equal to 

exp ( - d 2 L )  (C,  ch Ox+Cz sh OX), (77) 

esp (-x/21J)  (C, cos Ox+Cz sin Ox). (78 

where 8 = [ (2L) -' - lA ID ,; ' 1  I". We will call (77) and 
(78) the decaying and oscillating modes, respectively. 

We first examine the decaying mode. The boundary 
conditions give 

Y ( x )  =C exp ( - x / 2 L )  [ A  cll Ox- (1 /2L-h)sh  Ox] , 

where x = 81. Equation (79) has a unique nontrivial solu- 
tion if 

f i ' ( O ) <  (th x)'l ,=,=I. (80) 

This existence condition for the decaying mode restricts the 
range over which the characteristic parameters of the prob- 
lem can vary: 

Let us consider the strong-field case I /L $1, so that the 
behavior of the reaction at large times is determined by the 
survival of the A particles localized in the largest cavities. 

For slow reactions (B<<flc',, ), we find from (79) that 
hDA 

ho = - [1+2 e x p ( - l / L )  1. 
L (82) 

ForB5PC,  (so thathlB1,  s ince l /L$ l ) ,  wehave 

The eigenfunctions and the eigenvalue equation for the oscil- 
lating mode are of the form 

v ( x )  =C (- G) [ 0 cos Ox- (-$ - h )  sin O X ]  , 

For arbitrary 8 ,  the eigenvalues A,, obtained from (84) are 
given by 

The mean survival probability for the A particles in a cavity 
R is given by 

m 

W Q ( t )  = Zf. exp(--Ant) .  (86) 
n=O 

where f, =Z:(J,,I)-I, I, = J ; ~ , , d x ,  J,, =.fh~:dx.  The 
coefficients f, are equal to 

where the x, are the roots of (84). 
For slow reactions (flgflCr ), if D, t s  L ' holds then the 

first term in the expansion in (86) gives the dominant contri- 
bution: 

hDAt wQ ( t )  = esp {- 1+2 exp ( - 1 1 ~ )  I}. 
1 

since for every n > 1 we haveh,$J;, and A,, &A,, . 
For large reaction constants (fl>,Bc!., ), theA, and A,, all 

have roughly the same order of magnitude, and for t - cc the 
term with the smallest A,, dominates in (86) : 

where m , , ( , _ ,  --a is the smallest root of Eq. ( 84). 
The mean survival probability for this system is given 

by the relation 

wherep ( V) = exp ( - n, V) and p ( t )  is given by the appro- 
priate limiting expression for the problem (75) correspond- 
ing to a given fl. 
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the cavity normal to the field. As with (76),  the solution of 
(95) again consists of a decaying and an oscillating mode. 

The eigenfunctions and the eigenvalue equation for the 
decaying mode are 

For a slow reaction (p&a/L) ,  the logarithm of the sur- 
vival probability is 

where A'd' ( t )  decreases as a power of t when t-. co. For 
d = 1,2,3 the function A'd' ( t )  is given by 

Y ( x )  =C exp ( -x /2L)  [ch Ox- (2L8)-' sh Ox] ,  

A'3' ( t )  = Equation (96) has a (unique) nonzero solution iff; (0 )  < 1. 
This condition restricts the parameters of the problem as 
follows: 

A"' ( t )  =' 

k ,  T .  
E>E,,' = - k ,  T 

1 (h'212+4h'l) '"-hl] = - cp (h'l) , 
91 91 

where r:," - a a "  ' L  /fl k,. The change in the form of 
A'd' ( t )  for d = 2,3 for times t - T : , ~ '  reflects the change in 
the fluctuation asymptotics for the problem (75).  

For a fast reaction with p$a/L, the logarithm of the 
survival probability is given by 

ln W(d' ( t )  I x - DA (9-w 2 t  [ 
( t )  1, 

( 2 k ,  T)' 
(93) 

where 

where X'd'  ( t )  has the form 

We see from (98) and (99) that Eq. (96) always has a 
unique solution provided that 1 /2L $ 1. When (97 )-(99) 
are satisfied, the solution of (96) has the form 

The decaying mode (77) in the solution of (76) thus 
determines the long-time behavior of the conversion of the 
reagent A for slow reactions withB&/3,, . For fast reactions 
(/?$pc',, ), this behavior is determined by the largest term in 
the oscillating mode (78) in the expansion (86).  

h'DA exp (-1/L) [ , - h'L exp ( - l /L )  
ho = 

L( l+hVL)  l+h'L 

= h'DA exp (-1/L) 
L(i+h'L) 

For the oscillating mode we have 
7. NEUTRAL IMMOBILE TRAPS AND INERT BARRIERS FOR 
THE CASE OF CHARGED PARTICLES IN A UNIFORM 
EXTERNAL FIELD 

Y ( x )  =C exp(-x/2L) (cos ex-(2L8)-I sin O X ) ,  In this section we analyze the kinetics for the system 
described in Sec. 2 when a uniform electric field is present. 
The A particles have the charge q, while the traps B and 
barriers C are electrically neutral. Let N traps be present 
inside the cavity R. The survival probability for the A parti- 
cles will be greatest in those cylindrical cavities where the 
traps lie on one of the end faces and the field causes the A 
particles to drift toward the opposite face. These cavities 
determine p,, (x , t ) ,  the density of the A particles at large 
times. The density pSL (x,t) is a solution of the following sys- 
tem of equations: 

When E > EX , the eigenvalues found from ( 102) are equal 
to 

I f E  < E X and h *I& 1 (i.e., whenpc - '  & 1)  we have a mini- 
mum eigenvalue: 

h'DA 
ho =- [1+0(41) ] .  

1 
(104) 

Expression ( 103) is valid for A, with n) 1, as well as for the 
casewhenE<EX a n d h * I >  1 ( i . e . , f l cp '>  1).  

The expansion coefficientsf,, in (86) are given by 

sin2 x, [ 2 exp ( -VL)  , n > l ,  E>O, 
fn= L xn2 

where h * = k ,  N /D, Sb , and Sb is the cross-sectional area of where the x, ,  (n )  1)  are the roots of Eq. ( 102), and x,, satis- 
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fies (96). In particular, for 1/2L > 1 we have 

It is easy to see that for E (EZ ,  the survival probability 
A@d' ( t )  for the A particles is given either by Eqs. (44), 
(50), and (67) with d = l , 2 , 3 ,  or by (10) with d = 1. The 
optimum cavity is then ad-dimensional sphere of radius I id'. 
However, because I Id' increases with time we will eventually 
have E >  E z  for any nonzero field, and the remaining A 
particles will vanish in the field-induced fluctuation regime, 
for which the optimum cavity is a cylinder elongated along 
the field. 

For E 5. E r,, the L-dependent terms in ( 103 ) and ( 104) 
are comparable in order of magnitude to the terms depend- 
ing on I. If we average (86) over V with the weight 
exp [ - (n, + nc ) V], where V-ad - ' 1, i.e., over the cylin- 
drical cavities, we get an intermediate large-time formula for 
the survival probability which breaks down when E > E r, . 

We now consider the strong-field case E) E,*, . The 
fluctuation cavities are now large, and for every n) 1 we have 
f,) f, ,A,&,. The survival probability for the A particles in 
the cavity fi is 

hWDAt exp (-llL) 
('1 =.'p[- (l+h.L) ] ' 

The mean probability A Wd' ( f )  = FVd) ( t )  - W [Dd) is giv- 
en by (901, with p( V )  = exp[ - (n, + n,) V], $ ( t )  = 1 
(because the A particles are absorbed only at one end of the 
cylindrical cavity). 

For a fast reaction (P)a/L), the survival probability 
in the cavity fl is equal to 

which averaged over I gives 

In A W ( d )  (t) I t-+, 

whereS(3) = n-a2, S(2)  = a ,  S(1)  = 1. 
If the reaction is slow (B(a/L) then 

kPt wjd' (t) =exp[ -N - expt-l/L) 1, vc(d) 
where Vj3) = n-LI:. For t- co we find, after averaging 
(110) over N and V, that most of the contribution to 
A wd) ( t )  comes from cavities containing just one trap, and 
the dimensions of the optimum cavity are approximately 
equal: I ,  =a, I-- L In t. Therefore, 

In A W ( d )  (t) I ,,, 

The survival probability A Wd' ( t )  for this system thus de- 
creases as a power o f t  when t - a. 

8. DISCUSSION AND CONCLUSIONS 
In this paper we have investigated the kinetics of pro- 

cesses of the annihilation type involving nonideal (mobile) 
traps for two types of subthreshold percolation lattice sys- 
tems, in which the active particles A are localized in bounded 
cavities in the absence of a reaction. In the first case, the A 
particles are localized by the traps themselves, and if the 
reaction is slow enough a significant percentage of the A 
particles are absorbed, as given by the expression 
In W(t) - - t'"'d+ I )  for the survival probability in the in- 
termediate regime. In the second case, the A particles are 
localized due to blocking of the lattice sites by inert, immo- 
bile barriers C. The explicit relations In AW(t) - - ( t /  
In t )  ' I 2  and In A W(t) - - t ' I 2  were obtained ford = 2 and 
3, respectively. According to these relations, the percentage 
of the A particles absorbed is relatively low and proportional 
to exp( - nc/n, ). 

One-dimensional systems with randomly distributed 
traps B and inert barriers were considered in a separate sec- 
tion. If the reaction is sufficiently slow the A-particle con- 
centration, which is proportional to exp [ - ( 1 + nc /n, ) ], 
vanishes in the fluctuation regime In A W(t) - - t ' I 2 .  This 
concentration is greatest for high trap concentrations 
n i  )nc. 

For the case of diffusing traps in either type of system, 
we analyzed the successive onset of the various fluctuation 
stages in the reaction as a function of the parameters of the 
problem. If the traps B are highly mobile, the fluctuation 
effects are suppressed due to mixing in the system, and the 
reaction kinetics is described by the formal kinetic equa- 
tions. 

We also studied the influence of a uniform external field 
on the reaction kinetics for mobile charged particles A and 
immobile neutral particles B and C. The survival probability 
for the A particles decays exponentially: In W(t) - - En t, 
where n = 1 for P(a/L, n = 2 for j?$a/L in a system con- 
taining only A and B particles, and as a power of t: 
1nA W(t) - - ( l/E)ln t in  a system containing A, B, and C 
particles. 

We emphasize that our formulas predict reaction rates 
slower than those given by the formal kinetic theory. More- 
over, and unlike the situation with most fluctuation effects, 
the effects studied here determine not only the limiting be- 
havior in the remote future but also the trapping kinetics for 
a large fraction of the A particles, i.e., they can be observed 
experimentally. 

We note that the survival probability W(t) for the 
reagent particles was defined as an average W(t) 
= J W, (t)p,, ( V), where W,, ( t )  is the survival probability 

in the cavity R andp, ( V) is the cavity formation probabili- 
ty; W, ( t )  depends on the reaction rate constant and the 
density of the system. A Poisson distribution for pi, ( V) is 
realistic for a wide class of problems in which the interaction 
among the particles composing the matrix is negligible. In 
the general case, surface tension forces at the cavity boun- 
daries will alter the form of the dependence p, ( V) (there 
will be more large cavities) and the fluctuation effects will be 
enhanced. 

We are deeply grateful to A. A. Ovchinnikov for his 
unflagging interest in this work and for valuable comments, 
and also to V. A. Onishchuk, V. Ya. Krinov, and S. P. Obuk- 
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