
Energy spectrum and galvanomagnetic phenomena in thep-type gapless 
semiconductor HgCdTe under uniaxial compression 

A. B. Gerrnanenko, G. M. Min'kov, E. L. Rurnyantsev, and 0. E. Rut 

A. M. Gor'ki UralState University 
(Submitted 16 July 1987) 
Zh. Eksp. Teor. Fiz. 94,242-254 (August 1988) 

We have investigated the Hall constant and longitudinal and transverse magnetoresistances as a 
function of the uniaxial  compression^ and magnetic field H for thep-type gapless semiconductor 
HgCdTe. We observed several distinctive features in these functional dependences, the most 
important of which are connected with a radical reshaping of the energy spectrum of free and 
localized states under compression: formation of a forbidden gap, which grows at a rate of 3.8 
meV/kbar, changes in the function E(  k, , k ) near the band edge, and an increase in the ionization 
energy of acceptors at a rate of - 1 meV/kbar. For this system, quantization in a magnetic field 
proceeds in an unusual fashion, a fact which is apparent from the behavior of the Shubnikov- 
deHaas oscillations and from the nonmonotonic dependence of the forbidden gap width on H: the 
gap first decreases, vanishing at some field which is strongly dependent on the orientation of H 
relative to X, and then increases. We show that the essential features of our observations 
concerning the behavior of the galvanomagnetic effect can be explained by using a modified Kane 
model which takes the uniaxial strain into account. 

Past work has that unaxial strain gives rise to 
a considerable reconstruction of the spectrum of the degen- 
erate valence band r, and of shallow acceptor states in dia- 
mond-structure semiconductors with eg > 0,. In gapless 
semiconductors such as HgCdTe, which have an inverted 
band s t r~c tu re ,~  the valence band and the conduction band 
are degenerate at the point k = 0, and both belong to the r, 
representation. Uniaxial strain, which lowers the symmetry, 
will lead under these circumstances to splitting of the va- 
lence band and the conduction band. In practice this implies 
that a new conduction band forms, with its own spectrum of 
free and localized states. Results of experimental investiga- 
tions of galvanomagnetic effects in uniaxially deformed gap- 
less semiconductors are available only in a few cases, e.g., 
Refs. 5, 6, which are incomplete and contradictory. 

1. EXPERIMENTAL METHODS 

In this paper we present the results of experimental in- 
vestigations of the Hall coefficient R and the longitudinal 
(pll ) and transverse (p, ) magnetoresistances in magnetic 
fields up to 40 kOe, and in the temperature range 1.8 to 70 K, 
for uniaxial stresses x up to 3 kbar; this range of stresses 
corresponds to the region of elastic deformation. We investi- 
gated single-crystal samples of p-HgCdTe with 
E~ = - (80-40) meV and N, - ND between 1015 and 1017 
cmP3 (NA , ND are the acceptor and donor concentrations; 
see the table). Our determination of the parameter 
E~ = E (  r6) - ~( l ? , )  is based on the magnitude of the effec- 
tive mass m, at the bottom of the conduction band which is 
measured by the method of tunneling spectroscopy in a 

quantizing magnetic field7; NA - ND is determined by find- 
ing the value of R in a magnetic field of 250 kOe at the impu- 
rity depletion temperature., Typical sample dimensions 
were 0.7 ~ 0 . 7  X X 6 mm3; the uniaxial strain is applied along 
the sample. Unfortunately, we were not able to cut the sam- 
ples along the symmetric crystallographic directions; how- 
ever, it will be clear from subsequent discussions that this is 
important only in determining the value of the deformation 
potential constant, which is not the intent of this paper. Mea- 
surements were carried out for two orientations of the mag- 
netic field: HIIxllj and Hlxllj ( j i s  the current). Immediate- 
ly before the measurements, the samples were etched in a 5% 
solution of bromine in butanol. 

2. ENERGY SPECTRUM OF A GAPLESS SEMICONDUCTOR 
UNDER UNlAXlALSTRAlN 

The experimentally-observed functionsp (x, H, T )  and 
R (x, H, T )  have essentially analogous forms for all samples 
investigated. As is clear from Figs. 1-3, uniaxial deforma- 
tion radically changes the behavior of all the galvanomag- 
netic effects; the conductivity for H = 0 decreases by three 
orders of magnitude as x increases to 2 kbar; the electron 
concentration, which equals (eR,) -', decreases, vanishing 
at x=: 1.8 kbar; the position of the Shubnikov-deHaas oscil- 
lations observed for X< 1.2 kbar changes considerably under 
higher stresses, and in essentially different ways for Hllx and 
H lx .  A sharp minimum is observed in the longitudinal mag- 
netoresistance for stresses X> 1 kbar in magnetic fields of 5- 
10 kOe; in this case the value ofpl,  decreases 1-3 orders of 
magnitude. It is clear that these strong modifications of the 

TABLE I. Parameters of the samples investigated in this paper. 
I 

Sample 
number I E g ,  mev 1 N, - N ~ ,  I n =  T =  4.2 ( e ~ . ) - l ,  K cm-'/ Rooo, cm2/V.sec, T =  4.2 K 
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FIG. 1 .  Electron concentration n = (eR,,)-' and conductivity a,, versus 
the magnitude of the uniaxial stress for sample 1. Curves 1 and 2 are 
calculations carried out without including the dependence of E, on x ( 1 ) 
and including it ( 2 ) ;  0-1.8 K, 0 - 4 . 2  K. The inset shows the depend- 
ence of the electron mobility p ,  = Rooo on the Fermi energy measured 
from the bottom of the conduction band. 

galvanomagnetic behavior are primarily connected with a 
reconstruction of the energy spectrum of the unstrained gap- 
less spectrum under uniaxial strain. 

Let us investigate in detail the influence of uniaxial 
strain on the energy spectrum and galvanomagnetic effects 
for the special case of sample 1, which had the lowest doping 
level; as we will show below, we were most successful in 
carrying out a quantitative investigation of the experimental 
dependences for small values of NA - N,  . 

The field and temperature dependences of R, p l l  , andp, 
for this sample were investigated in Ref. 9 in the absence of 
strain; these investigations indicated that the sample was p- 
type, with a narrow acceptor band whose center was located 
a distance ~ 4 . 5  meV from the top of the valence band. In 

samples of HgCdTe for which the electron effective mass is 
small the donors always turn out to be ionized for real donor 
concentrations; this causes the Fermi level in our sample, as 
in the majority of pure samples ofp-HgCdTe with E, < 0, to 
be pinned in the acceptor band," for H = 0 and x = 0 the 
conductivity and Hall constant in this sample are deter- 
mined by an electron concentration (eR,) - ' = 3 . 4 ~  lOI4 
cm-"nd by a mobility Rooo-- 3.5. lo6 cm2/V.sec. In a 
quantizing magnetic field, the energy of the lowest Landau 
level of the conduction band equals &, /4 -- fieH /4m, c; 
when this energy becomes larger than the acceptor energy, 
electrons freeze out onto the acceptor states, which leads to a 
sharp increase in p for H > 4 ~ ,  m, c/eh =: 5.5 kOe ( Fig. 3 ) . 
Our investigations show that in magnetic fields for which p 
takes on values in excess of 3-5 0 - c m ,  the conductivity of 
the sample is not determined by its bulk properties, but is 
apparently related to inclusions of n-type material which 
form an infinite cluster"; therefore, in what follows we will 
not discuss any results pertaining to values of H, T, x for 
which p becomes larger than 1-3 0 .cm. 

In order to interpret the way that R, a, R u  depend on 
uniaxial strain, it is first of all necessary to know the energy 
dispersion relations under these conditions. In order to cal- 
culate the energy spectrum in this case, it is necessary to 
augment the 6 X 6k.p Hamiltonian which is used to take into 
account the interaction between the r, and r, bands with 
new terms which describe the influence of uniaxial deforma- 
tion [in our case we can neglect the influence of the r, band, 
since in HgCdTe we have ~ ( r , )  - ~ ( r , )  $E, E, 1. In the 
absence of strain the energy spectrum of HgCdTe is rather 
well described by the isotropic appr~ximation,~ for which 
the form of the Hamiltonian does not depend on the orienta- 
tion of H and x relative to the crystallographic axes, for 
HIIxJIz the energy dispersion law ~ ( k ,  , k l l ), where 
k :  = kx2 + ky2, k = kz, is determined by the solution to 
the Schroedinger equation with the Hamiltonian 

where 

H I I  x II i HIX I I  i 

I I I 
fl I 2 3 0 1 2 H, kOe 
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FIG. 2. The oscillatory part of the magnetoresistance 
for two orientations of the magnetic field relative to the 
direction of compression for sample 1 at T =  1.8 K. 
We denote by arrows the position of the last maximum 
ofp  for HIIx The numbers next to the curves are pres- 
sures in kilobars. The dashed lines show the motion of 
tlie oscillation maxima as the pressure varies. 
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Hi, (I?,) =E#+s (;+ I ) + ~ / ~ S L ~ ~ . ~ + ~ E ~ + ~ P ,  

H Z 2  (I'd =Hi1 (re) +s, 
H , ~ ( I ? ~ )  = - S [ ( ~ ~ + B )  (n+1/z)+3/2k+'/~(yi-2v )Lzk,l]+9P, 
H,, ( ~ ' S ) = - S [  (yid-7) (jl+i/2)-3/2k+1/2(ri-2\) L2kZ2]+9~ ,  
HzL(r0)=-s[ (yi-7) ( i + l / z f  ' /nl~+'/,(~i+27) ~ ~ k ~ ~ ]  +P, 

H3S(118) =-s[(yI-7) (~+1/2)-~1/2k+i/2(yl+2~)~2kz2]t~; 

Ep = 2m,,Pf/fi2 (P, is the matrix element of the momentum 
operator), y,  = yf - EP/3&,, 7 = - EP/6&,, 
k = k - Ep/6&, (yf, -jiL = = yf, k are the Luttinger 
parameters); L = (cfi/eH)I1' is the magnetic length; 
s = fieH/m,,c is the cyclotron energy of a free electron; 
a = L(k, + ik,)/2'I2, a+ = L(k, - ik,)/2'/' are creation 
and annihilation operators. P is a constant describing the 
splitting of the T, band under uniaxial strain; generally 
speaking, P depends on the direction of x relative to the 
crystallographic axes. For [ 11 11, [ 1001, P equals dS4,x/ 
8.3 ' I2  and b(Sl l  - Sl,)x/4, respectively, where b,d are de- 
formation potential constants, and S, ,, S,,, and S4, are com- 
ponents of the elastic compliance tensor; Scg is the variation 
of E~ with strain. 

In all our calculations the following parameters were 
used for HgCdTe; y, = 2, = k = 0; this choice of param- 

FIG. 3. Longitudinal magnetoresistance of the samples under 
study for the orientation Hllx at T =  4.2 K; I-sample 1; 2- 
sample 3; 3-sample 4. The numbers on the curves are pressures 
in kilobars. In the inset we show the experimental dependence of 
H,,, on pressure for sample 1 (O), 2 (O), 3 ( A )  and the theoreti- 
cal functions H ,  (x) and H, (x). 

eters corresponds to a heavy hole mass 
m, = (y,-27)-'mo=0.5m,, and E, = 17 eV.I0 Addi- 
tional investigations which we have carried out concerning 
the effect of uniaxial strain on the intrinsic electron concen- 
tration in n-HgCdTe with ~ ~ ( 4 . 2  K)  = 15 meV, 
N ,  - N, = 1014 cm-3 show that the value of S E ~ / ~ X  is less 
than 4 meV/kbar, so that in what follows we will not include 
it. Therefore, in the approximation we are using the effect of 
uniaxial strain on the energy spectrum of HgCdTe is de- 
scribed by only one constant P 

In Fig. 4 we show the way the spectrum ~ ( k , ,  k t ,  ) 
changes under uniaxial strain, along with cross sections of 
the isoenergetic surfaces obtained from ( 1 ) in the energy 
range of interest. In the absence of strain, the degenerate 
conduction and valence bands are split by an amount 8 1 P I at 
k = 0; the dependence of the valence band energy on k, be- 
comes nonmonotonic, and the conduction band becomes an- 
isotropic near its bottom, with mil -- 3&, mo/2Ep = mi and 
m, = 6&, mo/Ep = 4m, (m, is the light-hole mass). The for- 
bidden gap A which appears under strain is smaller than the 
splitting at k = 0; for m, = 0.5m0, A is roughly equal to 
2.5 (P 1. As is clear from Fig. 4b, the isoenergetic surfaces of 
the valence band for small energies are tori, which degener- 
ate into deformed ellipsoids as the energy increases. 

In order to understand how the galvanomagnetic ef- 
fects inp-type gapless semiconductors depend on the magni- 
tude of the uniaxial compression, it is necessary to know not 
only the spectrum of the carrier bands but also the position 
of the acceptor level. Since uniaxial strain leads to the ap- 
pearance of a forbidden gap which increases with increasing 
X, the shallow acceptor level which splits off from the top of 
the valence band must sink below the bottom of the conduc- 
tion band (Fig. 4a) at a certain value of X. Therefore, in 
gaplessp-type semiconductors for which the conductivity is 
determined by electrons at x = 0, uniaxial strain must lead 
to a decrease in the energy of the Fermi level which is pinned 
at the acceptor, and thus a fall in the electron concentration 
and a rise in the specific resistivity. For some value o f x  the 
acceptor level emerges into the forbidden band; when this 
happens, the electron concentration at low temperatures 
must become exponentially small. 

For a quantitative description of the observed depen- 
dences, it is necessary to know the constant P which de- 
scribes the splitting of the bands under compression; when 
this is known, the splitting can be computed for any orienta- 
tion of X. However, reliable data on the deformation poten- 
tial constant cannot be found in the literature. Therefore, we 
determined the value of P experimentally by comparing the 
measured temperature dependence of the electron concen- 
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FIG. 4. (a)  Reshaping of the energy spectrum of a 
HgCdTe-type gapless semiconductor under uniaxial 
strain. The continuous curves are the functions ~ ( k l )  
for k - 0; the dashed curves are E(  k ) for k l  = 0; 
(b)  theisoenergetic surfaces near the bottom of the 
conduction band (the upper curves) and near the top 
of the valence band (lower curves) for P = - 2 meV. 
The numbers on the curves are energies in meV; (c) 

'3.rneV-f the density of states near the band extrema in the ab- 
sence of deformation (dashed curves) and under 
uniaxial strain (continuous curves), P = - 2 meV. 

tration for various values of the compression with the con- experimental function n (x) (see Fig. 1 ). For comparison, 
centration calculated from the charge neutrality equation on the same figure we show the function n (x )  calculated by 
(Fig. 5); assuming that = const = 4.5 meV. 

One possible reason for the increase in the acceptor ion- 
n+Nn- = ND + + p, 

ization energy under uniaxial strain could be the variation of 

n=j po(&)f (&? &FIde, p = j  pV(e)f (s, ~ F ) ~ P ,  the dielectric permittivity x .  Actually, in a gapless semicon- 

1 dkll ductor with x = 0 electron-electron interactions do in fact 
N,-=NJ (&A, &F), PC," = - J dk1kA-. (2)  give rise to a correction Ax = 8me2/di2k, (Ref. 4), which 

n2 d e 

The dependence ofdk ,, / d ~  on k, , E in the expressions for the 
density of states in the valence and conduction bands should 
be taken from the solution to Eq. ( 1 ) . 

As our numerical calculations show, the densities of 
states in the valence and conduction bands change consider- 
ably under uniaxial strain (Fig. 4c). Analysis of the tem- 
perature dependence of the electron concentration comput- 
ed from the charge neutrality condition (2)  including the 
variation of E~ (T) (Ref. 11) shows that for temperatures 
above 15-20 K and N, - ND =: 1015 cmP3 the source of 
most of the electrons is thermal excitation from the valence 
band rather than from the acceptors; therefore at these tem- 
peratures n(T) is determined by only one parameter P. 
Thus, by comparing the theoretical and experimental func- 
tions n(T) for various x (Fig. 5)  we obtain the value 
P = - ( 1.5 + 0.08) [meV/kbar] X. 

At temperatures below 15 K the electron concentration 
is determined to a considerable extent by the position of the 
acceptor level. It is clear from Fig. 5 that there are significant 
discrepancies between the experimental and theoretical 
functions n ( T) at low temperatures if it is assumed that the 
ionization energy of an acceptor (i.e., its energy measured 
from the top of the valence band) does not depend on X .  
Good agreement is achieved if it is assumed that E, increases 
linearly with increasing compression; specifically, 
E, (x) = (0) + 1 [meV/kbar] x (Fig. 5). The electron 
concentration at T = 1.8 K calculated using this dependence 
on the magnitude of the strain gives a good description of the 

FIG. 5. Temperature dependence of the electron concentration. 
The points are experiment (sample 1 ); the dashed curves are theo- 
retical functions obtained by assuming that E, does not depend on 
pressure and equals 4.5 meV; the continuous curves are these 
functions with (x) = 4.5 meV + 1 [meV/kbar] X. In the cal- 
culations we set P = - 1.5 [meV/kbar] X. The numbers on the 
curves are pressures in kilobars. In the inset we show the pressure 
dependence of the Fermi level measured from the bottom of the 
conduction band. We also show here the position of the top of the 
valence band for T = 1.8 K. 
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decreases as the width of the compression-induced forbid- 
den gap increases. In addition to this, uniaxial strain signifi- 
cantly changes the valence band spectrum E, (k, , k ); how- 
ever, we know of no paper in which the energy is calculated 
for an impurity state split off from a valence band whose 
isoenergetic surfaces are in the shape of tori. 
, Uniaxial strain leads to a decrease in the conductivity 
which is considerably more rapid than that of the carrier 
concentration (Fig. 1 ), indicating a decrease in electron mo- 
bility p, = Roo,,. For a degenerate gas of electrons undergo- 
ing scattering by ionized impurities we have p z e ~ /  
m * - ~ ~ ' ~ ( ~ ) / m * .  In our case the conductivity is measured 
along the direction of compression; therefore the conductiv- 
ity is determined by the longitudinal effective mass 
m* = ml, , which, as follows from ( I ) ,  is independent of x 
and is roughly equal to m, . Therefore, the decrease in p, 
with compression is determined by the variation of E, (x). 
The position of the Fermi level relative to the bottom of the 
conduction band can be directly determined from the elec- 
tron concentration at T = 1.8 K (when the electron gas is 
degenerate) and the density of states calculated using the 
value of P determined above (Fig. 5) .  It is clear from the 
inset in Fig. 1 that the exponent in the dependence of p, on 
E, is in fact close to 3/2. 

Thus, analysis of the functions n(x,T) and o(x,T)  
shows that uniaxial strain gives rise to splitting of the con- 
duction band and valence band at k = 0 by an amount 
81PI = 8.(1.5 f0 .2 )  [meV/kbar]~andtheformationofa 
forbidden gap Az2.5IP 1 ~ 3 . 8  [meV/kbar] X. In this case 
the acceptor energy measured from the top of the valence 
band, which is shifted from the point k = 0, increases; 
E, (x) = E, (0)  + 1 [meV/kbar] X, and at a pressure of 
x = 1.8 kbar the acceptor emerges into the forbidden gap. 
The decrease of E, with increasing x also leads to a drop in 
the electron mobility. 

3. SHUBNIKOV-DEHAAS OSCILLATIONS UNDER UNIAXIAL 
STRAIN 

For small strains, as long as the acceptor level is located 
it the background of conduction band states and the electron 
gas is degenerate, we can observe Shubnikov-deHaas oscilla- 
tions in magnetic fields H <  3 kOe (Fig. 2). The position of 
these oscillations in a magnetic field is determined by the 
condition of E, (x) = E, (x ,H) (E, is the nth Landau level 

0.52kbar // , X I H  

energy at k = 0).  As we described earlier, the Fermi level in 
the samples we studied is pinned at the acceptor level, whose 
energy, just as that of the Landau level energy, depends on 
the magnitude of the compression; therefore, the position of 
the Shubnikov-deHaas oscillations should depend on X. The 
experimental dependence of the positions of the maxima of 
the magnetoresistance on the magnitude of the uniaxial 
compression for two magnetic field orientations, Hllxllj and 
Hlxllj, is shown in Fig. 6. 

The theoretical position of the Fermi level for xllH can 
be obtained from the solution of the Schroedinger equation 
with the Hamiltonian ( 1 ) by selecting wave functions whose 
form is analogous to that of the wave functions for x = 0, 
since for xllH the strain does not further lower the symme- 
try. 

However, in the H l x  orientation, uniaxial strain lowers 
the symmetry; therefore the structure of the Hamiltonian is 
not as simple as ( 1 ) (see Ref. 1 ), and it is not possible to 
obtain an exact solution in the general case. In this situation, 
we have chosen to solve the problem approximately; the 
wave function is sought in the form of an expansion in solu- 
tions to the unperturbed problem (i.e., for x = 0).  Taking 
into account the interactions of the N nearest Landau levels 
reduces the problem to evaluating a 6N-order determinant. 
We have analyzed the numerical solution and compared it 
with an exact solution which is available when m, ' 
= (y, - 2y)m,-' = 0, and have found that by taking into 

account eight levels we obtain an accuracy of 0.1 meV or 
better in determining the energy of the lowest five conduc- 
tion-band Landau levels, and 0.2 meV or better for the top- 
most Landau level energy of the valence band. Theoretical 
calculations of the Landau level energies at k, = 0 in both 
orientations of magnetic field relative to the direction of 
compression are given in the insets of Fig. 6. 

Using the position of the Fermi level determined in the 
previous section (which coincides with the acceptor level at 
low temperatures; see the inset in Fig. 5)  along with the 
computed functions E, ( H ) ,  and assuming that E, does not 
depend on H in the region of low magnetic  field^,^' we can 
compare the theoretically calculated positions of the Shub- 
nikov-deHaas oscillation maxima with the experimental re- 
sults (Fig. 6).  It is clear that the behavior of the oscillations 
as x varies differs for the two magnetic field orientations 
relative to the direction of compression. The essential fea- 

1 I I 

D 0.5 1.0 X ,  kbar 0 0.5 1.0 X ,  kbar 
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FIG. 6. Dependence of the positions of the 
maxima of the Shubnikov-deHaas oscillations 
in sample 1 for T = 1.8 K on the magnitude of 
the uniaxial compression for two orientations 
of the H relative to X. In the inset we show the 
position of the Landau level calculated from 
( 1 ) and the experimentally determined posi- 
tion of the Fermi level. 
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tures of our experimental results agree rather well with the 
theory based on the model under study here. The singularity 
in the position of the uppermost maximum in pl l  (H)  at 
~ ~ 0 . 5  kbar is connected with the fact that this maximum is 
determined by the intersection of E ,  with the level b, for 
small X, and with the level a, for large x (Figs. 6,  7) .  

4. MAGNETORESISTANCE OF A UNlAXlALLY DEFORMED 
GAPLESSpTYPE SEMICONDUCTOR 

So as to explain the behavior of the longitudinal magne- 
toresistance inp-type HgCdTe under uniaxial strain, we now 
investigate the variation of the width of the forbidden band A 
in a magnetic field. It is clear from Fig. 7 that in the region of 
small magnetic fields A depends weakly on H up to a field 
H = H, at which the level b, is no longer the topmost Landau 
level of the valence band. For H > H I  the width A rapidly 
decreases, vanishing at H = Hz. In this field the Landau lev- 
el b, intersects the level a- ,; these two levels change the sign 
ofthe curvature (i.e., the sign ofd '&/ilk f fork, zO), so that 
for H > H 2  the forbidden band appears again; for 
Hz < H < H3 it is determined by the spacing between the lev- 
els a - ,  and b,, for H > H3 by the spacing between a- ,  and a,. 
It is clear that if we start with a strain that puts the Fermi 
level in the forbidden band at H = 0 (Figs. 4 ,7) ,  the Fermi 
level will necessarily be found in the region of the continuous 
spectrum as the magnetic field increases to HZ Hz; this gives 
rise to the appearance of free carriers and to a sharp decrese 
in pl l  . The value of the field H2 can be obtained from the 
Hamiltonian ( 1 ) when we set the energies of levels a - , and 
b, equal: 

In the parabolic approximiation the expression for Hz has a 
simple form: 

It is clear from (4)  that H, is shifted to the side of large fields 
as x increases. We present in the inset of Fig. 3 the experi- 
mental dependences H,, (x) and H2(x) calculated from 
(3).  In the same figure, we show the dependence of the mag- 

netic field H, (x) obtained from ( 1 ), i.e., the field for which 
the topmost Landau level of the valence band becomes the 
level b, (see Fig. 7a). As is clear from Fig. 3, the experimen- 
tal values of H,,, lie between HI and Hz. 

So as to elucidate what sort of carriers determine the 
conductivity in a magnetic field Hllxllj equal to H,,,, we 
measured the Hall coefficient, whose sign corresponds to 
holes. (In order to measure R for Hllx we applied an addi- 
tional transverse magnetic field whose strength was 500 Oe) . 
If we assume that for H = H,,, all acceptors are ionized and 
thatp = NA - ND = 1015 cmP3, then an estimate of the val- 
ue of the hole mobility gives ,u = u/ep=. lo6 cm/V.sec, 
which agrees with the small effective mass at the top of the 
uppermost Landau level of the valence band for H = H,,, . 

In order to discuss the functionpli (x, H) in more detail 
it is necessary to know the behavior of the acceptor states in a 
magnetic field. As is clear from Fig. 7a, for H >  HI the 
ground state of the impurity center can be split off both from 
the uppermost valence band (6, for H < H2 or a ,  for H > H,) 
and from the group of closely-spaced levels of the valence 
band. 

If the state which splits off from the group of closely- 
spaced Landau levels is the ground state of the acceptor, 
then the observed behavior of pl,  (x, H) can be explained if 
we assume that in magnetic fields close to H, this state is a 
resonance and lies in the background of valence band states 
(i.e., the levels b, and a -  ,) (Fig. 7a). 

In the other case, when the ground state of the acceptor 
is a state split off from one of the Landau levels, the magnetic 
field can produce an insulator-metal transition for H < Hz 
and a metal-insulator transition for H >  H,. Actually, in 
those magnetic fields for which the spacing between the up- 
permost Landau level and the following level exceeds the 
ionization energy E, (H) ,  the size of the wave function of the 
localized state in a direction perpendicular to H is deter- 
mined by the magnetic length a, = L = (cfi/eH) 'I2, while 
in directions perpendicular to H it is determined by the 
quantity al l  zfi2[2mll E A  (H) ] -"*. The value of m l b  near 
H = Hz=. 10 kOe is of order lop3 m,, which gives for 

(H) = 1 meV the values a, =8.10W6 cm, al l  =: lo-' cm. 
In this case, at impurity concentrations N >  3 .  lOI3 cmP3 the 
product Na:all will be larger than the value 0.02 which cor- 
responds to the Mott transition, so that the localized states at 
the impurities disappear while the concentration of free 
holes becomes equal to N, - N, . 

FIG. 7. Position of the Landau levels for Hljx ( a )  and H l x  
( b )  in the uniaxially strained gapless semiconductor 
HgCdTe with parameters corresponding to sample 1 for 
x = 2.6 kbar. The crosshatched region is the forbidden band. 
Classification of the Landau level for x/IH corresponds to the 
Pidgeon-Brown classification. In the x1H case the eigen- 
functions are complicated combinations of t h e x  = 0 Landau 
level wave functions; therefore, it is not permissible to carry 
out the same type of classification as for HIIx. 
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In magnetic fields H >  H,, when the forbidden gap 
opens up again, the growth in the value of m l  at  the top of 
the uppermost Landau level and the decrease in the magnet- 
ic length result in a compression of the acceptor wave func- 
tion; this ensures that NL 2a,l will become smaller than 0.02, 
so that the acceptor states are split off and magnetic freeze- 
out of the holes takes place. These effects also lead to a strong 
increase in p for H > H2. 

A sharp decrease in resistivity for H = 5-10 kOe is ob- 
served in all the samples we investigated; however, in more 
heavily doped samples with N, - ND > 4.10'" cm-3 there 
is no growth i n p ( H )  above 50 kOe (Fig. 3).  This behavior of 
p can be explained using either model of the impurity states; 
for the first model (when the ground state of the acceptor is 
split off from the group of closely-spaced large-mil Landau 
levels, Fig. 7a) this behavior is connected with the fact that 
an increase in impurity concentration leads to a decrease in 
the ionization energy of the acceptor, so that its level re- 
mains a resonance for all values of magnetic field. In the 
second model, the absence of growth in p in large magnetic 
fields can be explained by the fact that in these samples 
Na:all always remains larger than 0.02. As we see it, the 
available experimental data and theoretical calculations do 
not allow us to determine which of the two acceptor states 
described above is the ground state in a magnetic field. 

The dependence of the width of the forbidden band on 
magnetic field in a uniaxially strained semiconductor should 
be nonmonotonic, as is clear from Fig. 7. As we showed 
above, the width of the forbidden band which opens up un- 
der uniaxial strain in the absence of a magnetic field can be 
reliably determined by using the temperature dependence of 
the Hall coefficient, since R = ( n e )  -'. We were not able to 
measure the temperature dependence of the electron concen- 
tration in a strong magnetic field for the orientation Hllxllj. 
In this case the width of the forbidden band can be estimated 
from the temperature dependence ofp  ( T )  given in Fig. 8. It 
is clear from the inset of Fig. 8 that for H = 0 the value of the 
activation energy of the conductivity determined from the 
slope of the temperature dependence of lgp, ,  versus 1/T for 
T> 20 K differs somewhat for the value of A obtained from 

FIG. 8. Temperature dependence of the specific resistivity of sam- 
ple 1 subjected to uniaxial pressure in various magnetic fields 
H/(x/( j  for x = 2.34 kbar. In the inset, the points are activation 
energies obtained from experimental dependences of l g p  on 1/T 
for two values of x (0-1.25 kbar, 0-2.34 kbar); the arrows 
denote values obtained from the temperature dependence of the 
clcctron concentration; the continuous curves 1 and 2 are the 
theoretical dependences of the forbidden band widths on magnet- 
ic fields for y = 1.25 and x = 2.34 kbar, respectively. 

an analysis of the temperature dependence of the electron 
concentration; this is connected with our ignoring the tem- 
perature dependence of p ( T )  and the effective numbers of 
band states N, ( T) and N,  ( T). Therefore the value of the 
activation energy for the conductivity A, should only qual- 
itatively reflect the behavior of the forbidden band even in a 
magnetic field. The function A, ( H )  shown in Fig. 8 reveals 
that A, vanishes for H = H,,, ; however, it increases rapidly 
as the magnetic field increases. On the same figure we show 
the theoretical function A ( H )  (the crosshatched region in 
Fig. 7 ) ;  it appears that A(H)  agrees rather well with the 
behavior of the activation energy of the conductivity. I t  must 
be kept in mind that for H > H, the width of the forbidden 
band is determined by the spacing between the levels a _ ,  and 
a, (Fig. 7a) which, as our analysis shows, depends weakly 
on the magnitude of the compression. 

In contrast to the magnetoresistance for the orientation 
H(Ixllj (Fig. 3) ,  we see no deep minimum in the function 
p, ( H )  (i.e., in the orientation Hllxllj) under uniaxial strain 
(Fig. 9) ;  this is apparently connected with a large positive 
transverse magnetoresistance which arises because of the 
high carrier mobilities (p, , p,, -- 10" cm2/V.sec). In addi- 
tion, the Landau levels behave in profoundly different ways 
for the two orientations of magnetic field relative to the di- 
rection of compression. As the calculations show, (Fig. 7b), 
for H l x  the crossing and inversion of the Landau levels of 
the valence band and conduction band occur at large mag- 
netic fields. However, even in this orientation we observe a 
rather small minimum for x > 1.5 kbar which shifts in the 
direction of the large magnetic fields a s x  increases (Fig. 9 ) .  
On the same figure we show the dependence of the magnetic 
field for which the crossing of the Landau levels of the va- 
lence and conduction bands leads to the disappearance of the 
forbidden gap in the orientation Hlx.  In  this case, too, our 
calculations describe the experimental dependence rather 
well. 

The essential features of the behavior of R and p de- 
scribed above as a function of the magnitude of the uniaxial 
compression and the magnetic field intensity are observed in 
all samples we studied. We did not observe the nonmono- 

FIG. 9. Dependence of the specific resistivity of sample 1 on mag- 
netic field for T = 4.2 K in the orientation Hlxllj. The numbers 
on the curves are pressures in kilobars. The inset shows the pres- 
sure dependence of the position of the minimum o f p  (the points) 
and the calculated function H z ( x ) .  
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tonic dependencep(x) reported in Ref. 6 (i.e., a strong fall- 
off in resistance for large compressions) in even one of thee 
samples at H = 0. This behavior ofp(x)  was interpreted by 
the authors of Ref. 6 to be a consequence of the decrease in 
ionization energy of the acceptor and an insulator-metal 
transition under uniaxial compression, which contradicts 
the conclusions of this paper concerning the increase of E, 

with increasingx. From our viewpoint, the results of Ref. 6 
can be understood only if we assume that the Hg, - , Cd, Te 
samples under investigation, which had compositions 
x = 0.155-0.157 which were very close to the composition 
x = 0.16 at which the gapless semiconductor to normal sem- 
iconductor transition occurs, in actuality contained p-type 
regions with E, > 0 and with E, < 0. If each of these regions 
forms an infinite cluster, then the resistivity of such a sample 
will be determined by regions with the smallest p. For small 
compressions these are the regions with E, < 0 for which p 
increases as x increases, while for larger compressions they 
are the regions with E, > 0 for which, as was shown in Ref. 
12, the resistivity falls abruptly. 

CONCLUSION 

Our investigations of galvanomagnetic effects in p- 
HgCdTe with E, < 0 under uniaxial strain show that the ob- 
served features of the experimental dependences R ( H ,  X, T) 
and p(H, X, T) are caused by reshaping of the energy spec- 
trum of the gapless semiconductor under the action of the 
uniaxial strain. This uniaxial strain leads to the formation of 
a forbidden gap which increases with pressure. In this case a 
semiconductor with unique properties is created: in the re- 
gion of small energies the isoenergetic surfaces of the valence 
band have the form of tori, while those of the conduction 
band are ellipsoids; quantization of such a spectrum in mag- 
netic field leads first to a decrease in the forbidden gap, 
which goes to zero at a certain magnetic field H, followed by 
an increase in this gap. The value of the magnetic field at 
which the forbidden gap vanishes increases as the pressure 
increases and depends sensitively on the orientation of x rel- 

ative to H. This feature is well described by a modification of 
the isotropic Kane model which takes into account uniaxial 
strain. 

Variation of the band spectrum under uniaxial strain 
also gives rise to a reshaping of the impurity states. We have 
shown that the acceptor ionization energy increases with 
uniaxial compression. 

"It was shown in Ref. 9 that for sample 2 the effect of shunting mecha- 
nisms does not manifest itself up to values o f p z  lo4 S1.cm. Unfortunate- 
ly, a detailed investigation of this sample under uniaxial strain could not 
be carried out. 

"In magnetic fields H < HI (Fig. 7)  the spacing between Landau levels of 
the valence band is much less than the acceptor ionization energy; there- 
fore the effect of quantization of the spectrum on E, in these fields can 
apparently be neglected. 
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