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Coherent inelastic resonance tunneling of electrons through a structure with a quantum well is 
examined taking into account the essentially nonadiabatic processes of oscillator interaction. An 
expression is derived for the multiquantum tunneling amplitude in a resonance approximation. 
An inelastic resonant tunneling molecular spectroscopy theory is developed for application that 
describes the I-V characteristics of the resonance structure in the presence of molecular 
impurities with a preferred mode of frequency w. Cases are examined where the electron/ 
vibration interaction strength is fairly high and multiquantum processes become important. The 
generation of inelastic tunneling channels with increasing applied voltage, as in regular inelastic 
tunneling molecular spectroscopy, produces an irregular increase in the differential conductivity. 
These jumps alternate with irregular decays associated with the saturation of inelastic resonance 
channels. The derived amplitude describes resonant tunneling of electrons in an oscillating 
electric field in the limit of large quantum numbers. The magnitude of the multiquantum 
photovoltaic effect for the case where the structure is irradiated by infrared radiation is found as 
an application of this result. The photovoltaic current is proportional to the radiation intensity for 
a weak oscillating field (in one-quantum excitation), while it is proportional to the root of the 
intensity for a strong field (in the multiquantum limit). 

The significant number of recent studies devoted to the 
physics of resonant tunneling of electrons can be attributed 
to both expanding interest in investigating the effect of reso- 
nance phenomena on the tunnel conductivity of disordered 
systems'-5 and the prospects for using structures with reso- 
nant tunnel conductivity (S-D-S-D-S, M-D-M-D-M, 
etc.) in mic roe lec t r~n ics~~ '~ '  and quantum electronics.'' 
Modern technology makes it possible to fabricate structures 
containing barriers and quantum wells with a predetermined 
type of potential.' The fabrication of ultrathin and thick bar- 
riers" makes it possible to reduce the influence of spatial 
inhomogeneity on the conductivity of such structures and 
makes it possible to investigate nonadiabatic processes in 
electron tunneling. 

If the electron lifetime in the coupled state is long 
enough, the time-independent formulation of the problem is 
no longer valid and it is necessary to take into account elec- 
tron interaction with local oscillations, phonons and elec- 
trons.'-' In order to establish the conductivity mechanism it 
is necessary above all to compare the characteristic coher- 
ence jump time r, of the electrons to their lifetime in the 
well, r. For r,  > r the series of internal reflections in the well 
produces constructive interference and the resonant trans- 
parency for barriers with the same permeability is of order 
unity. In the opposite case, r, <T,  inelastic interaction with 
the electron can be assumed to be random and resonant 
smearing occurs, as described in studies Ref. 4, 13. 

A theory of resonant tunneling through a nonstationary 
S-potential has been formulated in Ref. 14, 15 in order to 
carry out a qualitative investigation of the influence of an 
oscillatory field as well as vibrations of the medium ignoring 
noncoherent processes. The case of tunneling through a dou- 
ble-humped quasiclassical potential vibrating at a whole is 
investigated in Ref. 13. The numerical analysis algorithm for 
calculating resonant tunneling in an oscillatory field and a 
theory of exchange effects are proposed in Ref. 16. A nu- 

merical investigation of resonant tunneling in an oscillatory 
field in the one-quantum approximation is carried out in 
Ref. 1 1. 

Reference 3 has formulated a theory of inelastic multi- 
quantum resonant tunneling of electrons through a center 
that takes into account its vibrational degrees of freedom. It 
was assumed in the adiabatic approximation that the fre- 
quency of the vibrations of the center w is much less than the 
frequency of electron transitions in the well. Electron inter- 
action with the vibrations in this problem is localized in the 
immediate vicinity of the center. 

The purpose of the present study is to investigate coher- 
ent nondispersive inelastic resonant tunneling through 
structures with a quantum well, taking into account the non- 
adiabatic processes of interaction with vibrations of the me- 
dium both in the well and in the subbarrier region. The quan- 
tity wT (w<O. 1 eV, w is the frequency of the oscillations, Tis 
the transit time) in the subbarrier region and in the well is 
generally of order of unity in the experiments of Ref. 6-9. 
The typical coherence jump time is r, - 10-" sec, while the 
lifetime r in the well for the barriers examined in this study is 
of order 10 - I 3  sec, and the coherence condition can be sati- 
sifed. 

References 2, 17 have identified the importance of the 
many-particle stationary and nonstationary effects associat- 
ed with electron-electron interaction that can be attributed 
to distortions in the potential due to oscillations of the 
charge in the well. We will assume that the period 2r/w of 
the oscillations examined below is significantly less than the 
lifetime in the well, which characterizes the charge accu- 
mulation time. 

It should be noted that the cleanest experiments for 
studying resonant tunneling of electrons can be carried out 
by using a scanning electron microscope focused on the sur- 
face of an M-D-M structure. It is possible in this case to 
investigate individual local oscillations. The role of resonant 
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amplification of inelastic processes in this case was identified 
in Ref. 18 (see also Ref. 19). 

Below it is assumed for simplicity that the only signifi- 
cant interaction occurs with a single oscillation of frequency 
w .  The first section of the study presents a formulation of the 
problem and provides an expression for the amplitude of 
inelastic resonant tunneling through a two-barrier structure. 
Section 4 presents a method of calculating the amplitude 
that differs from the technique used to solve similar prob- 
lems based on the Green's function technique (see Ref. 3 and 
its references) that is also more convenient for our purposes. 

The second section examines an application of the theo- 
ry to investigate the I-V characteristics of M-D-M-D-M 
structures with molecular impurities having a preferred 
mode of frequency w. Cases where the electrons interact 
strongly with the oscillations and where multiquantum pro- 
cesses become significant (an exponential subbarrier in- 
crease in interaction intensity, and amplification as the fre- 
quency w approaches the resonant frequency and the 
adiabatic limit in the well) are investigated. The develop- 
ment of inelastic resonant tunneling channels for U = nw, 
n = 1,2, ..., that develop with increasing applied voltage U, 
as in regular tunneling molecular spectro~copy,~' generates 
a discontinuous growth of the differential conductivity. This 
irregular growth in conductivity also exists when the bottom 
of the quasienergy band in the quantum well E g' + nw in- 
tersects the Fermi level EF (Fig. 1,a). This intersection indi- 
cates the opening of the resonant tunneling channel through 
this band. These jumps alternate with discontinuous decays 
corresponding to the saturation of the inelastic resonant cur- 
rent channels. Saturation occurs after the bottom of the qua- 

FIG. 1. Energy diagram ofthe analyzed structure ( a )  and the scheme for 
the continuation of the solution \Vy, from region 5 to region 1 ( b ) .  

sienergy band E F' + nw rises above the level E, - U, and 
no expansion of the resonant tunneling channel through this 
band occurs with further increase in voltage. 

An expression is derived in the third section as a limit- 
ing case of the formulae in Sec. 1 for the amplitude of the 
inelastic resonant tunneling transitions through the two- 
barrier structure in an oscillating electric field. The features 
of the differential conductivity as a function of the applied 
voltage in this case are analogous to those examined in the 
second section. Primary attention is therefore devoted to an 
investigation of the dependence of the current on the alter- 
nating field magnitude. The extent of the multiquantum 
photovoltaic effect is found for the case where the structure 
is irradiated by infrared radiation. For a weak oscillating 
field (in one-quantum excitation conditions) the photovol- 
taic current is proportional to the radiation intensity, while 
for a weak field (in the multiquantum limit) it is proportion- 
al to the square root of the intensity. 

1. FORMULATION OFTHE PROBLEM; AMPLITUDE OF 
INELASTIC RESONANT TUNNELING TRANSITIONS 

We will describe the structure under examination (Fig. 
1,a) in the free-electron approximation, assuming for sim- 
plicity that the effective mass of the electrons is identical in 
all regions. Suppose that the electrons interact significantly 
only with a single vibrational mode of frequency w .  We will 
assume that the structure is a one-dimensional structure and 
the mode interaction depends adiabatically on the transverse 
electron coordinates. The latter assumption is generally an 
idealization for the interaction with localized molecular vi- 
brations examined in Sec. 2 [see Ref. 20 and the commentary 
following formula (2.6) 1 .  This assumption holds for the in- 
teraction with an oscillatory electric field examined in Sec. 3. 
In these conditions the Schrodinger equation describing 
electron interaction with a harmonic oscillation, after sepa- 
ration of the transverse coordinates, takes the form (using a 
system of units in which the electron and oscillator masses as 
well as Planck's constant are equal to unity) 

wherex is the longitudinal coordinate of the electron, u is the 
oscillator coordinate, W(x)u is their interaction potential, 
and the double-humped potential V(x) is shown in Fig. 1,a. 
It is assumed that V(x) (with the exception of the jumps at 
the points xi ) and W(x) are slowly varying quasiclassical 
functions and, moreover, that the oscillator energy and the 
interaction energy with the oscillator are small compared to 
the electron energy." The latter conditions hold for M-D- 
M-D-M type structures."' For S-D-S-D-S structures the 
kinetic electron energy in region 1 is normally of order w ,  
although it can also be made much greater than w (see, for 
example, Ref. 8 ) .  

We will consider the problem of inelastic electron scat- 
tering by a double-humped potential V(x). In the range of 
large x ,  where W(x) is assumed to be constant, W(x) -- W,, 
for x -  + CC, the particular solutions of Eq. ( 1.1 ) take the 
form 
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where H,, ( x )  is the Hermitian polynomial, the number j 
corresponds to the number of the region in Fig. 1 and, consis- 
tent with these assumptions,p2> ( n  + 1/2)w. For the case 
of interaction with local vibrations we have W ,  = W, = 0. 
In analyzing the problem of tunneling in an oscillatory elec- 
tric field we assume W ,  = 0,  while W,, generally, is nonzero. 

~ e t ' t h e  oscillator be in state m before scattering. We will 
assume an incident wave a,',,, normalized to a unit flux at 
- W ,  and we will look for the reflected wave and the 

transmitted wave as 

In order to find the inelastic multiquantum transmis- 
sion amplitude S,,,,, and reflection amplitudes R,,, (ele- 
ments of the S-matrix), it is necessary to continue the wave 
function from region 5 to region 1 and to join with the 
wave a,:,, at - cc . The calculation method is given in Sec. 4. 
Here we will provide only the final results obtained from 
expression (4.14) in the Breit-Wigner approximation. In the 
resonance approximation, i.e., when the energy E is much 
closer to the poles of the S-matrix (quasistationary state) 
f ,  , than the distance between the poles A d , ,  and when the 
width of the quasistationary state satisfies T, 
= - 21m f ,  , < A h q  (specifically when T, holds) it is 

possible to represent the expression for the resonant tunnel- 
ing amplitude as 

where yj;;, 7(,4y1 are the partial decay amplitudes of thequasi- 
level through the right and left barriers, respectively: 

- ( ) 'I' [ [(a) '*B.-]~-'~L,-' (2oB,+B,-) m. ynn - - rC0) 

In Eqs ( 1.5), ( 1.6) L ::, (x )  are Laguerre polynomials. The 
width of the quasistationary state 

rp=r2q+~1iq. (1.7) 

where 

~ r q = r z ( n ) L q ( - a z ) e e ~  (1.8) 

is the left-side decay width of the quasilevel and 

is the right-side decay width of the quasilevel. Here 
r:", rp) are the left and right decay widths of the quasilevel 
in the stationary case for WSO.~* B,+ are linear quantities, 
while a,, fl, and n, are quadratic interaction functionals of 
W(x). Explicit expressions for these are given in the Appen- 
dix. Using familiar expansion formulae for the Laguerre 
polynomials2' it is possible to represent the widths T2,  and 
r,, as a sum of partial widths:L 

Interaction with the vibrations causes splitting of the 
quasilevel in the well into a number of quasilevels separated 
by w. The quantities& andD4 determining the change in the 
width of the quasilevels due to interaction for q = 0 can be 
both positive and negative. For q > 0 the Laguerre polynomi- 
als also cause smearing of the width of the quasilevels 
[L,(  -a,) > l,sincecr, > O ] .  

We introduce the transit time for region j: 

An analysis of the derived expression for the inelastic reso- 
nant tunneling amplitude reveals that if the interaction 
quantities in the well and in the subbarrier region are of the 
same order, for wT2 < 1 and wT, < 1 the contribution from 
interaction in the subbarrier region is relatively small. In this 
case, which is a natural one for applications, it is possible to 
obtain an expression for the S-matrix with a random ratio 
between Tq and w ,  and not only for T, <w (the wave func- 
tions Tt,,, , in (4.5) with s = 1-4 have a linear depen- 
dence). Therefore the expression for the resonant tunneling 
amplitude takes the form 

With adiabatic electron motion in the well (w T ,  < 1 ) this 
expression is in agreement with Eq. (33) of Ref. 3. 

2. INELASTIC TUNNELING RESONANT SPECTROSCOPY 

In this section we will consider the application of the 
above results to an investigation of the I-V characteristics of 
M-D-M-D-M structures with molecular impurities having 
a distinct mode of frequency w. These experiments are ap- 
propriately labeled inelastic tunnel resonant spectroscopy, 
which has a number of features that distinguish it from regu- 
lar inelastic tunnel spectroscopy."Before proceeding to an 
investigation of the I-V characteristics, we will consider the 
case where interaction with the molecular vibrations is local- 
ized in one of the regions indicated in Fig. 1 and we will 
analyze the conditions that facilitate an enhancement of the 
multiquantum transitions. For simplicity the parameters of 
the multiquantum transition amplitude are given explicitly 
below. 

a. Let the interaction be localized in the vicinity of the 
well. In this case the expressions for the parameters of the 

1612 Sov. Phys. JETP 67 (8), August 1988 M. Yu. Sumetskii and M. L. Fel'shtyn 1612 



resonance amplitude are significantly simplified. In formu- 
lae (1.4)-(1.9) we now set 

Ba*-Aa exp ( r o T I ) ,  B4* =Al exp(*coT,), 

where 
4 z 

and when the adiabatic condition is satisifed in the well 
(wT3<1) 

where ( W )  is the quasiclassical average of the interaction in 
the well. 

In the case of adiabatic motion in the subbarrier region 
for w T,, w T, 4 1 we have from (2.1 ) 

I t  is clear from (2.2) that the interaction strength can 
be increased significantly by two possible features of the 
structure. The first is associated with the exponential gain 
attributable to the nonadiabaticity of motion in the subbar- 
rier region which has been investigated p r e v i ~ u s l ~ . " ~ ' ~ ~ ' "  
For single barriers the adiabaticity parameter wT, will in 
reality reach a value of approximately 10 (the limit is related 
to the possibility for an experimental observation of very low 
current2'). However when wT, is large and, consequently, 
the penetrability of the corresponding barrier is extraordi- 
narily low it is necessary for the other barrier to be signifi- 
cantly more penetrable in order to retain constructive inter- 
ference superposed on the inelastic p roce~ses .~  

The one additional possibility for increasing interaction 
strength in quasiclassical conditions is achieved near classi- 
cal resonance, corresponding to the zeros of the resonant 
denominator sin wT, in (2.2). In other words this occurs 
when the separation between the levels in the well is close to 
w or when the adiabatic condition wT,-0 is satisfied. In 
direct proximity to resonance, where nJ and 2wBj+BJp 
from ( 1.5), ( 1.6) become greater than or of the order of the 
action in the well, the method used here becomes useless. 
However multiquantum processes become significant as ear- 
ly asn,, 2wB,+Bj- -1. 

b. Suppose that the interaction is concentrated in the 
subbarrier region 4. Then we have 

The following convention is used in (2.5) 

I t  is also simple to obtain similar expressions for the case of 
interaction localization in region 2. Since we have f14 > 0 in 
(2.5),  interaction with vibrations in the subbarrier region 
always causes smearing of the quasilevel width. In these 
cases there is no resonant enhancement of interaction 
strength, and the strength can be increased only by the expo- 
nential amplification. 

We will use our results to analyze the resonant tunnel 
conductivity in the case where the interaction is strong and 
multiquantum processes become important. We consider 
the low temperature case. We take into account that elec- 
trons tunneling from region 1 are actually three-dimension- 
al. Therefore in addition to the initial longitudinal electron 
momentump, = ( 2 ~  - W )  'I2 we introduce the momentap, 
and p,, since the total initial electron energy is 
E = ( 1/2 ) ( p: + p: + p: ). In the one-particle approxima- 
tion by analogy to calculations from Ref. 20, 26 the tunnel- 
ing resonant current can then be calculated from 

Z~(E.-E)  0 (E-an-E.+u) ISonq(e) 1'. 
n,q 

(2.6) 
where B ( x )  is a step function, U is the applied voltage, and 
E, is the Fermi energy of the electrons in region 1 (Fig. 
1 ,a) .  ' ' Expression (2.6) is generally valid only for barriers of 
variable penetrability. Inelastic exchange effects become im- 
portant as the barriers assume identical penetrability (see 
Sec. 3 for a detailed discussion). I t  is necessary to average 
the current in (2.6) over the transverse electron coordinates. 
However, as we shall see from the I-V characteristics given 
below, this averaging will not result in a qualitative change 
in their form. Therefore, bearing in mind the model nature of 
our assumption of the adiabaticity of the transverse coordi- 
nates and the fact that interaction W ( x )  generally is un- 
known, we will not carry out averaging, and will assume that 
the parameters entering into the formulae for the resonance 
amplitudes in ( 1.4)-( 1.9) are model parameters. 

Figure 2 illustrates the geometric picture of the succes- 
sive opening and saturation of inelastic tunneling channels 
with increasing U that, consistent with (2.6), we will label 
by two indices ( q, n) .  A significant feature of this process is 
the fact that the three-dimensional electrons experience res- 
onant tunneling through the one-dimensional level EF' in 
the well; this level is at  the same time an energy band with 
E F' as the bottom for the three-dimensional problem. The 
bold circle in the momentum space ( p, , p, , p, ) represents 
the Fermi sphere of radius p, = (2EF ) 'I2. The figure also 
shows the cross sections a' q' ( U )  of this sphere by the planes 
px = P:~' ( U) = {2 [E p' ( U )  + qw ] ) ' I2  on which the one- 
dimensional quasienergies of the well electrons lie. The num- 
ber q varies from zero to the integer-valued quantity m of 
[E, - E F' ( U) ] /w, since there are no electrons with an 
energy component on the p, axis greater than E, at zero 
temperature. The light circles represent the family of spheres 
of radii p'"' ( U )  = [2(E, - U +  nw)]1'2, n>O. The geo- 
metric location of the points corresponding to electrons ex- 
periencing resonant tunneling through the channel ( q, n )  
appears as a small [thickness of the order of l?, /p'"' ] neigh- 
borhood of the ring segmented by the spherep'"' ( U) from 
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FIG. 2 .  Geometric pattern of the \uccecsive openi t~g and saturation of 
ttiela\tic resotiat~t tutltlelit~g chatinel5 with increasing U .  The  5ituatton 
\\.here OJ < El - E:,"(  (1) < 2~0 ,  U < (9 i\ \hewn. Channels (0, 0 ) .  ( 1, 0 )  
a)-c. open. The ( 1. 0 )  channel is saturated. 

the section a' q'  ( U). The intersection of the spherep'"' ( U) 
with sphere p, represents the opening of m + 1 resonant 
channels with numbers ( q, n) ,  O(q(m. The addition to the 
current resulting from these channels appears for 
p'") ( U) >p,, equivalent to the condition U >  nw and pro- 
portional to the area of each of the m rings, equal to 
a[ PI; - (p'"' ( U) ) ' I  = a( U - nw) (this area is indepen- 
dent of q) .  Therefore the current I( U) at the point U = nw 
has a discontinuity, and a positivejump appears in the plot of 
the differential conductivity G (  U) . The sharp growth of 
conductivity in the interval AU- rq <w also appears with 
the generation (with increasing U) of the cross section 
CT' Y '  ( U) at the upper point of the spherep, that occurs for 
p F  = p.! Y, ( U), equivalent to EF = E :;"I ( U) + qw. Indeed, 
when E, > E A'' ( U) + qw an addition to the current appears 
that is proportional to the area of the cross section a' q'  ( U), 
equa l toa [p ;  - ( p F ' ( U ) ) ' ]  =T[E, - E F ' ( U )  + g o ] .  
Finally when the sphere p'"' ( U )  makes contact with the 
cross section CT( 4)  ( U) [when p'"' ( U) = pj, 9' ( U) equiva- 
lent to E, = E :;"' ( U) + U + ( q - n)w) ,  ] the channel ( q, 
n )  is saturated. Proceeding analogusly we find that this cor- 
responds in the conductivity plot to a reduction in its value in 
the interval A U- I?, . 

The conductivity plot for this structure will therefore 
consist of flat sections separated by positive or negative 
jumps. The jumps can be attributed to the topological fea- 
tures of the configuration of the spheresp, , p ' " '  ( U) and the 
cross sections a' " '  ( U ) ,  which have a rather general nature, 
unrelated to the interaction model selected in the present 
study or to the assumptions made in solving the Schrodinger 
equation. 

We will consider the case of small U- w assuming that 
y;,;' and T, remain constant in this interval, while 
E A'' ( U) = E :;"' (0 )  - /3U. These conditions are equivalent 
to assuming adiabatic electron motion. Using the expression 
for the matrix elements ( 1.4) we obtain from (2.6) for the 
differential conductivity 

~ [ E ~ E F '  (U) -q01 
4-i3 arctg 

r 4  

Here summation is carried out over all resonant tunneling 
open channels identified above. 

In investigating the I-V characteristics it is possible to 
change the potential difference between the well (base), re- 
gion 1 (the emitter) and region 5 (the collector). The open- 
ing of elastic and inelastic resonant tunneling channels will 
therefore depend on the relative position of the level in the 
well, the Fermi level of the emitter and the Fermi level of the 
collector. If the interaction is localized under the first (sec- 
ond) barrier, either the change in the potential difference 
between the emitter and collector will be nontrivial or the 
change between the base and the emitter (collector) will be. 
Figure 3 provides conductivity graphs produced by numeri- 
cal analysis using Eq. (2.7 ) for the case where the difference 
in potentials between the base and collector changes. It is 
assumed that the level in the well E:,"' is fixed with respect to 
the Fermi level of the emitter E, ( 0 = 0 )  where E :;"I < E, 
holds ( the cross sections a' q'  shown in Fig. 2 are fixed). 
Positive jumps for U = kw corresponding to opening of in- 
elastic resonance channels that alternate with negative 
jumps for U = EF - E - kw corresponding to channel 
absorption can be observed in the conductivity plots. When 
the interaction is weak the maximum positive jump corre- 
sponds to the opening of the first inelastic channel for 
U = w, while the maximum negative jump corresponds to 

F IG .  3. The differetitial cot~ductivity plotted as  a futiction of applied vol- 
tage U for T/(:, = 2.5.10 '. The  points represent the relations for elec- 
tron-vibrational intel.acttoti parameters 2mB, B ,  = ~ ( V J B  , B ,  = 0.5. 
while the traces represent the relations for ~ o J B ,  B ,  = 1.5: a- 
El = E:,"; b-El - E:," =O.~CCJ;  c-E, - E,," = 1.3~0: d- 
E,  -- E:," = 2 . 3 ~ .  

1614 Sov. Phys. JETP 67 (8) ,  August 1988 M. Yu. Sumetskirand M. L. Fel'shtyn 1614 



opening of an elastic channel for U = E, - E F'. Character- 
istic peaks are clear in the conductivity plot (Fig. 3,a) for 
similar values of E, - EF' and w. Physically these peaks 
clearly differ from those that arise from an investigation of 
resonant tunneling through a three-dimensional level.' 

3. RESONANT TUNNELING OF ELECTRONS IN AN 
OSCILLATORY ELECTRIC FIELD; EXCHANGE EFFECTS; THE 

PHOTOVOLTAIC EFFECT 

The problem of resonant tunneling in an oscillatory 
electric field can be considered as a limiting case of the prob- 
lem solved above which corresponds to large quantum 
numbers of the oscillator. For large m and fixed q it is possi- 
ble to use the asymptotic forms containing Bessel functions 
for the Laguerre polynomials2': 

In this case the oscillator is quasiclassical and its action on 
the electron is reduced to a variable correction to the poten- 
tial: 

#(x)cos m t = ( 2 m / o ) " W ( x ) c o s  at. (3.2) 

Let W(x)-  W, =Oforx-  - m, w(x)-  w 5 f o r x -  + m, 

where in the general case we have b5 # 0. 
Passing to the limit in (1.4)-(1.9) subject to (3.1), 

(3.2) we obtain for the resonant tunneling amplitude of an 
electron absorbing d-q quanta having an initial energy near 
the quasilevel E :"' 

where E F' = E F' + qw, while EF' is the level in the sta- 
tionary well. For the other parameters of Eq. (3.3) we have 

Here I,,( y )  is a modified Bessel function, while the param- 
eters g,' and C, are calculated in the same manner as B,* 
and a,, replacing W(x) with ~ ( x ) .  

I t  follows from (3.4) that in this limiting case the quasi- 
level width is independent of its number. An increase in the 
intensity of the oscillation will always result in smearing of 
the quasilevel width. In the adiabatic limit wT2, wT4-+0 we 
havep, - 1. 

In considering the application of our results we will an- 
alyze the influence of an I R  field of frequency w significantly 
less than the characteristic energy parameters of the struc- 
ture on the resonant tunneling process. In this case if w z  w ,  
multiquantum transitions may be observed. Typically such a 
field penetrates into the metal a distance of order lo2-lo3 A. 
This depth can be smaller for ultrapure specimens. The pos- 
sibility of identifying the inelastic processes of electromag- 
netic field interacting with electrons on top of other inelastic 
processes in a solid has been discussed, for example, in Ref. 
27. 

In our one-particle approximation the inelastic chan- 
nels cause electrons with different initial energies to end up 
in identical final states. Therefore the need to take into ac- 
count exchange effects caused by inelastic processes be- 
comes an issue. A theory of electron tunneling in an oscilla- 
tory electric field taking into account exchange effects has 
been developed in Ref. 16. The algorithm proposed in Ref. 
16 for finding the one-particle S-matrix (used to determine 
many-particle exchange effects) approximates the functions 
V(x) and ~ ( x )  by piecewise-constant functions. Therefore 
for actual relations its calculation requires rather laborious 
numerical techniques. Our approach makes it possible to 
determine the contribution of the exchange current analyti- 
cally. We will not provide the cumbersome expressions for 
this value obtained by substitution of the amplitudes (3.4) 
into the general expressions of Ref. 16. We will simply point 
out that the ratio of the inelastic current to the exchange 
current is determined to within an order of magnitude by the 
ratio TzT,/(T2 + T4)?. It is then clear that when the right 
and left barriers have similar penetrabilities, T2 - T,, the in- 
elastic and exchange current are of the same order and the 
problem is essentially a many-particle problem. In the oppo- 
site case, TI$ r4 or T z <  T,, it is possible to neglect the ex- 
change effects attributable to inelastic processes. 

We will limit the anlysis to barriers of different penetra- 
bilties. In this case the resonant current through the struc- 
ture with these assumptions can be determined analogous to 
Ref. 20, 26 by the formula 

(D 

We will consider the case of zero temperature when 
f (E) = B(E, - E). Then for sharp resonances ( T <w)  the 
integral is evaluated in (3.5). As a result, taking into ac- 
count the relation 

w 

we can write Eq. (3.5) in the form 
ma 

(4) 2 }  - E - - -  1 , ,  I , (3.7) 
n.--oo 

using the integral parts m,= [ (E,  - E{,"')/w] and 
n, = [(E, - U- Eg')/w].HereunlikeEq. (2.7) forsim- 
plicity we have replaced functions of the form arctg( ... /T )  
with step functions ( r 4 w ) . The photocurrent is determined 
by Eq. (3.7) if we set U = 0 in this formula. On the other 
hand assuming I( U) = 0, it is possible to determine the 
photo-EMF from (3.7). For example we assume that 
m, = n, = 0, i.e., that the level in the well E F' lies above the 
Fermi level E,, but not above w and also that the voltage Uis 
not substantial: r < U <  E, - EF' < w. Moreover, we let - 
B,+ = (3; ) *  (see below). Then the sums in (3.7) can be 
calculated analytically and we obtain 
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For relatively weak radiation in one-quantum excitation 
conditions 2wlgj+ I 4 1 it is possible to set 

and the photocurrent is proportional to the radiation inten- 
sity. In the opposite multiquantum limit 2013; 1 %  1 we 
have y (z )  =:2wz/.rr and the photocurrent is proportional to 
the square root of the intensity. Similar results are also ob- 
tained for other final values of mo and no. For 
w/(E, - E F') +O the indices satisfy m,,, no- oo and from 
(3.7) we obtain 

Applying a specific voltage to the well and keeping fixed the 
positions of the Fermi levels of the electrons, we can change 
the position of E:;"' with respect to EF. We therefore have 
the capability to examine a variety of situations. 

Assume that outside the structure in regions 1, 5 we 
have 

We assume that the adiabatic conditions are satisfied in the 
structure, wT, 4 1. The depth of penetration of the oscilla- 
tory field 2 '  can be sufficiently great that 
w?Rip;,p;", = p ( f  oo).Thenweobtain 

where ( W )  is the quasiclassical average of Win the well. In 
this case, as assumed in deriving (3.8), B,+ = (8; ) *. Vio- 
lation of this equality is due to deviation from adiabatic mo- 
tion in the subbarrier region, which, consistent with (3.9), 
produces the photovoltaic effect at a low frequency w. 

It is possible to detect experimentally the photovoltaic 
effect by irradiating the structure with short IR pulses so 
that the temperature is not substantially increased." In the 
general case it is necessary to take into account interaction 
with the phonons and the temperature rise. 

It is clear that any contact asymmetry will produce a 
photovoltaic effect to some extent. However, for an asym- 
metric single barrier the photo-EMF in this approximation 
is equal to zero. 

It is easy to determine from Eq. (3.7) that positive 
jumps with integer-valued [E, - E F'( U) ]/w and nega- 
tive jumps with integer-valued [E, - U - E g' ( U) ]/w 
will be observed in this case in a plot of the conductivity 
G = a I / d U  as a function of U. Only negative jumps will be 

observed in the case analyzed in the preceding section where 
EF' is fixed ( 0 = 0 )  unlike the plots shown in Fig. 3. 

4. METHOD OF DETERMINING THE S-MATRIX 

An asymptotic solution of Eq. ( 1.1 ) in the j region that 
is valid under the conditions outlined in the first section of 
the present study was obtained in Ref. 21. We will label this 
solution [see Eq. ( A l )  in the Appendix] by \I,;, where n is 
the order of the Hermitian polynomial in this solution, while 
1 is the number of the solution in region j (see below and Fig. 
1 .). In order to find the inelastic resonant tunneling S-ma- 
trix we continue the transmitted wave [see ( 1.3) 1 from 
region 5 to region 1 and join it with the incident wave @ A .  
For this purpose we represent the transmitted wave in 
the form of an expansion: 

(D 

It is easily demonstrated that the elements of the S-matrix 
S,,, are related to the coefficients c,, by the expression .. 

k-0 

where r,,, are the coefficients of the expansion of the wave 
Yt, in terms of the complete set of solutions {a;) ex- 
pressed through Laguerre polynomials. 

We continue each of the waves \V:, from region 5 to 
region 1. We require the wave function and its first deriva- 
tive to be continuous in the quasiclassical approximation at 
the pointsxj where the potential V(x) has ajump (Fig. 1,a). 
In this aproximation the behavior of the potenial V(x) close 
to the turning points x, is not important for expressions 
( 1.4)-( 1.9) to remain valid. Only TjO' and E,  will be depen- 
dent on it. The exciting wave Y:, after joining at the points 
x,, x,, x2, X ,  subsequently splits into two and, consequently, 
in region 1 generally includes 16 linearly independent waves 
( 8  incident waves and 8 reflected waves). However in the 
quasiclassical approximation four of these waves (the lowest 
waves in region 1, Fig. 1 ,b) are exponentially small and can 
be ignored. Proper selection of the free parameters of wave 
functions Y;', in the well in accordance with Ref. 2 1 makes it 
possible to reduce the number of waves in region 1 to four 
incident and four reflected waves: 

We will drop the coefficients d for simplicity. In the general 
case the waves Y:, are linearly-independent. As a result the 
wave in region 1 becomes the sum of incident waves q, I" 
and reflected waves q, 7 :  
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Using the completeness and orthogonality of the system of 
Hermite polynomials, we expand in region 1 each of the inci- 
dent waves q,,,, - , in (4.5) in terms of the set of waves 
{Y;, 1: 

m 

Substituting (4.6) into (4.5) we obtain 

On the other hand we can also expand the wave (Ok in terms 
of the set {Y:, 1: 

Equating (4.8) and (4.7) we obtain an infinite system of 
linear algebraic equations for the coefficients c,, : 

Suppose that the resonances are sharp, i.e., assume the con- 
dition r, ( w  holds, where F, is the quasilevel width in the 
well. In this case the poles of the S-matrix 8',, correspond- 
ing to the quasi-levels, as is clear from (4.12), are deter- 
mined by the zeros of the diagonal matrix elements z,, of 
Eqs. (4.9). We then find that the quasilevel energy 
E,, = Re g,, is determined by the relation 

where n, q>O are the integers, E A:' are the one-dimensional 
electron levels in the well with zero interaction, and R ( W )  is 
the quadratic functional of the interaction determined by 
Eq. (A4) in the Appendix. We drop the index n, assuming it 
to be fixed. 

Far from the poles of the S-matrix for energies E such 
that IE  - E, I $ rq ,  the conditions d 7 )d f, I = 2, 3,4 holds 
and the matrix of the system (4.9) becomes diagonal. As a 
result in the nonresonance case we have 

For energies satisfying the condition IE  - E, I  ( w  in the 
qth equation in system (4.9) the primary contribution comes 
from one term with k = q. Therefore in the resonant approx- 
imation (zeroth order in T, / w )  we obtain 

In region 5 the solution takes the form 

In the nonresonant case Eq. (4.12) becomes (4.11). We ob- 
tain from (4.12), (4.13) and (4.2) for the resonant tunnel- 
ing amplitude. 

.-I 

The resonant reflection amplitudes can be found analogous- 
ly. 

We wish to express our genuine gratitude to V. L. Pok- 
rovskii for stimulating discussions and to L. M. Baskin, Yu. 
N. Demkov, and M. I. D'yakonov for useful commentary on 
the results of the present study. 

APPENDIX 

The asymptotic solution of Eq. ( 1.1 ) in region j takes 
the following form: 

C 

where D,, is a free parameter and x, = x , .  By p in the classi- 
cally-forbidden range, we will understand i(p(. In the classi- 
cally allowed region waves incident in the postive direction 
correspond to odd I in (A1 ), while waves incident in the 
negative direction correspond to even I. The function fil 
obeys the differential equation 

and takes the form 

dx' 
++-[exp(-io LZO j:) I e x p ( i o j 5 )  W-. 

81-1 
P 

where A are free parameters. 
We introduce the following conventions: 
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dx W ( x l )  W (x) L~* =L J J exp(* io  J -) axf ax, 
2 o x ,  y P P("')P(~) 

where x, = cc . then the parameters entering into the expres- 
sion for the resonant tunneling amplitude will be determined 
by the relations 

The parameter entering into the quantization rule (4.10) 
takes the form 

W e  are not \urnn>lng over the levels in the well, but rather are assuming 
fol- \inipl~cit) that the quasilevels corresponding to one wcll make the 
pr~ncipal contribut~on to the current. 
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