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The scattering function for x radiation reflected from a surface with an extremely slight roughness 
is analyzed in the Andronov-Leontovich model. Several features of the scattering function and of 
the integral scattering are described quantitatively in two intervals of the glancing angle 0,) of the 
incident radiation: 0,, < 6, and 6, > 6,, where 6, is the critical angle for total external reflection. 
Among these features are a broadening and a shift ofthe peak of the scattered radiation, the 
appearance of additional peaks on the function, and an apparent increase in the height of the 
surface roughness, which is observed at  small glancing angles. The scattering function of CuK, 
radiation during reflection from samples of various materials has been measured. 

INTRODUCTION 

In 19 13 Mandelstam' examined several physical ques- 
tions concerning the observation of molecular motions of a 
free liquid surface by optical methods. Andronov and Leon- 
tovich2 subsequently analyzed the electrodynamic part of 
the problem and actually laid the foundation for a descrip- 
tion of the scattering which arises in many phenomena in the 
reflection of radio waves from the earth's ~ u r f a c e , ~ . ~  in the 
reflection of slow neutrons from  solid^,^ in the reflection of 
visible light from optical surfaces,"' and in the reflection of 
sound waves from  interface^.^." I t  should be noted, how- 
ever, that Andronov and Leontovich's paper2 is not well 
known, and its results have been repeatedly rederived by 
various investigators. 

Scattering methods have recently acquired new impor- 
tance because of technological advances in x-ray and neu- 
tron research. Cold neutrons with an energy of 2.10-'- 
2.10V5 eV and x rays with an energy of 1-10 keV have a 
wavelength A - 1-10 A; these wavelengths correspond to es- 
timates of the minimum dimensions of surface defects and of 
surface roughness. Accordingly, a significant scattering 
should arise in this wavelength region even when absolutely 
the best methods are used to prepare surfaces. This circum- 
stance would be extremely convenient for observing scatter- 
ing and for studying ultrasmooth surfaces on the basis of this 
scattering. In addition, scattering by surface roughness is 
one of the most important factors limiting the quality and 
potential application of x-ray optics and neutron optics, 
which are of interest in a long list of scientific and technolo- 
gical fields. 

Experimental research on the scattering during the re- 
flection of x radiation from various materials is being carried 
out in connection with problems in x-ray astronomy, plasma 
diagnostics, x-ray microscopy and spectroscopy, microlith- 
ography, etc. I t  has been shown"-" that two features can be 
observed in the scattering of x radiation incident at grazing 
angles on an interface. 

1. The height of the roughness at the interface calculat- 
ed from the total integral scattering increases with decreas- 
ing glancing angle. ' '.'' This behavior contradicts most of the 
theoretical models which are presently in use; these models 
lead to the familiar expre~sion''~" 

%sin Oo = I. (? sin e0 ) , - < I, 
?b 

where I a n d  I. are the scattering intensity and the intensity of 
the incident radiation, respectively, /1 is the wavelength, 5 is 
the roughness height, and 6,, is the glancing angle of the 
incident radiation. 

2. If the glancing angle of the incident radiation, 6,,, is 
greater than 0,. , which is the critical angle for total external 
reflection, the scattering function will have two peaks: one in 
the specular reflection direction and another at an angle 
from the surface close to the critical angle. "-I5 

We wish to stress that both of these effects are seen at 
small glancing angles, where the x-ray reflection coefficient 
is large. These effects are thus of interest not only for re- 
search on surfaces but also for reflection grazing-incidence 
x-ray optics, which is finding progressively wider use in fun- 
damental and applied physics. Since diffuse-scattering 
methods are of practical importance in x-ray optics and sur- 
face physics, it is extremely desirable to find a quantitative 
explanation for both of these effects. 

In the present paper we show that both of these effects 
can be described by the methods of Andronov and Leonto- 
vich,' i.e., through the systematic application of perturba- 
tion theory to a simple and graphic model of a surface. 

In Sec. I we present the basic equations describing the 
surface model and the interaction of a monochromatic plane 
wave with the surface. We present these equations without 
derivation, following Refs. 2, 18, and 19. We give a relation 
between the scattering function and the correlation function 
of an isotropic surface. We discuss the use of this relation in 
measurements of the correlation function. This relation 
serves as a starting point for the sections of the paper which 
follow. A necessary condition for the applicability of this 
relation is that the perturbation theory be valid. The accura- 
cy of the perturbation theory improves with improvements 
in the quality of the surface finish, as was demonstrated con- 
vincingly even in the early papers by Leontovich.',' 

In Sec. I1 we examine the shape of the x-ray scattering 
function. Some conditions arise here which simplify the 
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analysis: A &a, 8,, 3: 8, 1, where a is the correlation radius 
of the roughness heights. As a result, it becomes appropriate 
to deal with the scattering function integrated over p, i.e., 
n( 8) , instead of the doubly differential scattering function 
@(8,p)  ( 8  and p are the angles specifying the scattering 
direction). This comment applies to both experimental and 
theoretical research. This integral scattering function takes 
different forms in four regions defined by the magnitudes of 
and relations between the parameters p = ~ a 8  :/A and 
p, = f /A. In particular, in the regionp, > p > 1 there is 
an analogy with the optical range, where the scattering func- 
tion is bell-shaped with a diffractive width A@-A /a&. An- 
other interesting case is the Yoneda effect,I3 which was dis- 
cussed in Refs. 14, 15, and 20. The Yoneda effect is 
manifested if the glancing angle of the incident radiation, O0, 
exceeds the critical angle for total external reflection, 8, 
(i.e., p > p ,  ). It consists of the appearance of an additional 
maximum in the scattering function. Finally, one should dis- 
tinguish two other intervals of the parameters p and p,. 
( p  ( 1, p, ) 1 and p < p ,  & 1 ), in which the scattering func- 
tion has a characteristic shape, and its width does not depend 
on the glancing angle. 

In Sec. I11 we examine the integral intensity of the scat- 
tered radiation for conditions corresponding to the x-ray 
range. It is this intensity which is used to measure the height 
of surface roughness by the total-integral-scattering meth- 
od. Analysis of the consequences of the rigorous scattering 
theory shows that the dependence of the integral scattering 
intensity on the glancing angle changes in nature when we 
switch from large glancing angles ( p  % 1 ) to small glancing 
angles (p  4 1 ). This circumstance makes its possible to ex- 
plain the experimental results of Refs. 11 and 12 and to es- 
tablish a range of applicability for the total-integral-scatter- 
ing method. 

I. GENERAL RELATIONS 

Scattering function. Let us assume that the interface be- 
tween the material (which has a dielectric constant E )  and 
the vacuum is described by the equation z = (( p ) ,  where f 
is a random function which determines the statistical prop- 
erties of the surface, the z = 0 plane corresponds to the posi- 
tion of the ideally smooth interface (i.e., ( f (  p ) )  = O), and 
the vectorp lies in thexy plane (Fig. 1 ). We assume that the 
properties of the material change abruptly at the interface. 
The spatial distribution of the dielectric constant can then be 
written in the form 

E (r) =Eo ( z )  + AE (r) ,  E~ (2) =I- (I-.?) H(z ) ,  
Ae(r)=(l--e) [H(z)-H(z-%(p))I ,  r=(p, z ) ,  

where H is the (Heaviside) unit step function: H ( z )  = 0 at 
z < O a n d H ( z )  = 1 a tz>O.  

The reflection and scattering of the radiation by a rough 
surface are described in the scalar approximation by the 
equation 

where k = w / c  = 2a/A is the wave number in vacuum, and 
\y(r)  is the wave amplitude. With ultrasmooth surface in 
mind, we will use a perturbation theory in the roughness 
height 5 (Refs. 2 and 19). The integral intensity of the scat- 
tered radiation can then be written in the form'" 

FIG. 1 .  Diagram illustrating the reflection of x radiation from a rough 
interface between two media. k,,,k-Wave vectors of the incident and scat- 
tered radiation; q,,,q-projections of these vectors onto the xy plane. 

where @(B,p) is the scattering function, given by 

4 sinz 0 
T (0) = I I sin 8+ (e-cosz 8)'" 1 

sin 8- (e - cosa 8) ' 
R(e)= 1 '  sin 8+(E-~os2 81% 

Here R ( 8 )  is the reflection coefficient, and tl-e quantity 
T(8)  Re [ ( E  - cos28) 'I2/sin 8 is the transmission coeffi- 
cient of the ideally smooth interface for a wave. The angles 8, 
p, and 8,) which appear in the expression ( 2 )  are shown in 
Fig. 1; qo and q are the projections of the wave vectors of the 
incident and scattered radiation onto the xy plane; 
X(  p)  = (((r)((r  + p)  ) is the correlation function of the 
roughness heights; and, in particular, ~ ( 0 )  = ((') is the 
mean squre roughness height (below, we will omit the sym- 
bol indicating an average). 

We wish to stress that the scattering function ( 2 )  de- 
pends not only on the statistical properties of the interface 
[i.e., the correlation function X (  p )  ] but also on parameters 
which are unrelated to the microscopic geometry of the sur- 
face: the wavelength A, the glancing angle of the incident 
radiation, O,,, and the dielectric constant of the material, E. 

As these parameters are varied, the shape of the scattering 
function may vary in an extremely complicated way. 

In addition to the scattered radiation, the beam reflect- 
ed by a surface contains a specular component, whose angu- 
lar distribution reproduces that of the incident beam. The 
specular component is less informative than the scattering 
function for research on surfaces, but it is an important char- 
acteristic of any optical element. The specular component 
was studied in Ref. 19 for the case of the reflection of x radi- 
ation from a rough surface. 

Isotropic surfaces. In this case the correlation function 
of the roughness heights depends on a single variable: 
X(  p )  = X (  I P I  ). The scattering function ( 2 )  takes the form 
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2k4 T ( 0 )  
0 (0,  cp) = - R  (0,)  - xB ( v )  sin3 €I,, 

n T (80) 

* 
Y=~Q-QO I =~(cos' 0+cos2 00-2 cos 0 cos 0, cos c p )  ", 

where J o ( x )  is the Bessel function. Expressions (3)  show 
that it is a simple matter to work from the measured scatter- 
ing function @(8,p) to determine the function X, (v),  
which is related to the correlation functionx( p )  by a Bessel 
transformation. If the dielectric constant of the material, 
E ( o ) ,  and thus R and T, according to expression (2),  are 
known quite reliably, then one can measure the correlation 
functionx, (v)  by probing the surface with radiation at var- 
ious wavelengths, ranging from the visible range to the x-ray 
range. The approach improves the reliability of the results 
considerably. Let us discuss this question in more detail. 

If the values ofx, (v)  were known for all values of the 
parameter M[O, co I, the correlation functionx(p) would be 
determined by the inverse transformation: 

In practice, on the other hand, in measurements of the scat- 
tering function @ (8,p) at a fixed wavelength A the function 
XB (v)  can be determined in only a finite interval of values of 
v: vmin < v < vmax. As can be seen from expressions (3),  as 
the angles 8,, 8, and p are varied, but the wavelength of the 
incident radiation, A, is held fixed, the values of v cannot 
exceed v,,, = 2k = 4?r/A. From this result follows, in par- 
ticular, the obvious fact that the microscopic geometry of the 
surface can be determined progressively more accurately as 
the wavelength A of the probing radiation becomes shorter. 
The minimum transverse dimensions of the surface irregu- 
larities that can be detected are of order a,,, - v 2  z A  / 4 ~ .  
The value of v is bounded below by the finite angular spread 
68  of the incident radiation, since in the range of angles 6' 
between 8, - 68  /2 and 8, + SO /2 it is impossible in practice 
to distinguish the scattered radiation from the specularly 
reflected beam. From this it follows that 

1 
vmi, z- kS8 sin 8,, a,,, z (A /a)68 sin 8,. 

2 

Hence the correlation functionx(p) of the height of the sur- 
face roughness can be determined from the scattering index, 
strictly speaking, only for a beam of zero divergence with 
wavelength A taken to zero. 

In practice it is quite unnecessary to know the correla- 
tion function ~ ( p )  for many applications. The function 
X, (v)  on some interval ~ [ v ~ , v ~ ]  determined by the experi- 
mental conditions contains all the requisite information. In 
particular, this is the case when the surface optical proper- 
ties in some spectral range are being investigated. Hence the 
most natural approach is to use Eqs. (3) to determinex, (v)  
by measuring the scattering index in the required range of v. 
For this purpose no apriori assumptions are needed regard- 
ing the form ofx(  p ) .  Moreover, analysis of Eqs. ( 3 )  shows 
that from measurements of @(8,p) at some wavelength A in 

some range of @and p it is possible in principle to findx, (v) 
and predict the scattering index @(el ,  p,) at some different 
wavelength A ,  and angles 8, and p, . Doing this will of course 
require a precise knowledge of the optical constants [which 
determine R ( 8) and T( 0) in ( 3 ) at both wavelengths, R and 
4 1 .  

Everything which we said above regarding the relation- 
ship between the surface correlation functionx, (v) and the 
scattering function which is differential in 8 and p, i.e., 
@(8,p),  is valid for arbitrary wavelengths A and arbitrary 
glancing angles 8,. The choice of a particular wavelength 
and a particular glancing angle depends on the properties of 
the surface and the experimental conditions. In the sections 
of this paper which follow we will examine the particular 
features of the scattering of x radiation. 

II. SCATTERING FUNCTION FOR X RADIATION 

Smallglancing angles; integration of thescattering func- 
tion over p.  We first note that in the x-ray range there is no 
point in considering glancing angles other than small ones, 
8,s 8, ( 1, at which the reflection coefficient is not small. 
We also assume, for simplicity, that the function X, (v)  
reaches a maximum at v = 0 and falls off monotonically 
with increasing value of the parameter v. According to (3), 
we can then conclude that the scattering function has a max- 
imum near v = 0, i.e., near the specular component. This 
assumption seems completely reasonable. 

From the explicit expression for v [see (3 ) ]  we find, 
noting that the angles are small, B,, 8, p 4 1, that the angular 
width A0 of the function X, (v)  in the plane of incidence 
(and thus also the angular width of the scattering function) 
and the angular width Ap in the perpendicular direction 
(along the angle p) are related by 

Second, the wavelength of x radiation is considerably 
shorter than the correlation radius, a, which is 0.1-10pm for 
most surfaces. For example, if the glancing angle 8, and the 
width of the scattering function in the plane of incidence, be, 
are a few degrees, the width of the scattering function in 
terms of the angle p, i.e., Ap, will be only a matter of arc 
minutes (see also Ref. 2 1 ) . 

By virtue of these two circumstances, in the x-ray range 
it turns out to be a particularly simple matter to experimen- 
tally determine the scattering function rI (8) integrated over 
the angle p (i.e., over the directions perpendicular to the 
plane of incidence) : 

Expression ( 5 ) was derived from ( 3 ) and is exact. We now 
use the relation aSA and expand the Bessel functions at 
large values of their argument. We find 

4kJ 
(') X. ( p )  sid 0., n (0) = -,*R ( g o )  - 

(2n)  T(00) 
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Consequently, by measuring the scattering function 
n ( 8 )  integrated over the angle p in the x-ray range, we can 
easily find the function X, ( p ) ,  which determines only the 
statistics of the surface, as in the general case, ( 3 ) .  The only 
difference is that a Bessel transformation of the correlation 
functionx( p )  appears in the differential scattering function 
Q, (8 ,p)  [expression ( 3  ) 1,  and a Fourier cosine transforma- 
tion appears in expression (6 )  for I 1  (8) .  These transforma- 
tions are related by 

m 

If the function X ,  ( p )  were known for all values of the 
parameter p, the correlation function could be calculated by 
taking inverse Fourier transforms: 

Transforming from the differential scattering function 
Q,(8,p) to the scattering function which is integrated over p ,  
i.e., n ( 8 ) ,  may not be correct in the visible range. The reason 
is that expression (6 )  holds when the conditions ka cos 19% 1 
and ka cos 8,,$ 1 hold, as they do at small glancing angles in 
the x-ray range, but they do not hold in the visible range, 
especially at normal incidence. 

In moving on to an analysis of the x-ray scattering func- 
tion, we will distinguish between the region of total external 
reflection (8,) < 8, ) and the region of the Yoneda effect 
(00<8 , )  (Refs. 13-15). 

Scattering function in the region of total external reflec- 
tion (8,) < 8, ). It can be seen from expression (6)  that the 
shape of the scattering function, i.e., its dependence on the 
observation angle 8 (Fig. 1 ), is determined by the product of 
the functions T(8)  andx, ( p ) ,  wherep =p(B) .  [Theentire 
analysis below is also valid for a scattering function as in ( 3 )  
in the plane of incidence, i.e., at p = 0.1 The function T(8)  is 
determined exclusively by the optical properties of the mate- 
rial, and the function X, ( p )  by the statistics of the rough- 
ness of the interface. Clearly, if the function X, ( p )  has fea- 
tures of any sort, they will, in general, be observed in the 
scattering function. We restrict the analysis to the simplest 
case, in which X, ( p )  reaches a maximum at p = 0 (i.e., at 
8 = 8,)) and falls off monotonically with increasing value of 
the parameterp. We assume that the scale of the variation in 
xC ( p )  is p - a  ', where a is the correlation radius of the 
roughness heights. Furthermore, we ignore the absorption 
of radiation in the material; i.e., we set Im E = 0. The func- 
tion T(0)  then takes the form 

The value of T reaches a maximum at 8 = 6, and falls off 
rapidly to its asymptotic value as we leave the region of total 
external reflection: T(8)  - 1 at 8 > 8,. 

Let us examine the features of the shape of scattering 
function n ( 8 )  as a function of the correlation radius a and 
the glancing angle of the incident radiation, 8,). We assume 

that the angle 8,) lies in the region of total external reflection: 
8,) < 8, (Fig. 2, a and b). We will examine the case 8,) > 8, 
below. We introduce the parameters 

and we consider three limiting cases. 
1. The correlation radii are large, and the glancing an- 

gles of the incident radiation, 8,,, are not too small: p ,  $ 1 
and p $ 1 (line 1 in Fig. 2b). The angular position 8,, of the 
maximum of the scattering function is determined by the 
following equation for any values o f p  and p ,  : 

p= k (cos 0, - cos Om), 

In the particular case under consideration here, p ,  p,. $1, 
the maximum of the scattering function essentially coincides 
with the specular-reflection direction, as can be seen from an 
analysis of Eq. (8 ) .  The peak has a symmetric shape, and its 
angular width A8 is determined exclusively by the width of 
the function x,. ( p ) :  

2. The correlation radii are large, and the glancing an- 
gles of the incident radiation are extremely smallp, $1 but 
,u < 1 (line 1 in Fig. 2a). From expression ( 9 )  we see that the 
scattering function broadens with decreasing value of the 
glancing angle 8,). If B,, becomes so small that the interface 
begins to intersect the scattering function (A8 -A  / 
~ a 8 , ) -  8,); i.e., p - 1 ), we would naturally expect a change in 
the nature of the scattering. 

It can be seen from Eq. ( 8 )  that at extremely small 
values 8,) (i.e., ,u < 1 ) the maximum of the scattered radi- 

FIG. 2. The shape @(B) of the scattering function versus the glancing 
angle of the incident beam, O,,. a-B,,/B, = 0; b-0.6; c-1.2; d-1.5. The 
shape versus the correlation radius of the roughness heights, a :  1- 
p, = raOf//l = 10; 2-1; 3-0.5. Absorption has been ignored. The cor- 
relation fucntion was chosen to be exponential, y (  p )  = c '  exp( - p/a) ,  
in the calculations. The verical bars show the position of the specularly 
reflected beam. 
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ation shifts with respect to the beam which is reflected specu- 
larly from the surface. At the same time, the scattering peak 
becomes asymmetric, and its angular width becomes 

3. The correlation radii are  small:^, < 1 (lines 3 in Fig. 
2, a and b).  In this case the function X, ( p )  remains essen- 
tially constant in the region of total external reflection 
( 8 < 8 , ) ,  and the shape of the scattering function corre- 
sponds to the dependence T(8) .  In particular, the maximum 
of the scattered radiation occurs at the critical angle for total 
external reflection: 

Case 1 corresponds to the scattering pattern which is 
ordinarily observed in the visible range. Cases 2 and 3 are 
specifically characteristic of the x-ray range. Case 2 was ob- 
served in Ref. 22 but interpreted there on the basis of a more 
complicated model of the surface. Case 3-scattering by sur- 
faces with very small correlation radii-is characterized by a 
scattering-function maximum which lies near the critical an- 
gle, regardless of the glancing angle of the incident beam. 
This effect has not been observed previously in x-ray scatter- 
ing and has not been discussed. 

The Yoneda efect. Let us examine the features which 
appear in the scattering function in the case in which the 
glancing angle of the incident radiation, 8,,, exceeds the criti- 
cal angle for total external reflection, 8,. We will show that 
the simple intuitive model of a surface which was presented 
above is successful in explaining the anomalous scattering of 
x radiation (the Yoneda effect) which was observed in Refs. 
13-1 5 (and described theoretically in Refs. 14,20, and 22 on 
the basis of more complicated models of an interface and 
under additional assumptions regarding the stucture of the 
electromagnetic field). Briefly, the effect is the appearance 
of an additional peak in the scattering function if 8,) > 8,. 

We used a BSV-8 x-ray tube with a copper anode in 
measurements of the scattering function carried out in order 
to observe the Yoneda effect. A pyrolytic-graphite mono- 
chromator selected the characteristic CuK, line (A = 1.54 
A).  The angular distribution of the scattering was measured 
in the plane of incidence of the direct beam. The collection 
angle, set by the receiving slit of the detector, and the angular 
divergence of the direct beam in this plane were 1' and 2', 
respectively. The angular divergence in the plane perpendic- 

FIG. 4. The same as in Fig. 3, for three different samples of K 8  glass and 
for the glancing angle 0,, = 1". The critical angle is 8, ~ 0 . 2 2 " .  

ular to the plane of incidence was - lo, limited by a Soller 
slit. As samples we used plates of a plastic (CSH,O2), K8 
glass, and a tin film with a surface with a mirror finish (in the 
optical range). A tin film 0 .4pm thick was vacuum-deposit- 
ed on a substrate of K8 glass. 

Figures 3-5 show angular distributions of the scattering 
found experimentally (the specular component has not been 
subtracted). An anomalous-scattering effect was observed 
for all of the samples studied. This anomalous scattering 
consisted of the appearance of an additional peak on the 
scattering distribution at observation angles 8 ~ 8 , .  The po- 
sition of this peak depended weakly on the glancing angle of 
the incident beam, O0, as 8,) was varied from 1.88, to 2.68, 
(Fig. 3 ) .  It also depended weakly on the microscopic geome- 
try of the surface (Fig. 4).  

Let us use expression ( 6 )  to discuss the results. " In the 
first place, it is clear [see ( 3 )  and ( 6 ) ]  that the maximum of 
the function X, ( p )  at 8 = 8,, [or the maximum of X, ( Y )  

8 = 8,, and p = 0] corresponds to the ordinary scattering 
peak in the specular direction. Furthermore, in the absence 
of absorption the function T ( 8 )  has the following singular- 
ity: 

This result means that, regardless of the functionx, ( p),  the 
intensity of the scattered radiation falls off in a certain inter- 
val of observation angles 0 lying to the right of the critical 
angle 8 , .  Consequently, if the incident beam lies outside the 
region of total external reflection ( 4 ,  > 8, ) , there will be an 

FIG. 3. Experimental angular distribution of the scattering of x radiation FIG. 5 .  The same as in Fig. 3, for a plastic sample with a glancing angle 
(A = 1.54 A )  from a tin film 0.4pm thick deposited on a substrate of K8 O,, = 0.375" (dots); results calculated from expression ( 6 )  for an exponen- 
glass, for various glancing angles of the incident beam: 1-O,, = 0.5"; 2- tial correlation function and a correlation radius a = 1 p m  (solid line). 
0.6"; 3-4.7". The critical angle for total external reflection is 8,. ~ 0 . 2 8 " .  The critical angle is 8, ~ 0 . 1 6 " .  
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additional maximum in the scattering function, at an angu- 
lar position which coincides with the critical angle for total 
external reflection (an anomalous-scattering peak). 

If this peak is to be observed experimentally, there are 
nevertheless certain conditions which must be satisfied (Fig. 
2, c and d, and Fig. 6) .  

1. There must be a fine-scale roughness with small cor- 
relation radii at the surface: 

Otherwise, the rapid decrease in the function x,. [ p ( 8 ) ]  
away from the specular-reflection direction will have the 
consequence that even if the glancing angle 8,) differs only 
slightly from O,, the height of the anomalous-scattering peak 
will become exceedingly small. At the scale of Fig. 2d, for 
example, this peak is simply not seen on line 1. 

2. For a reliable separation of two peaks in the scattered 
radiation, we would like to keep the glancing angle 8,) fairly 
far from the critical angle 8,. . On the other hand, 8,) must not 
be too large, for otherwise the height of the anomalous-scat- 
tering peak will become too small because of the finite angu- 
lar width ofthe functionx,. [ p ( 8 )  1. Consequently, the opti- 
mum glancing angles of the incident radiation for an 
observation of anomalous scattering are 

whre 6 8  is the angular resolution of the experiment. 
3. Absorption of the incident radiation in the material 

( Im E # O )  leads to smoothing of the function T(8)  and thus 
a decrease in the height of the anomalous-scattering peak. If 
the absorption is sufficiently strong, this peak will disappear 
entirely (Fig. 6) .  The anomalous-scattering effect can thus 
be observed only under the condition 

The angular position of the anomalous-scattering peak de- 
pends only weakly on the absorption. 

The simple model of a surface which was presented 
above thus successfully explains the anomalous scattering of 
x radiation. If this effect is to be observed experimentally, it 
will be necessary to satisfy conditions ( lo)-( 12). It can be 
seen from Fig. 5 that the shape of the anomalous-scattering 
peak is described well by expression (6) .  At the same time, 
the theory predicts excessively high values for the intensity 

FIG. 6. Shapeof the scattering function versus the absorption in the mate- 
rial: 1-lrn E / R ~ (  l - & )  = 0; 2-0.1: 3-0.5. Here the parameter value 
,u, = 0.5 has been used. The position of the specularly reflected beam is 
shown by the vert~cal line. 

of the scattered radiation outside the region of total external 
reflection ( 8 >  8,) .  A better agreement with experimental 
data could apparently be achieved by switching to a more 
elaborate model of the surface, e.g., one which incorporates 
the gradual, rather than abrupt, change in the electron den- 
sity at the 

Ill. INTEGRAL INTENSITY OFTHE SCATTERED RADIATION 

Using expressions ( 1 ) and (6) ,  we can write the inte- 
gral intensity of the scattered radiation, I, as follows 

h rna 8. 

T (0,) + J X. (P) 7 d p  1, 0, = arccos (cos 0.-pik) , 
o s ~ n  0, 

0, = arccos (cos 8,+p/k), (13) 

where the function T(8)  is given by (2).  We again consider 
three limiting cases in terms of the values of the parametersp 
and p, , which were introduced in (7) .  

1. The correlation radii are large, and the glancing an- 
gles 8,) of the incident radiation are not too small: p $1 and 
p, $ 1. As was shown above, these conditions mean that the 
width of the scattering function is determined exclusively by 
the angular width of the function X, [ p ( 6 )  1, which is fur- 
thermore considerably smaller than the typical change in the 
function T(8) .  In a first approximation, we can thus set the 
angles 8, and 0, equal to 8,) in integrals ( 13), and we can 
move the upper limits of the integration off to infinity. We 
then find the following well-known expression for the inte- 
gral intensity of the scattered radiation: 

This is the expression which is used in the total-integral- 
scattering  method"^" (see the Introduction). 

2. The correlation radii are large, and the glancing an- 
gles of the incident radiation are extremely small: pC $1 but 
p 4 1. In this case we set the angle O,, equal to zero in the 
integrals ( 13 ). To within terms on the order of 8 :, the inte- 
gral scattering intensity is then given by 

At extremely small glancing angles of the incident radiation, 
the integral scattering is thus proportional to the first power 
of O,,, rather than Oi ,  as in the usual case, (14). This result 
means, in particular, that if we determine the surface-rough- 
ness height from experimental data with the help of ( 14) 
then at extremely small glancing angles 8,, the value of< will 
depend on 8,) and will increase as this angle decreases. This 
apparent increase in the surface-roughness height at small 
values of 8,,, which is evidence that expression (14) is not 
valid in this region of glancing angles, was observed in Refs. 
11 and 12 and also, apparently, in Refs. 25 and 26. The effect 
was not explained in those papers, however. 

Yet another distinctive feature of the integral scattering 
at small values of 8,, is that the scattering intensity depends 
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on not only the roughness height (but  also the correlation 
radius of the roughness, a. We will content ourselves with a 
qualitative discussion of this point. (Exact expressions for 
an exponential correlation function were derived in Ref. 2 1. ) 
Let us assume that the functions X (  p )  and X, ( p )  fall off 
monotonically as their arguments p and p increase. We de- 
note by a the typical range of the functionx( p )  (the correla- 
tion radius), and we assume that the typical range ofx,. ( p )  
is a- ' .  Using (6 ) ,  we find the qualitative results 

G2 .I d n . ( p )  [:(2-f )ITh- J d p ( % ) ' h X , ( p ) -  - 
o o (ka) '" ' 

Using ( 16), we find from ( 15) an expression for the inte- 
grated scattering intensity as a function of the correlation 
radius: 

3. The correlation radii are small: p, 9 1 and p 9 1. In 
this case we can ignore the second integral in ( 13 ), and in the 
first we can set the function T ( 8 )  equal to its asymptotic 
value (unity), since theangular width of the  function^, ( p) 
is considerably greater than that interval of the angle 8 
(from 0 to 8, ) in which the change in the function T ( 8 )  is 
significant. We then have 

Using ( 16), we can also find an expression for the integral 
scattering intensity as a function of the correlation radius: 

I sina - = k2g2 (ka) % - 
I0 T ( 0 , )  R(eo).  

Let us examine this expression at glancing angles 8,, 
smaller than and larger than the critical angle 8,. In the 
former case (8, < 8, ) the integral scattering is proportional 
to the first power of the glancing angle O,,, as in ( 15) and 
(17): 

The dependence on the correlation radius in (20) is the op- 
posite of that in ( 17). If the angle 8,) instead lies outside the 
region of total external reflection (8,,$6, ), we have 

Expressions ( 17) and ( 19)-(2 1 ) should be regarded as 
qualitative functional dependences. Exact relations can be 
found from ( 15) and ( 18) if the explicit expression for the 
correlation function is known. In particular, the case of an 
exponential correlation function was studied in Ref. 21. 

CONCLUSION 

1. The scattering function for the scattering of x radi- 
ation by a surface which has only a slight roughness general- 
ly has a complicated shape, which depends on both the cor- 
relation function of the surface and the optical constants of 
the material. I t  can be described on the basis of the An- 
dronov-Leontovich theory. 

2. The shape of the scattering function can conveniently 
be classified on the basis of the magnitude of the parameters 
p = n-aO;/A and p, = n-a8 :/A, where a is the correlation 
radius, A and 8, are the wavelength and glancing angle of the 
incident radiation, and 8, is the critical angle for total exter- 
nal reflection. The most interesting cases are the following: 

a )  The casep > 1, pc $ 1  corresponds to the usual situa- 
tion in visible-range optics. 

b) The casep, <p < 1 is characterized by an asymmetry 
of the scattering function and by a shift of the maximum of 
the scattered radiation away from the direction of specular 
reflection and away from the surface. 

C)  The case p, < p  5 1 corresponds to the Yoneda ef- 
fect. 

d )  The case p < p ,  4 1 is characterized by a weak de- 
pendence of the shape of the scattering function on the 
glancing angle 8,) and by a coincidence of the maximum of 
the scattered radiation with the critical angle 8,. 

3. Figure 2 shows typical shapes of the scattering func- 
tion. Despite the fairly general assumptions regarding the 
properties of the interface, however, these typical shapes do 
not exhaust the entire list of possible cases which can be 
observed experimentally. In  particular, there is a discrepan- 
cy between the measured and calculated scattering intensi- 
ties in the wing of the function in Fig. 5, and Fig. 2 fails to 
explain the results of Ref. 27, where the scattering function 
was observed to have a multipeak structure at scattering an- 
gles smaller than the specular angle." I t  would apparently be 
possible to find a quantitative description of these effects 
either by going beyond the Andronov-Leontovich model 
(e.g., by using a smooth interfa~e"-'~) or by considering a 
more complicated correlation function. 

4. The dependence of the integral scattering intensity on 
the glancing angle of the incident beam changes in nature as 
we move from large glancing angles ( p  $ 1)  to small ones 
(p < 1 ). This change explains the experimental results of 
Refs. 11-1 3 and also makes it possible to establish a range of 
applicability for the total-integral-scattering method in mea- 
suring roughness height."' 
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