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The dynamical properties of layer quasi-two-dimensional antiferromagnets are considered in the 
framework of a macroscopic approach. The spectra of the hydrodynamic modes are studied in an 
isotropic antiferromagnet and in the case of anisotropy of the "easy plane" type. The corrections 
to the sound attenuation that arise from interaction with the spin waves are found. 

INTRODUCTION 

Layer magnetic systems, in which the exchange integral 
within a layer is several orders of magnitude greater than the 
interlayer exchange integral, can be accurately approximat- 
ed as two-dimensional. I t  is known that in such systems there 
are weakly damped spin waves, the interaction of which has 
a substantial effect on the formation of the spectrum, the 
dynamical susceptibility, etc. In the hydrodynamic region 
the spin waves correspond to fluctuations of the classical 
order parameter, which describes, in particular, the dynam- 
ics on large scales. Two-dimensional ferromagnetic systems 
were investigated earlier in Refs. 1 and 2. An important ef- 
fect in this case is the presence of fluctuational spin-wave 
damping, proportional to the square of the wave vector k; in 
the hydrodynamic region this damping exceeds the bare 
damping ( a k4) due to the standard kinetic terms in the 
equations of the macroscopic dynamics. The fluctuations 
turn out to be important precisely because of the two-dimen- 
sionality of the space. 

Two-dimensional systems with antiferromagnetic or- 
der within a layer were considered in Ref. 3 with the use of a 
macroscopic approach and in Ref. 4 with the application of a 
microscopic technique. The results of these papers differ 
from each other, because the analysis in Ref. 3 is of an anti- 
ferromagnetic model in which the macroscopic order pa- 
rameter is an element of the rotation group in spin space, 
while, on the other hand, the microscopic description given 
in Ref. 4 corresponds, in the classical limit, to a system 
whose order parameter is a unit vector. 

In the present paper we shall consider an antiferromag- 
net with a vector order parameter, using a macroscopic ap- 
proach analogous to that which was applied in Ref. 3. The 
results obtained contain substantial differences from the 
properties of the model considered in Ref. 3. One of our 
results-namely, the correction to the spin-wave velocity, 
coincides with the expression obtained in Ref. 4 in the frame- 
work of a microscopic theory. The results are presented of a 
calculation of the fluctuation corrections to the spin-wave 
spectrum in an isotropic antiferromagnet and in the case of 
anisotropy of the "easy plane" type. We also study the spec- 
trum of the diffusion mode and the corrections to the sound- 
wave spectrum that arise from the interaction with the spin 
waves. 

2. HYDRODYNAMIC ACTION FOR THE ANTIFERROMAGNET 

The starting point for the construction of the action 
describing the hydrodynamic fluctuations is the Hamilto- 
nian in the exchange approximation, written in terms of the 

spin density s and the order parameter n, which is a unit 
vector: 

The paramagnetic susceptibility x is introduced for correct 
normalization, and the coefficient b determines the velocity 
of the spin waves. The expression ( 1 ) assumes isotropy in 
the plane of the layer. This assumption simplifies the analy- 
sis considerably but does not affect the final rcsults. A more 
general case would involve the presence in ( 1 ) of the combi- 
nation (sn)'/2xIl + [s2 - ( ~ n ) ~ ] / 2 ~ ~  instead of the first 
term. However, we shall see below that the addition of terms 
proportional to (n .s2)  to the Hamiltonian does not change 
the nondissipative parts of the equations of motion, and 
leads only to an unimportant change of the kinetic terms. We 
shall therefore use the expression ( 1 ) in what follows, mak- 
ing no distinction between X ,  and X, . 

In accordance with the fact that the vector n transforms 
according to the adjoint representation of the rotation group 
in spin space, the generators of which are the components of 
the spin density s, the Poisson brackets for these variables 
have the standard form5: 

On the basis of (2) ,  we obtain from ( 1 ) the equations of 
motion 

dn/dt=~- '  [sn] +2q [V2n+n (Vn)2] +fn ,  (3a)  

We have included in the right-hand sides of Eqs. ( 3 )  the 
standard kinetic terms and random forces f, and f,. The 
form of the kinetic terms is determined by the fact that s is a 
conserved quantity in the exchange approximation, while 
the fluctuations of n correspond to two Goldstone modes. 
We denote the corresponding kinetic coefficients by ?;I and 
77'. 

In  the linear approximation Eqs. ( 3 )  describe the spin 
waves associated with oscillations of the direction of the unit 
vector n, and the diffusion mode of the fluctuations of the 
longitudinal (with respect to n )  component of the vector s 
(we denote this component by a = n . s x l ) .  The diffusive 
character of this mode follows in a natural way from the fact 
that the variable a is an integral of the nondissipative equa- 
tions of motion, the conservation of this integral being vio- 
lated by the kinetic terms. 
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For the following it is convenient to eliminate s from 
Eq. (3a), as a result of which we obtain an equation for n  of 
the form 

If we simply set u=0, the nondissipative part of Eq. (4) can 
be obtained from the well known Lagrangian given in Ref. 6: 

L = 1 / 2 ~ [ ( d n / d t ) e - b  ( V n ) ' ]  . 
At the same time, allowance for the fluctuations of (T can 
turn out to be important (see Sec. 4), and, therefore, in the 
following we shall study the effect of the diffusion mode cor- 
responding to a. 

We can apply to Eq. (4) the general procedure de- 
scribed in detail in Ref. 7 for the construction of the hydro- 
dynamic action. The correlators of the random forces have 
the form 

whereg = T / b x  Averaging over the random forces, we ob- 
tain for the hydrodynamic Lagrangian the following expres- 
sion: 

Here p is an auxiliary vector field and F denotes the left-hand 
side of Eq. (4). The fermion regulators ensuring normaliza- 
tion of the distribution function 

are omitted, since taking them into account corresponds 
only to choosing a definite regularization of the frequency 
integrals in the expressions for the fluctuation corrections.' 

We now choose a definite parametrization of the vec- 
tors n  and p. With the aim of preserving the rotational invar- 
iance, we shall use the representation given in Ref. 8: 

The vector no is in the direction of the chosen axis 2, and the 
two-component vector y is orthogonal to no, The operators 
So are the generators of the algebra so(3) in the adjoint rep- 
resentation: (So ) ,, = - i~,,, . The spin-rotation matrix R,  
which depends on the two parameters x. , describes ele- 
ments of a homogeneous space: S2 = S0(3)/S0(2). The 
Lagrangian (6) takes an invariant form in terms of the cur- 
rents 

which are elements of the algebra so(3). In the formula (8), 
V, E (a /at; V,, ); here and below the Greek indices run over 
the spatial valuesp = 1, 2. lntroducing the notation 

we rewrite (6) in the form 

The derivatives 9, in (lo), by definition, commute with 
multiplication by A 5 We draw attention to the fact that, 
unlike the hydrodynamic Lagrangian of Ref. 3, (10) con- 
tains covariant derivatives of the currents (8), this being 
connected with the fact that the dynamics is analyzed on a 
homogeneous space and not on the rotation group. 

The general form of fluctuational corrections to (10) 
for small deviations from the equilibrium ground state is as 
follows: 

The part of ( 10) quadratic in the deviations from equilibri- 
um gives, when ( 1 1 ) is taken into account, the nonzero pair 
correlators 

( x + y - > = - ( x - y + > = i G ( o ,  k )  =- [ ( o f  i A ) z - ~ ' ] - ' ,  
(12) 

( o n > = i G , ,  ( o ,  k )  =- (o+iq'k2-Ed)- ' ,  (14) 

where 

A= ( q + ' I 2 q 1 )  k 2 - ' / 2 0 - 1  Im Z-+, ~ ~ = b k ~ + 2 q q ' k ~ - A ~ .  

The poles of the G-functions ( 12) and ( 14) determine the 
spectra of the spin waves and the diffusion mode with 
allowance for both the bare dissipative terms and the fluctu- 
ation corrections: 

3. THE SPIN-WAVE SPECTRUM 

To obtain corrections to the spectrum ( 16) we integrate 
the distribution function 

over the fast degrees of freedom, which we separate out in 
the following invariant manner8: 

Here y and h (x * ) describe the fast degrees of freedom with 
wave vectors q  in the interval k < q  < A (A is the upper 
boundary of the hydrodynamic region and k is the character- 
istic wave vector of the slow variables R and ?). Strictly 
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speaking, the region of large momenta q - A )  k gives rise to 
corrections only to the real part of the spectrum, but, as one 
can convince oneself, the expression that arises for the fluc- 
tuation contribution to the damping as a result of application 
of the procedure ( 18 ) is valid for arbitrary relative magni- 
tudes of the external momentum k and the loop momenta 
over which the integration is performed. 

The fields u and a appear quadratically in ( lo),  and, 
therefore, in the analysis of the corrections to the spin-wave 
part of 2 we can perform explicit functional integration of 
Wover these fields. As a result, a large number of additional 
nonlocal interaction vertices of the fields y  + and x + arise. 
These effective interactions are of the same degree in the 
gradients V, as the part of 2 that does not contain u or a, 
but their expansion in x . and y  . starts from quartic terms. 
In each such vertex there is a kinetic coefficient 77 or q', and 
therefore they can be regarded as new dissipative terms in 
the dynamics of the variablesx + and y  + . When all the dissi- 
pative terms (both the bare terms and those which arise after 
elimination of  and a) are taken into account the spin-wave 
Lagrangian takes an extremely cumbersome form. How- 
ever, it turns out that the first fluctuation correction to this 
Lagrangian, which arises when only the reactive vertices are 
taken into account, makes a nonanalytic contribution, linear 
in k, to the damping. In the calculation of this contribution 
in leading order in the bare values of 7 and 17' the dissipative 
terms can be omitted, and in ( 10) it is sufficient to confine 
oneself to the first two terms. Moreover, the effect of the 
dissipative terms on the corrections to the spin-wave velocity 
also turns out to be unimportant. In the one-loop approxi- 
mation the pairings, corresponding to Figs. 1 and 2, of the 
fast degrees of freedom contribute to the spin-wave part of 
3 a correction of the form 

It follows from ( 19) that neither b nor 77 acquires one-loop 
corrections. This indicates an important difference between 
the properties of the system under consideration and those of 
the model used in Ref. 3 (we note that in Ref. 3 77' was set 
equal to zero from the outset). It follows from ( 19) that in 
the one-loop approximation the fields y  + - acquire a multipli- 
cative Z-factor 

Because of the absence of a one-loop correction to the 
term 4 i g 7 7 9 ~ +  + 9 ~ -  in ( lo) ,  this means that the 
charge g  is also renormalized: 

As we should have expected, the renormalization of g  fol- 
lows the usual law for the O(3)  a-model, since in the static 
limit g, is the effective temperature of the fluctuations. 

-0- 
FIG. 2. 

The two-loop contributions to 2, corresponding to the 
diagram in Fig. 3, also do not lead to the appearance of cor- 
rections to the spin-wave velocity. This is connected with the 
fact that the subtraction of the quadratic divergences from 
the corresponding expressions leaves only those pairings of 
the fast degrees of freedom that do not contain derivatives 
V, on internal lines, and, consequently, the corrections to 
the first two terms in ( 10) are equal to each other. The same 
argument is valid for corrections of the normal-ordering 
type (see Figs. 1 and 3) of any order, this being connected 
with the obvious "relativistic covariance" of the reactive 
terms in ( 10). The first important contributions to 2 arise 
from the diagrams of Figs. 4  and 5. Here a solid line denotes 
the correlator ( x  + x - ) ,  a mixed (solid and dashed) line 
denotes (x + y - ) ,  a triangle denotes the background current 
A :, and a dashed external line denotesPf . In the calcula- 
tion of the correction corresponding to the diagram of Fig. 4  
the resulting expression must be expanded in the frequency 
and wave vector of the slow variables, to the linear terms that 
give rise to logarithmic integrals. Ultimately, we obtain 

It follows from (20) that b acquires a correction 

The presence of the contribution (21 ) implies that, even in 
the two-loop approximation, the dynamical Lagrangian 
( 10) is not renormalizable, since there is no cancellation of 
the terms quadratic in ln(A/k) (or, equivalently, of terms 
a E -  in the calculation in a space ofd = 2 - E dimensions). 
We emphasize that, despite the nonrenormalizability of the 
dynamical theory as a whole, the behavior of the static 
charge g under renormalization has the usual character for 
statics9 It also follows from this that the relation g  = T / b x  
is valid only for the bare values ofg and b, which subsequent- 
ly acquire independent fluctuational corrections. 

To determine the fluctuational imaginary part of the 
spectrum we shall find the correction to 2 of the form 
iy- n - + y  + , which is given by the diagram of Fig. 5. Repre- 
senting the expression found above for the correction S,, o4a 
(before the expansion in the gradients of the slow variables) 
in the case of small deviations from equilibrium in the form 
i y - 2 -  +x+ + iy+Z+ - x - ,  we can convince ourselves that 
8, . (w,k) and ll- + (w ,  k)  are connected by the relation 

-8- 
FIG. 3.  

0 
FIG. 1. 
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a (r, t )  = c{ -In r+Re [; In 
i h I t l + [ ? + ( i ~ l t ( ) ~ ] ' ~  

2n r  11 

FIG. 4 

Im Z,,(o, k) = , r ( o / 2 g b ) I T - + ( * a ,  k ) ,  (22) 

which follows from the fluctuation-dissipation theorem. 
In the calculation of II - + it turns out that, when the 

imaginary part of the spectrum is disregarded in the 9- 
functions, the expression corresponding to the diagram of 
Fig. 5 contains kinematic singularities at the value 0 or .rr of 
the angle between the loop momenta q, and q,. In addition, 
in leading order in the bare dissipative terms, momenta q,,, 
- A  do not make a contribution to II + , so that the expan- 
sion in the frequency w and wave vector k (see Fig. 5 for the 
notation) gives only corrections having the structure of the 
bare self-energy part: 6n - + ~ g ~ ~ ( b k  ',w2), which vanishes 
for 7-0. The fluctuation contribution, which does not de- 
pend on 7 or v', comes from the region q,,, - k. Assuming 
this to be the main contribution, we can obtain a self-consis- 
tent equation for II - + (the region of applicability of this 
approximation is discussed in Sec. 5).  

Analysis of the expression corresponding to the dia- 
gram of Fig. 5 shows that the dependence of the function 
II + (a, k )  on w and k is smooth in the neighborhood of the 
unperturbed mass shell w2 = bk2, i.e., II - + changes only by 
an amount on the order of itself when we move away from 
the mass shell by an amount w2 - bk2- bk2. In this case the 
corrections to the spectrum are determined in the standard 
way by the values of rI - + on the mass shell. Confining 
ourselves to the dependence of rI - + on k and assuming that 
w2 = bk2, from the condition of homogeneity in k we obtain 
that the solution of the self-consistency equation is II - + 

= 4gbyk, with a dimensionless kinetic coefficient y. We 
note that the appearance of fluctuational contributions of 
the same degree in k for both parts of the spectrum is entirely 
analogous to the situation familiar in the case of a ferromag- 

It should also be noted that a contribution to II - + 

that is nonanalytic in k cannot be obtained as a result of the 
usual renormalization-group expansion (correspondingly, y 
does not contain 1nA). 

The self-consistent calculation of y is performed more 
conveniently 
9 (r, t )  with 

where II  = ( b  - $)'I2 - iy. The presence in of the con- 
stant term expresses the dependence on the method of in- 
frared regularization. Nevertheless, by shifting derivatives 
one can bring the expression for rI - + to a form containing 
only well defined first derivatives of 9-functions: 

II-+ ( a ,  k )  =4 dt j d2r exp ( ikr )  

a b  a 9  
[ - a  - sin o t + i k . ~ $  coos -b (V, , .B)'] .  

at 

The kinematic singularity in the coordinate representation 
arises as a logarithmic divergence on the "light cone", i.e., at 
r = b1/2t. 

In the general case the solution of the self-consistency 
equation (24) cannot be obtained in explicit form. We shall 
give its solution in the case when ln(b"2 /y) is a large num- 
ber. Then, separating out the part containing this factor 
against the background of contributions of order unity, we 
obtain 

With the same accuracy we find from this the solution of the 
self-consistency equation: 

Thus, the two-loop contributions lead to a spin-wave spec- 
trum of the form 

with 66 from (21 ) and y from (25). The expression (21 ) for 
66 is valid only for [gln (A/k) '1 4 1; otherwise, the loop ex- 
pansion for the corrections is not applicable. This condition 
is considerably more stringent than the conditiong, -4 1. Be- 
cause of the absence of the usual renormalization-group be- 
havior of the charge 6, allowance for the corrections to it that 
arise in higher orders does not reduce to the replacement of g 
by g, in (21).  In Sec. 5 we shall discuss the physical condi- 
tions under which we can confine ourselves to the first cor- 
rection (21 ) to Sb. 

in the coordinate representation. The function 4. SPECTRUM OF THE DIFFUSION MODE 
II + = 4gbyk has the form 

In the preceding section we considered the interactions 

FIG. 5 .  

due to the spin-wave part of the Lagrangian ( 10). For com- 
pleteness of the description it is necessary also to study ef- 
fects associated with the diffusion mode. Indeed, if, e.g., II, 
were to acquire corrections proportional to ka, with a < 1, 
the induced spin-wave interactions arising after the elimina- 
tion of u and .rr would substantially modify the dynamics in 
the hydrodynamic region. Below we shall convince our- 
selves that this does not occur, and, consequently, the pre- 
ceding treatment is correct. The fields u and .rr appear qua- 
dratically in the dynamical Lagrangian ( lo) ,  and therefore, 
in leading order in g, the corrections to Z, and II, come 
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from the diagram of Fig. 2, in which the internal lines corre- 
spond to the G- and 9-functions of the spin waves. The 
vertices are given by the part of ( 10) linear in u or  .n. In this 
case the dissipative terms containing 7' lead only to a one- 
loop renormalization of this kinetic coefficient, giving a con- 
tribution to Z, of the form 

By virtue of the logarithmic character of the renormaliza- 
tion such corrections are small in proportion to the small- 
ness of the bare value 7'. This fact corresponds to the one- 
loop renormalizability of the Lagrangian (10)-a 
circumstance expressed in the absence of one-loop counter- 
terms with an operator structure different from ( 10). There- 
fore, we shall consider the vertices not containing 7' that 
could in principle lead to a contribution to nd with a lower 
power in k than the bare contribution - k (but also not 
containing 1nA by virtue of the one-loop renormalizability 
discussed above). 

The finite correction parts arising from the diagrams of 
the type depicted in Fig. 2 are connected by the relation 

Direct calculation of nd in leading order in the bare value of 
gives 

Thus, the fluctuation contribution made to the spectrum of 
the diffusion mode by the interaction with the spin waves has 
the same dependence on k as the bare contribution. Conse- 
quently, the correlator (uu) preserves the diffusion proper- 
ties: I t  has frequency width - k2 and its integral over the 
frequency is -const. A diffusion peak in neutron scattering 
could be observed, in principle, for neutron beams propagat- 
ing in the plane of the magnetic layers. 

We also draw attention to the difference between this 
situation and the behavior, considered in Ref. 8, of the bare 
diffusion mode of the fluctuations of the modulus of the spin 
in a three-dimensional ferromagnet; the dispersion law of 
the latter mode changes substantially when the interaction 
of this mode with the spin waves is taken into account. 

5. ALLOWANCE FOR ANISOTROPY 

We now consider an antiferromagnet with anisotropy 
of the "easy plane" type. In this case we must add to the 
Hamiltonian ( 1 ) a term describing the anisotropy 

The vector v in (28) indicates the direction of the anisotropy 
axis. We shall assume that the anisotropy is sufficiently weak 
for the condition m < A  to be fulfilled. In this case there is a 
broad region of wave-vector values in which leading fluctu- 
ation corrections containing 1nA arise. If, however, rn is 
comparable to A, the fluctuation contributions are certainly 
smaller. 

In the presence of weak anisotropy m determines only 
the characteristic scale at  which the renormalizations stop, 
and therefore the correction to the spin-wave velocity is de- 
termined as before by the formula ( 2  1 ), in which, however, 
it is necessary to replace the lower limit of the logarithm by 
m in the case k < rn. The calculation of the corrections to the 

imaginary part of the spectrum that do  not contain 1nA re- 
quires a more detailed analysis. I t  is carried out most simply 
using a parametrization of the order parameter by means of 
the spherical angles 0 and p in a fixed coordinate system, 
assuming that in the equilibrium state the vector n lies in the 
direction of the x axis while the anisotropy axis coincides 
with the z axis. Then for small fluctuations about the uni- 
form equilibrium state the variables p and $ = cos 0 can be 
regarded as unbounded fields, with zero average values. To 
avoid confusion we emphasize that we are concerned with a 
locally ordered state arising in a region with size of the order 
of m '. In this state the local moments combine into a single 
"block" spin, and the field p can be assigned a definite value. 
This variable describes Goldstone excitations with disper- 
sion law w,, = b1"2k, while tC, corresponds to a gap mode with 
spectrum w ,  = b '12(k + rn2)'". This representation is 
convenient because the anisotropy is taken into account ex- 
actly and, in the diagram technique, there are no vertices 
associated with the anisotropy. As a consequence of this, 
each individual diagram making a contribution to 2 + or 
I I  + is infrared-finite. 

Analysis of the dissipative corrections shows that the 
imaginary part of the spectrum of the Goldstone mode can 
be represented in the form Sw, = - iky, ( k  /m) .  The func- 
tion y, ( k  /m)  takes values of orderg21n( l/g2) in the region 
k 2 m. For k < m the function y, ( k  /m ) becomes linear in k, 
corresponding to quadratic (in k )  damping of the gapless 
mode in the given region. The imaginary part S w ,  
= - im y ,  ( k  /m)  of the gap mode does not vanish as k -0. 

The asymptotic forms of the function y ,  ( k  /m)  are 

The values of the coefficients y,,, are also of order 
g21n( l/g2). 

For the self-consistent calculations, analogous to those 
performed in Sec. 3, we require the correlators 
(pp ) = - gJVand  ($$) = - 9 in the coordinate repre- 
sentation. As in the isotropic case, the corrections to the 
spectrum that do not contain 1nA diverge on the light cone 
when the damping is neglected. A nonzero mass m does not 
remove the kinematic singularity. The reason for this is that 
the corresponding corrections, which are the result of differ- 
entiations of the functions g,,,. (r,  t ) ,  depend on the "inter- 
val" (? - bt2)'I2 (see formulas (23) and ( 3 0 ) ) .  This de- 
pendence leads to singular (in the limit y , ,  -0)  integrands 
in the integration over t when t-rb 'I2, while the important 
region of integration over r is the region r-m - '. 

It is not possible, of course, to calculate the coordinate 
representations for the functions L2 and 9; in the case of 
arbitrary functions y, and y,. However, if In(l/g2) can be 
regarded as a large number, then (since the ranges of vari- 
ation of the functions y, and y ,  are limited),it is sufficient, 
to the given accuracy, to confine ourselves to an approxi- 
mate form of the spectrum: 

where 7 is a quantity of the same order as the "average" 
values of the functions y , (k /m)  (for k > m )  and 
rn ( k  + m2) - ' I 2 y ,  ( k  /m) .  That this procedure is possible 
is due to the fact that, in leading order, the regularized (with 
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allowance for the damping) expressions for the corrections 
contain, as in the isotropic case, a factor l n ( b " 2 0 ) ,  which 
we assume to be large (otherwise, the answer is known only 
to within a coefficient of order unity). In the calculation in 
the coordinate representation for k )  m, the important re- 
gion of integration is the region r-  k ', and, therefore, the 
result does not contain any substantial dependence on m. In 
the given case, the above approximate form of the spectrum 
is certainly justified. 

Fork  5 m the main contribution comes from the region 
r-m - ', in which the functions y, and y, take values that 
do not differ in order of magnitude from the isotropic values. 
Therefore, in the calculation of the corrections the behavior 
of the functions g,., ( r ,  t )  for r )  m - ' is unimportant, and 
the approximate form of the spectrum is also admissible. For 
SV ( r ,  t )  we obtain an expression coinciding with (23),  
while 9 ,  (r, t )  is given by the formula 

Y 

where M4  = (9 - bt 2 ) 2  + 4(ybt *)', and K o ( x )  is a modi- 
fied Bessel function of the second kind. 

Calculating diagrams of the type depicted in Fig. 5, we 
find that the correction to the imaginary part of the Gold- 
stone mode is determined by the equation 

I 

+ J ,  ( ~ ) c o s ~ ]  m du, 

where J ,  (x) are Bessel functions. For k)m the function y, 
takes a value coinciding with (25). In the limit k g m  we 
obtain from ( 3 1 ) 

The damping of the gapless mode becomes analytic in k in 
the long-wavelength region. Consequently, for configura- 
tions of the field n with characteristic length scale r )m - '  
one can obtain an effective equation of motion in which local 
dissipative terms of fluctuational origin appear. These terms 
are the expansion of the complete (nonlocal) dissipative 
term in the parameter k2 /m2. 

An analogous calculation of the damping of the gap 
mode gives 

In the leading approximation the constants y ,  and y2 from 
(29) coincide (the discarded terms are of order g2).  In the 
isotropic limit y, coincides with (25), while in the limit 
k g m the expression (33) gives the damping of the uniform 
oscillation of n corresponding to the gap mode with 
@ = b I / '  m. 

It should be noted that the statement made above about 
the damping of the gap mode does not apply to uniform 

precession of s, which, in the approximation of the Hamilto- 
nian ( 1 ), (28 ) , is nondissipative, since in this approximation 
the component S.V of the density of the moment is con- 
served. 

When (32) and (33) are taken into account the effec- 
tive equation of motion for n in the region of scales large in 
comparison with m - ' takes the form 

where y = ( 1/8?r)g21n( l/g2). The equation (34) can be 
used to study the dynamics of the collective excitations, e.g., 
vortices (vortex pairs). We note that in the present case of an 
easy-plane antiferromagnet with weak anisotropy at a tem- 
perature below the Kosterlitz-Thouless transition tempera- 
ture T, (Ref. lo) ,  to which corresponds gc = 2?r/ln ( A/m ), 

the expansion of the corrections to b is performed, in essence, 
in the parameter ( T/Tc )2. As Tc is approached it is neces- 
sary to take higher corrections into account, and the expres- 
sion (21) (with k replaced by m )  becomes inapplicable. 

We note also that, as can be shown, the diffusion mode 
in the region k < m becomes uniform relaxation with disper- 
sion law w,, = - i7'm2. In the long-wavelength region it is 
not important to take this mode into account. 

In calculating the fluctuational damping we assumed 
above that the fluctuational contributions are the main con- 
tributions, and did not take into account the bare dissipative 
term quadratic in k. For the bare value of 7 we can use the 
estimate 7 - b1I2A - I .  The results of the preceding calcula- 
tions should apply to the region k < y/7- ~ A / b l ' ~ ,  in which 
the fluctuational terms are the leading terms. At larger val- 
ues of k the corrections are small in comparison with the 
bare ( nonhydrodynamic ) damping. 

6. FLUCTUATIONAL CORRECTIONS TO THE SOUND-WAVE 
SPECTRUM 

In this section we shall consider the interaction between 
the spin waves and sound waves. The anisotropy of the elas- 
tic constants of materials that are layer magnets is, as a rule, 
substantially smaller than the anisotropy of the exchange 
integrals, and therefore the lattice vibrations take the form of 
ordinary three-dimensional sound. The fluctuating field de- 
scribing the sound vibrations is the momentum density j, 
related to the displacement vector u by j = pdu/dt. By virtue 
of the continuity equation 

the density variation Sp can be expressed in terms of j. 
The nondissipative part of the hydrodynamic action de- 

scribing the fluctuations ofj, contains the auxiliary fields 6, 
and has the form 

~ 8 = $ ( a i k l a t + v l ~ h , ) ,  (35 
where T,, is the stress tensor. Its elastic part can be written in 
the form 

where E is the internal-energy density, and the part describ- 

1624 Sov. Phys. JETP 67 (a), August 1988 D. V. Khveshchenko 1624 



ing the interaction with the spin degrees of freedom is 

The spin Hamiltonian H i s  given by Eq. ( 1 ) . Here and 
below, the spatial indices take two values in the plane of the 
magnetic layers, and the expression (37) is a two-dimen- 
sional density. 

Additional interaction terms arise from taking terms 
- p - 'V, ( j, n) and - p- 'V, ( j, s )  into account in Eqs. 
(3a) and (3b), respectively, and also from taking account of 
the dependence of the coefficients b and x on the variablep. 
We do not take into account the effect of the dissipative 
terms from Eq. (4).  The diffusion part of the spin action is 
also unimportant. 

Introducing the constants 

we write the total interaction Lagrangian in the form 

The expansion (38) gives, in lowest order, the three-point 
interaction vertices, and therefore the fluctuational correc- 
tions to (35), with general form 

come from diagrams of the type depicted in Fig. 2. The inter- 
nal lines correspond to the spin correlators ( 12) and ( 13 ), 
and the external points are <, and j,. For the self-energy 
parts introduced in (39) the relation 

is fulfilled. Calculation of II,,, which gives the damping of 
the sound waves on account of interaction with a magnetic 
layer, leads to the expression 

where A(q) includes both the bare and the fluctuational part 
of the spin-wave damping. To take account of the effect of all 
the layers it is necessary to sum over them. As in Ref. 3, we 

replace this summation by integration over the coordinate z 
in the direction orthogonal to the layers, with allowance for 
the interlayer spacing a. The sound-wave spectrum is deter- 
mined from the equation 

where c is the velocity of sound in the isotropic crystal (for 
simplicity we make no distinction between the longitudinal 
mode and the transverse modes). For m, n = 1,2 the opera- 
tor II ,, is given by formula (41 ), and in the remaining cases 
this term vanishes. An analogous contribution to the damp- 
ing of sound has been obtained in the framework of the mod- 
el of Ref. 3. The corrections that follow from (41) and (42) 
give sound damping a k2, in the same way as do the usual 
terms due to viscosity and thermal conduction for dielec- 
trics." At the same time, this damping is anisotropic (it 
depends only on the components of k in the plane of the 
magnetic layers), and, in addition, it can appear with a large 
coefficient. To explain the latter circumstance we consider 
the integral sd2q/A (q).  When only the bare damping of the 
spin waves is taken into account this expression contains 
77 - 'ln( A/k), in analogy with the results of Ref. 3. However, 
the part of A (q)  linear in q, which has a fluctuational origin, 
makes the integral convergent at small q. 

For high-frequency sound with k > y / ~  the dependence 
77 - ' l n ( ~ / k )  is preserved, but for small k < y/v the resulting 
logarithmic factor 17 - 'ln(b"2 /y) does not contain k and the 
correction to the sound-damping coefficient remains regular 
as k-0. 
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