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A novel electron-deformation-thermal instability (EDTI) induced on the surface of a 
semiconductor by short powerful laser pulses is considered. The appearance of the EDTI is due to 
modulation of the band gap by deformation, by generation of nonequilibrium carriers, and by 
heating of a surface layer. Under certain conditions there can be three qualitatively different types 
of EDTI: generation of surface acoustic waves, "softening" of the frequencies of surface acoustic 
waves, and generation of static ordered surface structures. Development of the EDTI creates, 
depending on the geometry of the pump field and the symmetry of the surface, coupled surface 
fields of the strain, nonequilibrium carrier density, and temperature in the form of one- 
dimensional gratings, concentric rings, and radial-ring structures. The periods of these structures 
and the depth of their penetration into a medium are determined. It is shown that the EDTI may 
induce a semiconductor-metal phase transition accompanied by the formation of ordered surface 
structures of different phases. This theory of the EDTI is used to interpret a whole range of recent 
experimental data on the formation of ordered structures of different phases and of the surface 
relief created as a result of the interaction between laser pulses and a semiconductor. 

1. INTRODUCTION 

The problems of pulsed laser modification of surface 
layers of semiconductors (laser annealing,I4 amorphiza- 
ti~n,'.~-' semiconductor-metal phase  transition^,^-" etc.) 
are currently attracting much attention. Phase transitions 
induced by laser pulses are due to a change in the state of the 
lattice subsystem, whereas laser radiation of photon energy 
fiw > Eg (where Eg is the width of the band gap) interacts 
with the electron subsystem. The electron-phonon interac- 
tion and the corresponding transformation of the absorbed 
energy thus play a key role in the effects mentioned above. 

The usual mechanism by which the absorbed energy is 
transferred to the lattice consists of electron-electron, elec- 
tron-phonon, and phonon-phonon relaxation stages with 
relaxation times r,,, of the order of a picosecond. The resul- 
tant spatial distribution of the lattice changes should reflect 
a monotonic reduction of the radiation intensity away from 
the center of a laser-illuminated spot and an exponential re- 
duction of the absorbed energy with depth in the investigat- 
ed medium (with a characteristic scale at least equal to the 
linear absorption length y; '). 

However, some recent experimental results obtained 
using high-power ultrashort laser pulses cannot be explained 
on the basis of these standard representations. Thus, instead 
of a monotonic pattern, it is frequenly found that ordered 
surface structures are formed. For example, irradiation with 
picosecond laser pulses of a semiconducting phase of VO, 
creates a spatially periodic surface pattern representing an 
alternation of metallic and insulating phases, and if the laser 
field has axial symmetry, it is found that concentric rings 
appear at the center of the spot and radial rays are formed at 
the periphery (a "sun" pattern is observed), whereas when 
the field has slab geometry it is found that one-dimensional 
gratings are obtained (Fig. 1 ) . " Pulsed laser irradiation of 
the surface of a semiconductor also gives rise to concentric 

ring structures representing an alternation of crystalline and 
amorphous phases.' Some results support a nonlinear mech- 
anism of transfer of the laser energy to the lattice at high 
pump intensities. For example, a reduction in the absorption 
length by an order of magnitude compared with y; ' is re- 
ported in Ref. 12. It is shown in Ref. 13 that high-power 
femtosecond pulses melt the surface of a semiconductor dur- 
ing a pulse, i.e., in a time much shorter than T,,, . 

These experimental observations can be interpreted in 
terms of the formation of laser-induced instabilities on the 
surface of a semiconductor, leading to a periodic change in 
the resultant state of the lattice along the semiconductor sur- 
face and a strong increase in the effective optical absorption 
coefficient. 

We shall consider two new laser-induced instabilities on 
the surface of a semiconductor: an electron-deformation in- 
stability (EDI) and a deformation-thermal instability 
(DTI), the theory of which can account for the formation of 
the ordered structures mentioned above. These two instabili- 
ties can occur simultaneously, giving rise to an electron- 
deformation-thermal instability (EDTI).  

The physical mechanism of the EDTI is as follows. The 
surface deformation g = divu (u is the displacement vector 
of the investigated medium), as well as the density of non- 
equilibrium carriers n and temperature T, all of which mod- 
ulate spatially the width of the band gap: 

where E,, is the equilibrium value of the band gap: dEg/  
= 0; 0 = O,, - e,,,; O,, and 0,,, are the deformation po- 

tentials of the conduction and valence bands, respectively. 
The phenomenologically introduced coefficient 0, = ldEg/ 
an I > 0 describes the reduction in E, because of the breaking 
of covalent bonds when electrons are transferred from bond- 
ing states in the valence band to antibonding states in the 
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conduction band,9 while the coefficient 0, = IdE, /dT 1 > 0 
allows for the reduction in E, as a result of heating. l o  Modu- 
lation of E, results in modulation of the interband optical 
absorption coefficient, causing accordingly an additional 
modulation of n and T. The resultant forces Fn = Bgradn, 
and FT = - KagradT (K  is the bulk modulus and a is the 
thermal expansion coefficient) maintain initial displace- 
ments of the lattice, giving rise to an instability of the ampli- 
tude of the surface strain and also of the carrier density n 
and the temperature Twhen a certain critical intensity of the 
laser pump radiation is exceeded. The mechanism of the 
DTI in the bulk has been considered earlieri4vi5 for the case 
of transparent insulators, whereas the ED1 mechanism has 
been discussed for the interior of the semiconductor. l6 

The present paper reports the solution of the boundary- 
value problem of the development of the EDTI on the sur- 
face of a semiconductor under strong optical absorption con- 
ditions. A general dispersion equation is obtained for the 
EDTI and its solution determines the rate of the exponential 
growth (with time) depends on the Fourier amplitudes of 
the coupled fields of {, n, and T on the wave vector 
[A = A (q) = A ' + iA " 1. It follows from this equation that 
three qualitatively different instabilities can appear under 
the EDTI conditions. The first is the instability of surface 
acoustic waves (A " #0,A ' > 0)  which is initiated by thermal 
surface acoustic waves. The second is an instability (soften- 
ing) ofthefrequenciesofacoustic vibrations (A " - 0,A ' < 0).  
Finally, the third instability applies to surface static defor- 
mations (A " = 0, A ' > O).In the last case the instability be- 
gins from initial fluctuations of the temperature or carrier 
density. The present paper represents a detailed study of the 
last instability. 

We shall show that the EDTI can create complex or- 
dered configurations of the coupled surface fields of {, n, and 
T (in the form of gratings, rings, rays, "suns," and radial- 
ring cells formed by the intersection of rings and rays). The 
periods of these structures are determined as a function of 
the parameters of the investigated material and of the inten- 
sity and duration of the laser pulses, and of how far they 
penetrate from the surface into the material. A nonlinear 
steady-state EDTI regime is considered, which becomes sta- 
bilized because of nonlinear Auger recombination of carriers 
(and also because of an optoacoustic nonlinearity). The 
steady-state values of the Fourier amplitudes of the strain, 
carrier density, and temperature are determined as a func- 
tion of the wave vector q and of the pump radiation intensity. 
It is shown that the modulation amplitude of the band gap 
width along the surface, in accordance with the mechanism 
described by Eq. ( 1 ) may in principle reach values at which 
E, vanishes in a spatially periodic manner, i.e., a laser in- 
duced semiconductor-metal transition accompanied by the 
formation of ordered surface structures is induced. 

An internal insulator-metal phase transition under the 
influence of light causing E, to vanish and due to the terms 
8, and 8, in Eq. ( 1 ) has been considered previously.9.'0 
Allowance for the deformations (strains) and for the influ- 
ence of the surface in the present paper is a fundamentally 
novel feature of the theory of a laser-induced insulator-met- 
a1 phase transition, which can explain the formation of co- 
plex periodic structures on the surface. Numerical estimates 
of the parameters of these structures showed that the EDTI 
mechanism may be responsible for their formation. 

2. CLOSED SYSTEM OF EQUATIONS DESCRIBING 
MODULATION OFTHE NONEQUlLlBRlUM CARRIER 
DENSITY, THE TEMPERATURE, AND THE DISPLACEMENT 
VECTOR IN A MEDIUM 

We shall consider a two-band semiconductor filling the 
half-space z > 0 and assume that a laser wave is incident nor- 
mally on the z = 0 surface: 

E (r, t )  =E exp(-iot+ikz)+c.c, ( 2 )  

Here E = E(r)f(t); f ( t )  = 1 when O<t<rP; f ( t )  = 0 when 
t < 0, t > T~ ; T~ is the duration of a laser pulse; and r = { x ,  y>. 

In the case under discussion (E', 1, E'$E") the equa- 
tion for the temperature of the medium is (see Ref. 4) 

wherex is the thermal diffusivity; c, is the specific heat per 
unit volume; E' is the real part of the permittivity of the medi- 
um; y = WE"/C(E') ' I 2  is the optical absorption coefficient; 
and c is the velocity of light in vacuum. 

The equation for the density of nonequilibrium carriers 
can be written in the form 

where D is the carrier diffusion coefficient, T is the linear 
recombination time, and y,,, is the nonlinear Auger recom- 
bination constant. 

The equation for the displacement vector of the medi- 
um is of the form 

dZu 
-= cibu+ (c,'-c,') grad div uc j j  grad Yj, (4)  
a tz S=n,T 

Ulhere c, and c, are the longitudinal and transverse velocities 
of sound, fn = 0 /p, f, = - Ka/p, andp is the density of the 
medium. It follows from Eq. ( 1) that the optical constants 
E" and E' depend on n, T, and 6. In the range of values of n, T, 
and {of interest to us the dependence of E" can be represent- 
ed in the following form if we use the expression for the 
interband permittivity of a semiconductor ~ ( w )  = E' + i ~ "  
(Ref. 17) and allow for Eq. ( 1 ) : 

A similar dependence can be written down also for E'. How- 
ever, since in the range of frequencies of interest to us we 
have E;, )E; (E;, - 10, E;- 10-I) and a~ ' /aw-a~" /aw,  we 
shall ignore the change in E' and assume later that E' = const. 
Therefore, we have y = yo + y,,  where y ,  cc E;. 

We can see from Eq. (3)  that, in the presence of a laser 
field, Eq. (5)  should give rise to a relationship between the 
diffusing fields of n and T and the deformation (strain) of 
the medium. 

We shall represent the required solutions in the form 

n=no+nl, T=T,+T,, E = E 0 + E l ,  u=uo+ul, 

where no, T,,, l o ,  and u,, are the solutions of Eqs. (3 ) and (4)  
subject to Eq. (5) ,  obtained in the zeroth approximation 
with respect to n, T, and { under the appropriate boundary 
conditions at z = 0 (see below). The actual form of these 
solutions is unimportant for the purpose of the present treat- 
ment; the only significant factor is that these solutions are 
constant along the surface over distances r<ro of interest to 
us (rO is the radius of the laser beam) and they vary suffi- 
ciently slowly with time over intervals on the order of the 
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instability development time (see below). We shall now con- 
sider the stability of the solutions, no, To, and {,. Linearizing 
Eq. (3)  and applying Eq. ( 5 ) ,  we yield equations for 
n , = Y,,, and T I  = Y ,  , , which can be written in a unified 
manner 

wherej= n, T; A, ( t )  = -xjA + r ,- ' ( t) ;x,  =x;x, = D; 
~ ; ' = o ,  7 n - 1 = ~ - 1  + 3 y,,, n: ( t )  . The coupling coeffi- 
cients are described by the following expressions 

The boundary conditions for Y,, can be written in the 
form 

It should be noted that, in general, the boundary condition at 
z = 0 on a surface with relief is of the form 

where u, ,  (0) is the displacement of the surface points z = 0 
along z, which describes the surface relief. However, under 
the conditions of interest to us the additional term is small 
(representing l ~ - ~ - l O - ~  of the first term, see Sec. 6) ,  so 
that we shall ignore it and we use the boundary conditions 
specified by Eq. (7) .  The nature of the boundary conditions 
for u, depends on the symmetry of the laser field and on the 
required type of solution (see Sec. 3) .  

The system of equations (4)  (where u = u,, Y, = Y,, ) 
and (6)  can be solved analytically in two limiting cases: a )  
weak optical absorption (bulk case); b) strong optical ab- 
sorption, when y; ' is less than the depths of penetration of 
the surface material excitations, n,, T I ,  f ,  into the medium 
(surface case). We shall consider case b because it is of 
greater practical interest. We can then write Eq. (6)  in a 
simpler form: 

Here,A,, = - D h + ~ ; ~ , r , '  =r- '+3yA,,n:(t)I  .=,, 
A,, = -xA. 

3. GENERAL DISPERSION EQUATION FOR THE ELECTRON- 
DEFORMATION-THERMAL INSTABILITY; FORMATION OF 
ONE-DIMENSIONAL SURFACE GRATINGS 

We assume that as a result of breakdown of the symme- 
try of the field or medium there is some preferred direction x 
on the {x, y )  surface. Then, the boundary conditions on the 
z = 0 surface for the vector u, can be written in the form (we 
write u, =u)  

du, du,  d uz d us 
-+-=o, %+,+ ( 1 - 2 p ) - = O ,  

dx 
>=,:,I d x 

where = c:/c:. We look for the simultaneous solution of 

the system of equations (4)-(6) assuming E(r) = const in 
Eq. (2 ) .  

We specify the strain {, and the diffusion field Y,, at 
z = 0: 

t t 

E , = A  ( t ) e r p  ( i y r +  1 h d t ) .  ~ , , = ~ , ( t ) e x p ( l p r +  J h d t ) .  
0 0 

where A ( t )  = A (q,t) is a function proportional to the ampli- 
tude of the intitial strain and A, ( t )  is a slow function of time. 
This solution describes the surface field of the strain, carrier 
density, and temperature in the form of one-dimensional 
gratings (Fig. lb) .  The solution of Eq. (8)  subject to Eq. 
( 10) can be found in the form 

f 

Y,,= [B,  ( t )  r-hz+c, ( t )  o-'Iz] e x p  ( i g r +  j h  d t  ). ( 11 ) 
0 

Substituting Eq. ( 1 1 ) into Eq. (8) ,  allowing for the bound- 
ary conditions of Eq. (7),  and applying the condition that 
Eqs. ( 11 ) and ( 10) be self-consistent, we find that if yo)Sj 
(i.e., if Cj ) Bj ), then 

where 

The functions f ( t )  = Aj ( t ) ,  6, ( t ) ,  A(t) obey the condition 
for slow change with time f -' (t)af(t)/dt <A, which reduces 
to the condition that the functions n,, To, and lo vary little on 
the scale ofA - (adiabatic approximation, see Ref. 18). We 
now solve Eqs. (4) and (9). We represent the vector u in the 
form u = u, + u, , where 

div u,=O, curl u,=O. (14) 

Equation (4)  then yields equations for the vectors u, and u, : 

FIG. 1 .  Spatially periodic patterns of coupled deformation, nonequilibri- 
urn carrier density, and temperature fields resulting from the EDTI: a)  
"sun" structure (obtained for an axial symmetry of the laser pump field 
and an isotropic surface); b) "grating" (the direction q is selected by the 
one-dimensional geometry of the pump field or by the crystallographic 
axis). 
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where a = I ,  t; S,,, = 1 if a = I; S,,, = 0 if a = t ;  Y,, is given 
by Eq. ( 12). The solution of Eq. ( 15) is assumed to be in the 
form 

Substituting this solution in the form of Eq. (16) into 
Eq. ( 15) and allowing for the condition ( 14), we express the 
components B ,  and B, in terms of some constant m, and 
the components B,, and B, in terms of a constant N. Then, 
using the conditions for self-consistency of the solutions de- 
scribed by Eq. ( 16) and of the expression for ll I = , given 
by Eq. ( lo) ,  we can express A in terms of M: 

The solution with the vector u can be expressed in terms of M 
and N, and is of the form 

exp (iqr+ j d t )  . 
0 

Here, 

Substituting Eq. ( 18) into Eq. (9),  we obtain two homoge- 
neous equations for M and A? 

Equating the determinant of the system (21) to zero, we 
obtain a general dispersion equation for the EDTI (which is 
valid also in the case of radial-ring structures, see Sec. 5) :  

The dispersion equation (22) describes three qualita- 
tively different types of the EDTI. We shall consider each of 
them separately and limit our treatment of Eq. (22) either to 
an allowance for the ED1 for R,/DS, SR,/xS, or to the 
DTI in the opposite limit. 

a) Laser generation of surface acoustic waves: A=A'+/h" ,  
A'>O, A"&A'  

The dispersion equation (22) has been derived ignoring 
the viscosity of the medium. If we allow for the viscosity in 
Eq. ( 22 ) and also in the corresponding expressions for a , ,  
XI . , ,  and Rj, we have to replace c:, with c:, ( 1 + r]l,rA ), 
where r ] ,  = 77 and r ] ,  = 417/3 + 5 ( r ]  and f are the first and 
second viscosities). Then, separating in Eq. (22) the real 
and imaginary parts subject to the conditions A ' + r; 
&AW2/c ,,, q2, W1,yj/c:&l, Rj, ~ ~ e g ~ ~ q y , , ,  and 

A "2r],yj/pc: & 1, we find the usual expression for the frequen- 
cy of surface acoustic waves: A " = uc, q; 0.87 < a < 0.95 
(Ref. 19). Using the imaginary part of Eq. (22) and apply- 
ing the conditions A "/2Dq2& 1, we obtain the following 
expression for the growth rate of surface acoustic waves in 
the ED1 case: 

q202q 4 (1 - (52)  c12 A'=--- Rn. 
2p D2qa2y0 

The expression for the growth rate of a surface acoustic wave 
in the DTI case is found subject to the condition A "/ 
2x42 ) 1 : 

It is clear from Eqs. (18), (23), and (24) that the gen- 
eration of surface acoustic waves (A ' > 0)  due to the ED1 is 
possible only if d&"/dw < 0, whereas in the case of the DTI 
surface acoustic waves can be excited if 8d&"/dw < 0. The 
critical value of the pump radiation is obtained from Eqs. 
(23) and (24) subject to the condition A ' = 0. 

Equations (23) and (24) were derived ignoring the 
term in the sum in the denominator of the right-hand side of 
Eq. (22) on the assumption that E ~ ,  R, &x,qy,,. It therefore 
follows that changes in the band gap due to heating (E,) 

and breaking of covalent bonds (E , ,  ) play no significant role 
in the process of excitation of surface acoustic waves [but 
they may be significant in the generation of static structures 
(see below) 1.  

b) Softening of acoustic frequencies: A'<O, A" -0 

Separating Eq. (22) into real and imaginary parts sub- 
ject to the conditions A', A "&qc ,,, A'/c , , ,  A "/c,,&q, 
[ ( A ' +  5 I )  /xj ] 'I2, A ', A ' &q2xj, we find that the pump- 
renormalized acoustic frequencies are described by the 
expression 
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We can see from Eq. (25) and (17) that softening of the 
acoustic frequencies occurs in the ED1 case if a&"/dw > 0, 
whereas in the DTI  case this occurs if 0ad"'aw <O. The 
critical intensity is found from the condition il " = 0. In fact, 
the acoustic frequencies do not go to zero but toil  ' - d q 2 v /  
+<a,. 
c) Laser generation of static surface structures 

Subsituting A " = 0 in Eq. (22) and using the notation 
A '=A, we find the following equation subject to the condi- 
tions A 2 / ~ : ,  < qr, (A ' + rp I )/xJ 

28 
( q + 6 j )  ( 6 j - q ~ e )  = - QR, (26) 

1-6 
where q, = R,/xJy,, qRE = (R, + E,)/X,Y~. The solution 
of Eq. (26) is 

The growth rate reaches its maximum value A,,, at  a pont 
qmax, where 

The dependence of A on q is plotted for the ED1 case in 
Fig. 2a and for the DTI case in Fig. 2b. If R, >E, (deforma- 
tion limit of the EDTI),  the maximum of A(q) selects a 
dominant structure with q = q,,, #O, whereas for R, <cU. 
(diffusion limit of the EDTI) the maximum in the spectrum 
of A = A (q)  is reached at q = 0. However, even in the diffu- 
sion limit of the EDTI a dominant structure with q#O is 
selected. We can demonstrate this by considering first in 
greater detail the nature of the initial fluctuations in the 
EDTI case. At a moment t = 0 the boundary condition of 
Eq. (9)  contains Y,  ( t  = 0 )  = n ,  ( t  = 0 )  and 
Y,,  ( t  = 0 )  = T I  ( t  = O), which are the Fourier amplitudes 
of the initial fluctuations of the population and temperature 
on the surface (when the simultaneous correlation function 
is (Y,, ( t  = 0 )  Y,, ( t  = 0 ) )  = const and is independent ofq) .  
Using Eq. (18) and of the relationship 
N = - 2iqx,M/(x: + q2) that follows from Eq. (21),  on 
the assumption that R,, E, = 0 at  t = 0, and also taking from 
Eq. (27) the expression A = A ( t  = 0 )  = 1 x j q 2  - rp I ,  we 
obtain from Eq. (9)  

Equations (18) and (29) together with the relationship be- 
tween M and N, give the final solution for the vector u in the 
EDTI case when static structures are formed. Then, in the 

I 

diffusion limit (E, ) R, ) the EDTI growth rate is given by 
the following expression which is deduced from Eq. (27): 

Allowing for Eq. (29),  we find that Eq. (17) yields an 
expression for the amplitude of the deformation (strain) on 
the surface in Eq. ( 10) at time t: 

h",Y,, ( t = O )  
A = i l  ( q ,  t )  = - ---- 

X , Q - + T  , , - I  (DC,~( I - -P)  ' 

whereil is given by Eq. (30) [if&, $ R,, the function @of the 
system ( 17) is independent of q];  allowing for this question 
in Eq. ( l o ) ,  we find that the resultant strain on the surface at 
the end of a laser pulse t = rP is 

T D  

The strain correlation function is 

where the spectral strain function is 

Zq'- [ ( q n ~ Z - q 2 - ~ l o - 1 / ~ , )  ( $ + T  1' cap ( 3 ? . t n ) ,  

and il is given by Eq. (30).  The value q = q,,, at which the 
maximum of the spectral function is attained at time t = rP 
determines, under linear conditions, the period of a grating 
in the case when E, )RJ. For example, in the DTI case 
(7-6' =O),  we have 

q n m x = y n c .  for qn,> i /tr,l)- ", (31a) 

q ,,,,, = ( ~ T , Z ) - ' ~  for qE,c ( ' ~ T ~ x )  - ". (31b) 

If we calculate the critical intensity necessary for the 
EDTI (found from the condition A = 0 )  by expanding Eq. 

FIG. 2. Growth rates A of static structures vs the absolute value of the 
wave vector q: a )  electron-deformation instab~lity (EDI) ;  b) deforma- 
tion-thermal instability (DTI). Curves labeled I correspond to the condi- 
tion R, > E ,  and are calculated for typical values of semiconductor param- 
eters listed in Sec. 6;  curves labeled I1 correspond to the R, d ~ , ,  case 
(schematic representation). 
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(22) in terms of the parameters A/c,.,q, where 
(A + rp I)/x,q2<1. We then obtain a softer relaxation 
mode: 

where RJ is given by Eq. (17) and E,, by Eq. (5 ) .  
In the case of the ED1 we obtain from Eq. (32) a soft 

carrier-density mode 

We can therefore see that the ED1 appears only when the 
conditions dcV/dw > 0 is satisfied. This condition is obeyed 
by various semiconductors in the range of frequencies of 
generally available lasers. In the case of the DTI, we can 
deduce from Eq. (32) a soft temperature mode: 

We can see that the DTI can be achieved for different signs of 
d ~ " / d w ,  depending on the sign of 8 and on the relative mag- 
nitudes of the first and second terms in the brackets of Eq. 
(33b). the condition A = 0 in Eqs. (33a) and (33b) yields 
the critical intensity E f, for the appearance of the ETI and 
DTI, respectively. 

I t  therefore follows from this section that if IE1 > E :,, 
then specific Fourier amplitudes of coupled fields of static 
deformations [Eq. ( 18) 1, of the nonequilibrium carrier den- 
sity, and of the temperature [Eq. ( 12) ] appear on the sur- 
face exponentially with time and the process is characterized 
by a growth rate A,,, [Eq. (28b) 1. Consequently, in the 
linear EDTI case we can expect structures in the form of 
one-dimensional gratings with a period 

where in the case R, ) E ~  the value of q,,, is given by Eq. 
(28a), while for R, < E ~ ,  it is given by Eq. (31).  

4. NONLINEAR ELECTRON-DEFORMATION-THERMAL 
INSTABILITY AND POSSIBILITY OF A SEMICONDUCTOR- 
METAL PHASE TRANSITION 

We consider the nonlinear case for the ED1 stabilized 
by nonlinear Auger recombination. The various functions 
are described at z = 0 by n ,  (0 )  = n, eiqx , f ,  ( 0 )  = f, elqx, 
and TI  (0 )  = Tqeiqx where Eg (0 )  = E,, + Egl eiqx . Under 
steady-state condition (A = 0) near the threshold 
( / E l 2  k Ef, ) the substitution 7; = r-I + yAug Inq l 2  gives 

The threshold for the appearance of steady-state values of n, 
corresponds to E f., and it naturally coincides with the ED1 
threshold of Eq. (33a). Far from the threshold ( [El2)  E f, ) 
we similarly obtain from Eq. (27) 

Therefore, the dependence of n ,  on q repeats the depen- 
dence A = A (q) .  Equations ( 10) and ( 12) yield the ampli- 
tude of a steady-state deformation wave on the surface 

whereS, = [q2 + (r- ' + y,,gn: )/D ] I", while theampli- 
tude of a steady-state temperature wave is 

We now substitute Eq. (37) and the value of T, in Eq. 
( 1 ). Then, a wave of the normalized band gap at z = 0 ob- 
tained using an expression for E,, given by Eq. (6a)  on the 
assumption that (El2  > E f, is described by 

Note that the term& in Eq. ( 1 ) is balanced exactly by 
a part of the second term on the right-hand side of Eq. (37 ), 
i.e., that effective renormalization in Eq. (38) occurs only 
due to the deformation and temperature waves. When the 
modulation amplitude in Eq. (38) obeys Egl >E,, , we find 
that a grating appears on the surface, which represents alter- 
nation of the metallic and semiconductor phases. In the 
R, ) E ~  case the period of this grating is given by the value of 
q,,, of Eq. (28a). In the opposite limit of R, <E,, the maxi- 
mum n, in Eq. (36) is attained at q = 0. Then, in Eq. (38) 
we can sum over the surface modes: 

I t  follows from Eq. (36) subject to the condition E, > R, that 
n,  cr (qi ,  - q2) and with the aid of Eqs. (39) and (38),  
where y,,,ni )q2D and the second term in parentheses is 
retained, that 

dq cos (qx) (q f iCZ-q2)  -sin (qR,x). 
(40) 

Therefore, for E,, 3 R,, a grating with a period d = 2~/q , ,  
forms in the nonlinear EDTI case. 

In addition to the instability of the Fourier amplitudes 
with q#O in the EDTI, the amplitudes of the deformation 
(strain), carrier density, and temperature fields for q = 0 
also increase exponentially in time, which gives rise to a spa- 
tially homogeneous reduction of E,, i.e., it increases the op- 
tical absorption coefficient. This could account for the ex- 
perimental observation of a strong reduction in the optical 
absorption length in semiconductors at a high rate of excita- 
tion with light characterized by a photon energy .Ziw much 
higher than E, (Ref. 12).  

5. FORMATION OF RADIAL-RING STRUCTURES 

Let us assume that the laser field has axial symmetry 
(relative to the z axis). We seek a simultaneous solution of 
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the system of equations (4 ) ,  (7 ) ,  and (8 )  subject to the 
boundary condition (9 )  written down in cylindrical coordi- 
nates, ignoring at first the dependence of E on r in Eq. (2 )  
(the effect of the influence of the dependence of the laser 
field on the coordinate r will be discussed later). The process 
of solution of the problem in cylindrical coordinates repre- 
sents repetition of the procedure in Sec. 3, provided that in 
the expressions of Eq. (10) we make the substitution 
e'Y'-J,,, ( qr)cos mp, where J,, is a Bessel function of the 
first kind of order m, and rn is an integer. We then find that 
the components of the displacement vector (a = r,p,z) are 
given by 

where 

1 
Y,=Jm(qr)cos mcp, Y, = - [I,-,(qr)-J,,, (qr) lcos mcp, 

2 

The dispersion equation for the EDTI deduced from the 
boundary conditions for u and from Eq. (41 ) is exactly iden- 
tical with Eq. (22). Therefore, the expressions for q,,, and 
A,,,, [Eq. (28a) and (28b)],  which separate the dominant 
structure in the linear regime, are valid also in the case of the 
radial-ring structures under consideration. 

It is clear from Eq. (22) that surface harmonics with 
any value of m are characterized by the same growth rate. 
This degeneracy in m is a consequence of neglect of the de- 
pendence of the intensity of the laser field E on r in Eq. (2 )  
and it is also due to diffraction effect (Sec. 6) .  

We can find the parameters m by solving the problem of 
the growth of the EDTI assuming a Gaussian distribution of 
the laser radiation intensity. We shall do this by considering 
an example of another possible class of surface structures in 
the form of radial rays. 

Let us assume that the pump field has a Gaussian distri- 
bution: 

Then, Eq. ( 8)  becomes 

where E ~ ~ .  , E,,, , and E,,. are given by expressions in Eq. (6a) 
provided we replace 1 E 1' with E . The boundary conditions 
for Y,, are still the same. We specify f ,  and Y,, at z = 0 in the 
form 

t 

;,=A (r/r0)"' exp (-r2ird2) cos (mrp) ery ( I h  dt ), (44) 
0 

t 

Here, as in Eqs. (9 )  and ( l o ) ,  we are using A for the initial 
amplitudes and A, for the slow functions of time, where m is 
an integer; we shall assume that rn >) 1. Then a maximum of 
the function (r/r,) "exp( - ?/J,  ) lies at a point 
r,,,, = r0(m/2) "*>) ro. In the range r < ro we can assume 
that (r/rO) Inexp( - ?/$, ) z (r/rO) and Eq. (43) can be 
written as follows: 

= (&jrA+e,.A.+ejidT) (r/rO)"' exp (-?/ro2-Yoz+ 1 h a t ) .  
o (46) 

The solution of equations of the form (46) subject to the 
conditions r/rO < m, and yo$ rn "2r,, can be obtained in the 
form 

t 

E,~A e ~ ~ ( - 6 ~ i - - r ~ / r ~ ~ +  j h dt  '') (r/r0)l  oos mq 

where 8, is given by Eq. ( 13) when q2 is replaced with ij2: 

Using the Eqs. ( 4 )  and the boundary conditions for the 
vector u in cylindrical coordinates and following the solu- 
tion procedure similar to that described in Sec. 3, and also 
allowing for the solutions Y,, described by Eq. (47) and the 
conditions subject to which the solution of Eq. (46) is ob- 
tained, we find that the components of the displacement vec- 
tor are described by 

where 

i = ~  rp r; qr - -, . 7-m C o S  mcp, \Y,=-m sin mcp, 

Here, K,,, and Qj are given by Eq. ( 19) and (20),  where q2 is 
replaced with ij2 given by Eq. (48). The dispersion equation 
derived from Eqs. (9 )  and (49) is identical with the disper- 
sion equation (22) if q2 is replaced with ij2, i.e., if we specify 
A (m ). If the expressions for q,,, [Eq. (28a) ] and&,, [Eq. 
(28b) J are modified by replacing q2 with ij2, they give the 
value of m,,, at which /Z reaches its maximum: 

the value of m,,, given by Eq. (50) determines the number 
(45) of rays in the dominant structure. 
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6. COMPARISON WITH THE EXPERIMENTS AND NUMERICAL 
ESTIMATES. CONCLUSIONS 

As already mentioned, the symmetry of the structures 
formed as a result of the EDTI should be governed by the 
symmetry of the laser beam for an isotropic surface or by the 
symmetry of the crystal surface. We now obtain numerical 
estimates of the parameters and compare the theoretical pre- 
dictions with experimental results. For typical values 
c, = 2 x  lo7 erg cmP3 K-' ,  K=: 10" erg/cm3, 
a z 2 X  lo-" K-', dEt'/dw=: lO-"s-', 0- 10-"erg,pz5 
g/cm3, c, = 5 X lo5 cm/s, P = 0.4, w = 4~ 1015 s-I, IdE,/ 
dT1 =:4x 10-4eV/K, jdE,/dnI = 10-32erg.cm"x = (0.1 
cm2/s, yo = lo5 cm- I ,  yAu, = 4 x lo-" cm6/s, +h =: 1 eV, 
D=:102 cm2/s, we find from Eq. (17) that 
R, - R, WE,, -E,, - lo4-lo5 IEI2 cgs esu. We find from 
Eq. (33b) that the critical intensity for the appearance of the 
DTI is I,, =:2 X 10' W/cm2 when q =. lo4 cm- '. The critical 
intensity for the ED1 is ( D / x ) k l d E , / d T  I/(c, IdE,/dnI) 
z 10 times larger. It follows from Eq. (28a) that in the ED1 
case we have q,,, -q,, - 10-21E12 cgs esu =: lo4-lo5 cm- ' 
for I = 6~ 10' W/cm2, i.e., the period d of the structures is 
of the order of 1-5 pm. Equation (28b) yields A,,, -Dq,,, 
=: 1010-101' s- ' for the growth rate. The amplitude of the 
renormalization E, for the above values of the parameters is 
E,, =; 1 eV, i.e., the EDTI can give rise to an insulator-metal 
phase transition. 

This conclusion and estimates of the structure periods 
as well as of their growth times are in agreement with the 
experimental results reported in Ref. 11, where laser pulses 
of rP = 5X lo- ' '  s duration were used. It was found that 
gratings of alternate metallic and semiconducting phases or 
structures of the "sun" type formed on an isotropic surface 
of VO,, depending on the symmetry of the laser field. It fol- 
lows from Eq. (50) that for r,- 5 x 10- ' cm (Ref. 11 ), the 
number of rays in the "sun" structure can be m = 50, which 
agrees with the experimental results; moreover, we have 
A,,,rp -5>  1. 

These estimates allow us to justify the boundary condi- 
tions given in Eq. (7) .  If we use Eq. ( 17), we find from Eq. 
( 12) an expression for (dY,, /dz) 1. = , and from Eq. ( 18 ) an 
expression for u, (0 ) .  We shall assume that in the case of 
picosecond laser pulses we have To (z,t) =: T(0,t) e - Yilz and 
n,(z,t) = n,(O,t)e - KF, SO that in the DTI case we obtain 
the following estimate 

whereas in the ED1 case, the corresponding estimate is 

for n,(O) - 10'' cmP3, which confirms the validity of the 
boundary conditions given by Eq. (7)  for the case in ques- 
tion. 

In the experiments described in Ref. 20 a ( 1 11 ) surface 
of crystalline silicon was irradiated with laser pulses of 
wavelength A = 0.53 pm, creating one-dimensional gratings 
of the surface relief in which the lines were parallel to one of 
the [ 1 101 axes. The dependence of the grating orientation on 
the crystallographic axes indicated that a deformation 
mechanism was responsible for the formation of these struc- 

tures. The structure period was independent of A, angle of 
incidence, and the polarization of the incident radiation, but 
was governed by the pulse duration. It was found that 
dI=:3x cm for T,, = lo-'' s, whereas d 2 z 6 x  10W6 
cm for Tp2 = 5 x 10-l2 S, i.e., the relationship 
(d1/d2) =: ( T,,, /rP2 ) ' I 2  was obeyed. In the case of Si one 
should have E,, /R, - 10, so that the period of the EDTI 
structures should be given by Eq. ( 3  lb),  i.e., d cc T Y ,  which 
was in agreement with the experimental result of Ref. 20. 

It  should be pointed out that the mechanism for the 
appearance of a superlattice with alternating metallic and 
insulating phases, formed as a result of a laser-induced phase 
transition, was considered in Refs. 9 and 10. The mechanism 
of the EDTI and of the corresponding laser-induced phase 
transition, and the class of superstructures formed as a result 
of the development ofthe EDTI considered here, are funda- 
mentally different from those discussed in Refs. 9 and 10. It 
is assumed in Refs. 9 and 10 that a superlattice forms because 
of interference between an incident optical wave with a wave 
diffracted by the initial grating of the permittivity, which 
appears because of a fluctuation Fourier harmonic n ,  and TI 
in Eq. ( 1 ) (the influence of deformation is ignored). Such 
interference superstructures have a period d-A, (where A, 
is the wavelength of the incident radiation) and their orien- 
tation is rigidly linked to the polarization of the incident 
wave. 

Similar interference structures of modulation of the 
surface relief with d a A, may appear because of the diffrac- 
tion of the incident wave on the surface relief. We can de- 
scribe them by including, on the rigth-hand side of Eq. (4) ,  
interference sources of the EE, type, where El - u , ,  1. - , is 
the amplitude of the diffracted wave. These structures ap- 
peared in the solid phase due to an interference instability of 
the sublimation2' or due to generation of coupled diffracted 
waves and surface acoustic waves22 (see also the review giv- 
en in Ref. 4 ) .  The growth rates of the interference instability 
as a function of q have very narrow resonances (see Ref. 4),  
the positions of which are generally different from the posi- 
tions of resonances of the EDTI increments, so that we can 
regard these instabilities as independent in different ranges 
of q. Therefore, we ignored the contribution of interference 
sources in Eq. (4)  when considering the EDTI. 

In contrast to the interference instability case, the char- 
acteristic scale of a structure formed because of the EDTI is 
not governed directly by the wavelength A, and its geometry 
is not related to the polarization of the incident radiation, so 
that these two types of structure are easily distinguished ex- 
perimentally. 

We can see that in addition to static structures, the 
EDTI can induce also dynamic surface acoustic waves (Sec. 
3).  It should be mentioned in this connection that threshold 
generation of nonthermal surface acoustic waves as a result 
of interaction of laser radiation with the surface of GaAs was 
reported in Ref. 23. An estimate of the threshold for genera- 
tion of surface acoustic waves obtained on the basis of Eq. 
(24) gave a critical intensity I,, =: lo4 W/cm2, which was in 
agreement with the experimental data of Ref. 23. 

The EDTI mechanism considered here may be of inter- 
est also in the case of ultrafast meltingL3 ( I ?  101° W/cm2), 
which in the EDTI case can be due to softening of acoustic 
modes; this mechanism may apply also to the generation of 
point defects,24 dislocations, and other types of interaction 
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of high-power laser radiation pulses with semiconductor 
surfaces. 
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